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for numerical modeling in civil engineering
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Abstract. In order to obtain reliable results of computations in civil engineering, the numerical procedures that are used at the stage of

design should be calibrated by comparison of the theoretical results with an observed behavior of previously modeled and then executed

structures. The hybrid Finite Element code with an Artificial Neural Network inserted as a representation of a constitutive law, offers a

possibility to adjust not only parameters of the constitutive relationships but also its qualitative form. Because of this, the representation of

constitutive law by the ANN is presented in this paper. The constitutive data should be calibrated to fit well the observable values, measured

in experiments. If the constitutive law is expressed by ANN, the inverse problem can be reduce to a training of the ANN inserted into the

Finite Element code. An example of a solution of the inverse problem in calibration of constitutive law is presented. An identification of

parameters of flow of pollutant in soils is described as another example of application of ANN in engineering.

Key words: hybrid code FEM-ANN, inverse solution with ANN.

1. Introduction

We present some applications of artificial neural networks

in practice of civil engineering in this paper. We focus our

attention on phenomenological representation of constitutive

relationships. Since inverse analysis is of special importance

in this issue, some solutions of an inverse problem with arti-

ficial neural networks is also addressed here.

Artificial neural networks (ANN) can be considered as

non-linear operators that transform a set of suitably interpret-

ed variables at its input into another set of numerical data at

its output. The values of input and output should be known

from observations. The ANN is “trained” with the known

data to perform such the transformation and to become the

“numerical, phenomenological model” of the considered phe-

nomenon. The internal structure of the neural operator ANN

remains the same for very different problems. For applications

- it is enough to suitably interpret the input and the output

of the ANN. This facilitates miscellaneous, qualitatively very

different use of the ANN in various domains of engineering,

including civil engineering.

ANNs are very efficient for analysis of large data systems,

like for example elaboration of image in informatics or large

databases in civil engineering. This technique is suitable for

problems described with many, mutually dependent variables.

The problem is always defined by examples of input – output

pairs. The required definition of the problem can be not-exact

(soft), superposed with noises, it can contain redundant or re-

peated information. The ANN works very well with such the

difficult data sets.

If the ANN-based phenomenological model of the prob-

lem is constructed correctly, we can be sure that the essential

rules or laws governing the problem are inscribed into the

structure of weights of connections of the nodes (neurons) of

the ANN. In this sense the ANN “discovers” the law governing

the problem, acting still as a black box that behaves like the

physical system that it models. It is believed that the approx-

imation by ANN handles the real, deep dependence between

two sets of data much better than any theoretical approach.

It simulates very well a complicated, complex behavior in

which influences of various physical factors and features are

superposed.

These properties (and many others) are common to a set

of techniques called “soft computing”. In this family of com-

putational strategies, the ANNs appear among Genetic Al-

gorithms, Fuzzy Logic, Believe Networks, Cellular Automata

and many others.

From the point of view of the quoted above properties, it

seems to be natural that the domains of civil engineering such

like mechanics of soils and geotechnics are mostly explored

using the ANN technique. This is primarily because the soil

is much more difficult to be theoretically described than other

engineering materials. Also experimental or in situ data are

usually neither sufficiently reliable nor complete in soil engi-

neering. The second domain, the ANN is widely applied in

modeling of composite materials used in constructions like

sandwich plates, rope wires, porous materials.

It is impossible to review all applications of the ANN in

civil engineering. It was a true explosion of papers and al-

gorithms since eighties of the twentieth century. We mention

here only the most important and the most promising for nu-

merical modeling in civil engineering developments of the

ANNs and we illustrate the paper with some results of our

own experiences in this subject. We are going to describe al-

so some applications of very special ANN that performs its

computing not on numbers but on words, acting thus as an
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expert program that operates over a data base containing a

description of a given problem. Our interest is also focused

on hybrid computational systems, in which the soft comput-

ing performed by ANN complements only the classical hard

computations (carried out by Finite Element code for exam-

ple).

1.1. Structure of artificial neural network. ANN is com-

posed of a collection of simple but nonlinear processing units

(called nodes or artificial neurons) that are mutually intercon-

nected. This is illustrated in Fig. 1. The connections modify

the signals exchanged between neurons multiplying it by vari-

able weights. This system of units is organized to transform

an input signal into an output signal. Both input and output

signals are suitably defined according to their physical inter-

pretation. In this way we construct a functional dependence

between the data at the input and at the output: the values at

the output nodes can be seen as functions of the independent

variables at the input nodes. This is obtained by a correct

choice of coefficients (synaptic weights) that scale the signal

transmitted between each pair of nodes belonging to the ANN.