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Abstract. In this article, an approximation of the spatiotemporal response of a distributed parameter system (DPS) with the use of the
principal component analysis (PCA) is considered. Based on a data obtained by the numerical solution of a set of partial differential
equations, a PCA-based approximation procedure is performed. It consists in the projection of the original data into the subspace spanned
by the eigenvectors of the data covariance matrix, corresponding to its highest eigenvalues. The presented approach is carried out using
both the classical PCA method as well as two different neural network structures: two-layer feed-forward network with supervised learning
(FF-PCA) and single-layer network with unsupervised, generalized Hebbian learning rule (GHA-PCA). In each case considered, the effect
of the approximation model structure represented by the number of eigenvectors (or, in the neural case, units in the network projection layer)
on the mean square approximation error of the spatiotemporal response and on the data compression ratio is analysed. As shown in the
paper, the best approximation quality is obtained for the classical PCA method as well as for the FF-PCA neural approach. On the other
hand, an adaptive learning method for the GHA-PCA network allows to use it in e.g. an on-line identification scheme.
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1. Introduction

Many industrial processes are characterized by variables
which can vary both temporally and spatially. Mathematical
models of these processes are commonly known as spatiotem-
poral dynamical systems or distributed parameter systems
(DPS). Phenomena taking place in the biotechnology, chemi-
cal engineering, semiconductor manufacturing as well as those
associated with fluid flow, heat transfer or distillation process-
es are good examples here [1–10]. A mathematical descrip-
tion of this class of systems in the continuous case takes the
form of partial differential equations (PDEs), which lead to the
infinite-dimensional state space as well as to irrational transfer
function representations. Therefore, due to the mathematical
complexity, analysis of DPS is much more complex than in the
case of lumped parameter systems (LPS), where spatial effects
are averaged. Consequently, infinite-dimensional DPS models
are often approximated by finite-dimensional ones. Among
many approximation techniques, an important role is played
by the so-called reduction methods, consisting in the replace-
ment of the high-order model of DPS by a lower-order one,
mapping the most relevant aspects of the dynamical proper-
ties of the system. The high-order model is usually derived by
solving the PDE with the finite difference method or based
on a measurement data set obtained from the identification
experiment [6, 7, 11–13].

A significant role is played here by the principal compo-
nent analysis (PCA) – a statistical method of factor analy-
sis, depending on the application area also known as proper
orthogonal decomposition, Hotelling transform or Karhunen-
Loève transform [7, 14–19]. This technique is well-known

from years and is used very successfully in many applica-
tions, e.g. in structural dynamics [20] and in model reduc-
tion of microelectromechanical systems [21]. The examples
of the PCA-based approximations of DPS reported in the lit-
erature are related to different systems, mainly of parabolic
type, e.g. [18,22–24]. In addition to the classical PCA method,
based on the numerical eigenvalue/eigenvector decomposition
of the data covariance matrix, one can find examples in the
literature where the well-known properties of artificial neural
networks are used for this purpose [13, 21, 25–30].

Unlike the previously mentioned, this paper focuses on the
PCA-based approximation of the spatiotemporal responses of
a certain class of DPS described by PDEs of hyperbolic type.
The classical PCA method, involving numerical computation
and analysis of the covariance matrix eigenvectors, as well
as its neural counterparts are discussed and compared here.
The software implementation of neural networks performing
the task of the PCA approximation is realized based on an
original C++ coded library, designed and implemented from
scratch using object-oriented techniques. Thus, the remainder
of the paper is organized as follows. Section 2 deals with the
theoretical aspects of the PCA with a particular view to its
possible use in the considered approximation task. This ap-
proach is implemented first using the classical PCA method
and then employing two different neural structures: a two-
layer feed-forward neural network with supervised learning,
for which the abbreviation FF-PCA is introduced, as well as a
single-layered structure with unsupervised, generalized Heb-
bian learning rule, later denoted as the GHA-PCA network.
Section 3 introduces a widely encountered class of DPS, de-
scribed by a system of two first-order hyperbolic PDEs. Exem-
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plary spatiotemporal responses obtained from the numerical
solution of the PDEs by the use of the method of lines are also
presented here. In Sec. 4 approximation results for both clas-
sical and neural PCA approaches are presented and compared.
Finally, conclusions and suggestions for further research are
given in Sec. 5.

2. PCA-based approximation

of the DPS spatiotemporal response

In this section, theoretical aspects of the PCA method are pre-
sented, with a strict focus on the approximation of the DPS
spatiotemporal response. The following two subsections dis-
cuss the use of the classical PCA method as well as two neural
network-based PCA schemes.

2.1. Classical PCA method. Assume that as a result of the
measurement or numerical simulation experiment, we have
obtained a discrete set of values y(lm, tn), representing the
spatiotemporal distribution of a one-dimensional DPS process
variable y ∈ R, where tn = n · ∆t for n = 1, 2, . . . , N and
∆t = T/N is a discrete independent variable representing
time, lm = m · ∆l for m = 1, 2, . . . , M and ∆l = L/M is
a discrete independent variable representing spatial position.
T ∈ R

+ and L ∈ R
+ denote temporal and spatial observa-

tion horizons of the process variable y, while N ∈ N and
M ∈ N are number of observations and the number of spatial
positions, respectively.

After initial processing, which involves subtracting from
each sample y(lm, tn) the time average for the m-th spatial
position, equal to

ȳ(lm) =
1

N

N
∑

n=1

y(lm, tn), (1)

the DPS response will be represented by the matrix Y ∈
R

M×N of the following form:

Y =



















y(l1, t1)−ȳ(l1) · · · y(l1, tN )−ȳ(l1)

y(l2, t2)−ȳ(l2) · · · y(l2, tN )−ȳ(l2)

...
. . .

...

y(lM , tM )−ȳ(lM ) · · · y(lM , tN )−ȳ(lM )



















.

(2)

The task consists in determining such an approximated matrix
Ŷ ∈ R

M×N for which the Frobenius norm of the approxima-
tion error matrix E = Y − Ŷ , given by

‖E‖F =
∥

∥

∥
Y − Ŷ

∥

∥

∥

F
=

√

tr

(

(

Y − Ŷ
)T (

Y − Ŷ
)

)

=

√

√

√

√

M
∑

m=1

N
∑

n=1

(y (lm, tn) − ŷ (lm, tn))
2

(3)

reaches a given (possibly small) value, using the smallest pos-
sible data set.

The application of the PCA in the above task allows to
determine the approximation matrix Ŷ based on the following
relationship [14]:

Ŷ = ΦKΨK (4)

where the reduced matrix ΦK ∈ R
M×K consists of K < M

first columns of the orthogonal matrix Φ ∈ R
M×M including

M column eigenvectors ϕ1, ϕ2, . . . , ϕM ∈ R
M of the input

data covariance matrix C, calculated as:

C =
1

N
Y Y T . (5)

The matrix Φ can thus be computed as the solution of the
following eigenvalue problem:

CΦ = ΦΛ, (6)

where Λ ∈ R
M×M is the diagonal matrix of (real) eigenvalues

of C, arranged in descending order:

Λ = diag (λ1, λ2, . . . , λM ) , λ1 ≥ λ2 ≥ . . . λM . (7)

The reduced orthogonal matrix ΨK ∈ R
K×N appearing

in Eq. (4) can be determined from the following relation-
ship [14]:

ΨK = ΦK
T Y. (8)

Hence, based on Eqs. (4) and (8) we obtain the relation-
ship between the ”original” and the approximated system re-
sponse matrices:

Ŷ = ΦKΦK

T
Y. (9)

As can be seen from the Eqs. (4)-(9), the PCA method
consists in the projection of the original data set Y into the
subspace spanned by the eigenvectors ϕ1, ϕ2, . . . , ϕK of the
spatial covariance matrix C, corresponding to its K highest
eigenvalues λ1, λ2, . . . , λK . As mentioned earlier, for a given
value of K , later referred to as the order of the approximation
model, it can be proved (see e.g. [15]) that this projection is
optimal in the sense of the minimum of the mean square error
(MSE):

MSE =
1

M · N
‖E‖

2
F . (10)

The presented PCA approach can also be considered as
a lossy compression problem, for which the data compres-
sion ratio CK can be calculated as the ratio of the number
of elements in the spatiotemporal response matrix Y to the
total number of elements in ΦK , ΨK and ȳ, required for the
approximation of the response matrix:

CK =
M · N

M · K + K · N + M
. (11)

A separate question concerns selecting the appropriate or-
der for the approximation model. It can be based on the deter-
mination of such a value of K , for which the relative ”energy”
EK% of the model, expressed as the ratio of the sum of the
K largest eigenvalues of the covariance matrix C to the sum
of all its eigenvalues:

EK% =

K
∑

i=1

λi

/

M
∑

i=1

λi
· 100%, (12)
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exceeds a given value, e.g. 99% [11]. Therefore, the initial
data set can be reduced using only K most ”energetic” eigen-
vectors of the covariance matrix. Selection of K can therefore
be thought as a tradeoff between a suitably small value of the
approximation error (10) and a sufficiently high value of the
data compression ratio (11).

2.2. Neural PCA methods. The PCA-based approximation
method described in the previous subsection, including nu-
merical calculations of the covariance matrix and its eigen-
vectors, can achieve considerable computational complexity,
particularly at the high dimensionality of the input data. In
this case, it may be preferable to employ methods that do not
require explicit determination of the covariance matrix. Such
an approach can rely e.g. on the well-known approximation
and adaptive properties of artificial neural networks. Their
learning algorithms directly process the input vectors, which
can be delivered either off- or on-line [28,30–33]. Therefore,
when the online scheme is taken into account, or when only
a few principal components are required, the neural network-
based PCA technique tends to be the best solution [25–27,29].

In the subsequent paragraphs, two neural network struc-
tures are discussed, that can be used in the task of PCA-based
approximation of the spatiotemporal response of a distributed
parameter system.

Two-layer feed-forward network with supervised learning

(FF-PCA). The first case considered concerns a feed-forward,
two-layer linear neural network of the structure shown in Fig.
1. The number of network outputs (i.e. number of neurons in
the second layer, hereinafter referred to as a reconstruction

layer) is equal to the number of the network inputs and cor-
responds to the number of M spatial positions of the process
variable y. Furthermore, the number of neurons in the first
network layer, called the projection layer, representing the
order K of the approximation model, is selected based on
criteria similar to those presented in the case of the classical
PCA method (see Subsec. 2.1). For the structure presented
here, the acronym FF-PCA (Feed-Forward Principal Compo-

nent Analysis) neural network will be used later in the article.

The role of the network input patterns will be taken over
by the vectors representing distribution of the process variable
y at the successive time instants tn, i.e. subsequent columns of
the matrix Y (2). In the considered case of auto-associative
network learning, the output patterns are equal to the cor-
responding input ones, and the learning procedure consists
in the iterative modifications of all weight coefficients in or-
der to minimize the network error function of the following
form [28, 30, 32, 33]:

E(w) =
1

M · N

M
∑

m=1

N
∑

n=1

(y(lm, tn) − ŷ(lm, tn))
2
, (13)

being the direct equivalent of the approximation error function
(10).

Fig. 1. Structure of the FF-PCA neural network

Denoting by W (1) ∈ R
K×M the weight coefficient matrix

of the projection layer, by W (2) ∈ R
M×K the weight coeffi-

cient matrix of the reconstruction layer and by V ∈ R
K×N

the matrix of the projection layer responses to the input pat-
terns Y , we obtain the following relationships describing the
operation of the network of Fig. 1:

V = W (1)Y, (14)

and

Ŷ = W (2)V = W (2)W (1)Y. (15)

As can be easily seen, Eq. (15) is equivalent to the for-
mula (9) for the classical PCA method, wherein the network
weight matrix W (1) corresponds to the transposed matrix ΦK

and projection layer response matrix V corresponds to the
matrix ΨK .

In order to determine the optimal (i.e. minimizing the
error function given by Eq. (13)) values of the weight coeffi-
cients, an iteratively performed procedure, commonly known
as the network learning process, has to be applied. Howev-
er, the results obtained by the use of the learning procedure
are ambiguous with respect to the solutions provided by the
classical PCA method, since each matrix being a linear trans-
formation of W (1) and W (2), respectively, will be considered
to meet the presented auto-association task [28].

Among many different supervised learning algorithms for
neural networks, two are mentioned below: gradient descent
and Levenberg-Marquardt algorithms, the first with regard to
its simplicity and the second considering its effectiveness. Ac-
cording to the first method, the network weights are updated in
the i-th learning epoch in the direction of the negative gradient
of the network error function (13). Taking additionally into
account recent trends in modification of weights (i.e. includ-
ing the so-called momentum term) and allowing the learning
rate to change during the network training proces, the gradient
descent learning algorithm can be described by the following
updating formula [28, 30, 32, 33]:

w (i + 1) = w (i) − η (i)∇E (w (i))

+ α (i) (w (i) − w (i − 1)) ,
(16)
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where w(i) denotes the vector of network weights, ∇E(w(i))
– gradient of the network error function, η(i) – learning rate
and α(i) – momentum rate.

However, significantly better results, both in terms of
the error function value and the number of required learn-
ing epochs, can be achieved by the use of the quasi-Newton
optimization methods (e.g. Levenberg-Marquardt algorithm).
According to these methods, network weight coefficients are
updated in the i-th learning epoch along with the following
formula [28, 33]:

w (i + 1) = w (i) − η (i) H̃−1 (w (i))∇E (w (i)) , (17)

where H̃−1(w(i)) is the inverse approximate Hessian matrix,
i.e. square matrix of the second order partial derivatives of
the network error function E(w(i)) with respect to all the
weights. The Levenberg-Marquardt method, like other quasi-
Newton algorithms, does not require calculation of all second
derivatives, it rather updates Hessian matrix approximation at
each iteration, computed as a function of the gradient.

The algorithms presented here can be implemented ei-
ther in the batch mode, where the modification of the net-
work weights is performed after the presentation of the entire
training data set, or using the adaptive approach, in which
the weights are modified after each presentation of a single
learning pattern. The second approach allows the use of neural
networks in the on-line approximation task, e.g. along with
the incoming measurement data.

Single-layered network with unsupervised Hebbian learn-

ing (GHA-PCA). An alternative approach to extracting prin-
cipal components from the data set can be based on a neural
network with unsupervised learning, e.g. using the so-called
Generalized Hebbian Algorithm (GHA). This method for a
single neuron acting as a principal component analyzer was
first proposed by Oja in [26]. Its extension to a network con-
sisting of many neurons, known as the GHA or Sanger’s rule,
enabling the estimation of the subsequent principal compo-
nents, was presented in the works of Oja and Sanger [27,29].

Fig. 2. Structure of the GHA-PCA neural network

In this case, the PCA task is performed using a single-layer
neural network consisting of K linear neurons, corresponding

to the subsequent principal components. The structure of the
GHA-PCA network used in the approximation of the spatio-
temporal DPS response is presented in Fig. 2 and corresponds
to the projection layer of the feed-forward network of Fig.
1. However, unlike in the case of the FF-PCA network, the
current learning procedure does not use the output learning
patterns but only the input ones, as well as network output
signals. Employing the notation of Fig. 2 and assuming the
on-line network learning mode, where the modification of the
weights takes place after each presentation of the input pattern
corresponding to the time sample tn, the k-th neuron gener-
ates an output signal according to the following relationship:

vk(tn) =
M
∑

m=1

wk,m (tn) y (lm, tn), (18)

where wk,m(tn) denotes the value of the weight coefficient
connecting the k-th neuron with the m-th network input, cal-
culated for the time instant tn.

The modification of the weight coefficients according to
the GHA is performed based on the following expression
[28, 29]:

wk,m(tn+1) = wk,m (tn)+

+ ηvk(tn)

[

y(lm, tn) −

k
∑

h=1

wh,m(tn)vh(tn)

]

,
(19)

for m = 1, 2, . . . , M and k = 1, 2, . . . , K .
Denoting by wk(tn) vector of the weight coefficients of

the k-th neuron at the time instant tn, i.e. vector of the fol-
lowing form:

wk(tn) =
[

wk,1(tn) wk,2(tn) . . . wk,M (tn)
]

, (20)

by y(tn) the input vector representing the distribution of the
process variable for all M spatial positions at the time instant
tn:

y(tn) =
[

y(l1, tn) y(l2, tn) . . . y(lM , tn)
]T

, (21)

and introducing the following notation:

y′(tn) = y(tn) −

k−1
∑

h=1

(wh(tn))
T
vh(tn), (22)

the relationship (19) can be written in the compact vector
form:

wk(tj+1) = wk (tj)+

+ ηvk(tj)
[

(y′(tj))
T
− wk(tj)vk(tj)

]

,
(23)

analogous to the Oja algorithm for a single neuron, for which
self-normalization of weight coefficients is carried out.

As mentioned in Subsec. 2.1, one of the main applica-
tions of PCA is lossy data compression. In the case under
consideration, the compression task should be understood as
follows: a large set of the input data, representing the distrib-
ution of the process variable y as the function of the temporal
and spatial variables, is replaced by the reduced data set con-
sisting of the weight coefficients and the network responses.
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Approximation of the spatiotemporal response is possible due
to the ”decompression”, carried out based on the matrices of
the weight coefficients and network responses (see Eqs. (4)
and (15)).

3. Case study – hyperbolic DPS

Among many different kinds of distributed parameter systems,
an important class is constituted by the processes in which the
phenomena of mass transport, as well as thermal and electrical
energy transport take place. The following typical examples
can be mentioned here [2–6, 10, 14, 34]:

• the voltage U(l, t) and the current I(l, t) in the electrical
transmission line,

• the pressure p(l, t) and the flow q(l, t) of the medium trans-
ported through the pipeline,

• the temperatures Tt(l, t) and Ts(l, t) of the heating and the
heated fluid in the case of a coaxial heat exchanger.

A mathematical description of the mentioned class of sys-
tems (after possible linearization at a fixed operating point)
takes the general form of the following two coupled partial
differential equations of hyperbolic type [14, 34, 35]:

∂y1 (l, t)

∂t
+ v1

∂y1 (l, t)

∂l
= g11y1 (l, t) + g12y2 (l, t) ,

∂y2 (l, t)

∂t
+ v2

∂y2 (l, t)

∂l
= g21y1 (l, t) + g22y2 (l, t) ,

(24)

where y1(l, t) ∈ R and y2(l, t) ∈ R are functions representing
spatiotemporal distribution of the process variables, square-
integrable on the set Ω × Θ, where Ω = [0, L] is the domain
of the independent spatial variable l and Θ = [0, T ] is the
domain of the independent variable t representing time. The
constant coefficients v1, v2 ∈ R usually represent the trans-
port or wave propagation velocities, whereas the constants
g11, g12, g21, g22 ∈ R depend on the geometrical and physical
parameters of the plant.

In order to obtain a unique solution to the PDE sys-
tem (24), one must specify the initial and boundary condi-
tions [35]. In the above case, the first represent the initial (i.e.
corresponding to t=0) distribution of the process variables y1

and y2 over the spatial domain:

[y1 (l, 0) = y01(l)] ∧ [y2 (l, 0) = y02(l)] , (25)

where y01(l) ∈ R and y02(l) ∈ R are given functions, square-
integrable on the set Ω.

On the other hand, the boundary conditions represent the
requirements to be met by the solution to the Eqs. (24) at
the boundary points of Ω. The general form of these condi-
tions may include both the boundary reflection and feedback
as well as the boundary control [34]. In the article, the Dirich-
let boundary control is considered, specifying the values the
solution needs to take on the boundary of the domain, e.g. for
l = 0:

[y1 (0, t) = yb1(t)] ∧ [y2 (0, t) = yb2(t)] , (26)

where yb1(t) ∈ R and yb2(t) ∈ R are given functions, square-
integrable on the set Θ.

Due to the complex form of the most analytical solutions
to the PDEs, if available, often involving expressions contain-
ing integrals and infinite series, an important role is played
by the numerical methods for solving them [6, 35]. Among
many existing numerical approaches, one of the most pow-
erful and generally applicable is the finite difference method

(FDM), based on the approximation of the solutions using fi-
nite difference equations to approximate derivatives. Another
frequently used numerical technique is the so-called method

of lines (MOL), consisting in the discretization of the spatial
derivatives only and leaving the time variable continuous. This
approach leads to the system of ordinary differential equations
to which any existing numerical method for the initial value
problem can be applied.

In the case under consideration, the method of lines is used
to determine the numerical solutions of Eqs. (24), representing
the spatiotemporal responses of the hyperbolic DPS, for the
initial and boundary conditions given by Eqs. (25) and (26),
respectively. The simulation tests are performed for the fol-
lowing values of equation parameters, domain of the solution
and the discretization step: v1 = 1, v2 = 0.5, g11 = −0.0638,
g12 = 0.0638, g21 = −0.0359, g22 = 0.0359, L = 5, T = 50,
∆l = 0.1. The simulations were carried out assuming zero
initial conditions (25):

∀l ∈ ]0, L] : [y01(l) = 0] ∧ [y02(l) = 0] (27)

as well as for two different forms of boundary conditions (26):

∀t ∈ [0, T ] : [yb1(t) = δ(t)] ∧ [yb2(t) = 0] (28)

and

∀t ∈ [0, T ] : [yb1(t) = H(t)] ∧ [yb2(t) = 0] (29)

where δ(t) denotes the delta Dirac function and H(t) – the
Heaviside step function, representing the impulse and the step
input forcing, respectively.

After an additional discretization of the numerical solu-
tion in the time domain using the time step ∆t = 0.5 and
subtracting from each sample the time average (1) for the
given spatial position lm, two matrices of the form (2) are
obtained, each consisting of M=51 rows, representing the
discrete spatial positions, and N=101 columns, correspond-
ing to the discrete time samples. The solutions y2(l, t) for
both types of boundary conditions (28) and (29) are shown
in Figs. 3 and 4, respectively. In the next section, the ap-
proximation results of these responses using the PCA method
are presented, both for the classical and neural network-based
approaches.

The approximation tests were conducted for different val-
ues of K , representing the number of eigenvectors of the
spatial covariance matrix C included in the approximation
model, or, in the case of the neural-based PCA, denoting the
number of neurons in the network projection layer. Selected
results are presented both as graphs and in the tabular form.
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Fig. 3. Response y2(l, t) of the system (24) for initial conditions (27)
and boundary conditions (28)

Fig. 4. Response y2(l, t) of the system (24) for initial conditions (27)
and boundary conditions (29)

4. PCA-based approximation results

4.1. Classical PCA method. The results of the application
of the classical PCA method in the task of approximation of
the impulse response of Fig. 3 for the model order K = 3
are presented in Figs. 5 and 6. Figure 5 shows the graphs
illustrating the eigenvectors ϕ1, ϕ2 and ϕ3 of the spatial co-
variance matrix C, comprising the matrix ΦK (see Eq. (4)).
The original impulse responses (solid line), obtained by the
numerical solution of the equation set (24), and the approx-
imation model responses (dashed line), calculated based on
Eq. (4), are compared for five different spatial positions in
the Fig. 6.

The results for the classical PCA approximation for both
step and impulse responses obtained for the model orders
K = 1, K = 3 and K = 5 are summarized in Table 1 at
the end of this section. For each of these cases, it contains
the following results: K largest eigenvalues of the covariance

matrix C of Eq. (5), the ”energy” coefficient EK% defined by
Eq. (12), the Frobenius norm of the error matrix ‖E‖F given
by Eq. (3), the mean square approximation error (10) and the
data compression coefficient CK defined by Eq. (11).

Fig. 5. Classical PCA approximation results for the impulse response
and K = 3: eigenvectors ϕ1, ϕ2 and ϕ3

Fig. 6. Classical PCA approximation results for the impulse response
and K = 3: y(l, t) and ŷ(l, t)

As can be seen from the presented results, the increase
in the approximation order K reduces the value of the ap-
proximation error, representing the sum-squared differences
between the original and the approximated spatio-temporal
responses of the system for all M spatial positions and N
time samples. However, it also decreases the value of the da-
ta compression coefficient CK , representing the ratio of the
number of elements in the spatiotemporal response matrix
Y to the total number of elements in matrices ΦK and ΨK ,
required for the approximation. Therefore, selection of the
appropriate value for K should take into account the tradeoff
between an assumed (reasonably low) value for the approxi-
mation error, and a sufficiently high value for the compression
ratio. As mentioned before, the number of the most ”energet-
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ic” eigenvectors of the spatio-temporal response data set can
be selected based e.g. on Eq. (12).

4.2. FF-PCA neural network. Figures 7 and 8 show approx-
imation results analogous to those presented in Figs. 5 and 6,
obtained as a result of the use of FF-PCA method consisting in
principal component extraction with the use of the two-layer
neural network with supervised learning. The results present-
ed here concern the approximation of the impulse response
of Fig. 3 using a network with three neurons in the projection
layer (K = 3). In Fig. 7 vectors of the weight coefficients
w1, w2 and w3 of this layer are presented, comprising the
matrix W (1) (see Fig. 1). In contrast to the base vectors ϕ1,
ϕ2 and ϕ3 of Fig. 5, the weight vectors w1, w2 and w3 ob-
tained as a result of the network learning procedure are not
orthogonal – their values have somewhat “chaotic” distribu-
tion. This is mainly due to the fact that the network learning
algorithm generates random initial values of the weight coef-
ficients, and, moreover, it does not impose the orthogonality
condition on the weight vectors as opposed to the classical
PCA method.

Figure 8 compares, similarly as Fig. 6, the numerically
calculated impulse responses (solid line) and its FF-PCA ap-
proximations (dashed line) for five different spatial positions.
Table 1 contains the results of the FF-PCA approximation ob-
tained for the number of neurons in the projection layer equal
to: K = 1, K = 3 and K = 5. From the presented results
one can conclude that despite the different values of the mod-
el parameters, represented by the matrices ΦK and ΨK for
the classical PCA method and W (1) together with V for the
neural FF-PCA model, identical values of the approximation
error are obtained for each response type and for each value
of K .

Fig. 7. FF-PCA approximation results for the impulse response and
K = 3: weight vectors w1, w2 and w3

Fig. 8. FF-PCA approximation results for the impulse response and
K = 3: y(l, t) and ŷ(l, t)

Table 1
PCA-based approximation results

impulse response step response

number of eigenvectors (neurons) number of eigenvectors (neurons)

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

cl
as

si
ca

l
P
C

A

λ1..λK

λ1 = 4.71·10−3 λ1 = 1.42·10−1

λ1 = 4.71·10−3 λ2 = 1.95·10−3 λ1 = 1.42·10−1 λ2 = 4.61·10−3

λ1 = 4.71·10−3 λ2 = 1.95·10−3 λ3 = 4.39·10−4 λ1 = 1.42·10−1 λ2 = 4.61·10−3 λ3 = 5.13·10−4

λ3 = 4.39·10−4 λ4 = 1.76·10−4 λ3 = 5.13·10−4 λ4 = 8.41·10−5

λ5 = 5.23·10−5 λ5 = 1.77·10−5

EK% 63.64% 96.00% 99.09% 96.44% 99.93% 99.99%

‖E‖
F

0.328 0.109 0.052 0.724 0.105 0.029

MSE 5.14 · 10−5
5.67 · 10−6

1.29 · 10−6
1.02 · 10−4

2.16 · 10−6
1.59 · 10−7

CK 14.62 6.39 4.09 25.37 10.16 6.35

F
F
-P

C
A ‖E‖

F
0.328 0.109 0.052 0.724 0.105 0.029

MSE 5.14 · 10−5
5.67 · 10−6

1.29 · 10−6
1.02 · 10−4

2.16 · 10−6
1.59 · 10−7

CK 14.62 6.39 4.09 25.37 10.16 6.35

G
H

A
-P

C
A ‖E‖

F
0.328 0.109 0.055 0.828 0.690 0.682

MSE 5.15 · 10−5
5.68 · 10−6

1.42 · 10−6
1.33 · 10−4

9.23 · 10−5
9.03 · 10−5

CK 14.62 6.39 4.09 25.37 10.16 6.35
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4.3. GHA-PCA neural network. The corresponding results
for the GHA-PCA network, obtained for the impulse response
and K = 3 neurons are presented in Figs. 9 and 10, whereas
the results for both impulse and step responses for three dif-
ferent values of K are summarized, as in the previous cases,
in Table 1. The initial visual assessment of graphs illustrating
the parameters of the approximation models shows certain
similarity of the results for the GHA-PCA (Fig. 9) and the
classical PCA approaches (Fig. 5).

Fig. 9. GHA-PCA approximation results for the impulse response
and K = 3: weight vectors w1, w2 and w3

Fig. 10. GHA-PCA approximation results for the impulse response
and K = 3: y(l, t) and ŷ(l, t)

As a result of the adaptive network learning procedure,
orthogonal normalized vectors of the weight coefficients are
obtained, corresponding to the eigenvectors of the covariance
matrix of the spatiotemporal response. However, after inspect-
ing the results presented in Table 1, it can be concluded that
only in the case of the impulse response the approximation er-
ror values are similar. Using as a reference the classical PCA
algorithm, it can be noticed that with increasing K , better ap-

proximation quality in terms of the MSE is obtained for the
FF-PCA network.

In the case of the approximation of the step response the
differences are even greater: while in the case of FF-PCA ap-
proximation error reaches a value of 1 ·10−7, the error for the
GHA-PCA network is fixed at the level of 9 · 10−5 – further
increasing the number of learning iterations does not improve
the approximation quality.

5. Conclusions

In this paper, approximation of the spatiotemporal response
of a distributed parameter system with the use of the princi-
pal component analysis, also known as the proper orthogonal
decomposition, Hotelling transform or Karhunen-Loève trans-
form, has been discussed. This method has been applied to
the data obtained from the numerical solution of the system
of two partial differential equations of hyperbolic type, de-
scribing the phenomena often encountered in the industrial
practice.

The approximation approach has been carried out adopt-
ing two different approaches: first, using the classical PCA
method, based on the analysis of the eigenvectors of the re-
sponse covariance matrix, and second, employing two differ-
ent neural network structures. In the later case, two-layer feed-
forward neural network with supervised learning (FF-PCA) as
well as single-layered neural network with unsupervised, gen-
eralized Hebbian learning (GHA-PCA) have been used.

The main idea of applying the PCA method in the con-
sidered approximation task can be summarized as follows:
based on a data set obtained by the numerical solution of
a given PDE, the projection of this data set into the sub-
space spanned by the eigenvectors of the spatial covariance
matrix, corresponding to its highest eigenvalues is performed.
This PCA-based approach can also be considered as a lossy
compression problem, for which the data compression ratio
is equal to the ratio of the number of elements in the spa-
tiotemporal response matrix to the total number of elements
in matrices required for its approximation. Therefore, selec-
tion of the model order can be regarded as a tradeoff between
suitably low value of the approximation error and a sufficient-
ly high value of the data compression ratio.

In the article, influence of the approximation order, rep-
resenting the number of eigenvectors on the mean square re-
sponse approximation error and on the data compression ratio,
has been analyzed. When using a neural network, this parame-
ter corresponds directly to the number of units in the network
projection layer. It has also been demonstrated that the mod-
el order, necessary to achieve a good approximation quality,
depends on the form of the boundary constraint, acting as an
input forcing. Therefore, an important issue in the context of
the use of this method for the identification purpose is choos-
ing a suitable input signal, providing good excitation to the
spatio-temporal dynamics of the system.

The values of the approximation error obtained for the
FF-PCA method were identical as in the case of the classi-
cal PCA approach. The only drawback in the application of
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neural techniques was a slightly longer time required to deter-
mine the appropriate values of model parameters (i.e. network
weight coefficients), resulting from the iterative nature of the
training procedure. On the other hand, results obtained for
the PCA neural network with the generalized Hebbian learn-
ing rule were worse than those obtained for the two methods
mentioned previously, particularly in the case of the approxi-
mation of the step response.

A positive aspect of using neural networks as a tool for
extracting principal components from a data set is that they
do not require calculating its correlation matrix explicitly. For
this reason, they can be used e.g. in the on-line data acquisi-
tion scheme, when calculation of the data correlation matrix
in the explicit form is impossible. The neural-based approach
presented in the paper may act as a good starting point for
further research concerning, for example, approximation of
nonlinear distributed parameter systems using nonlinear PCA
method, based on the function approximation properties of
neural networks with nonlinear units.
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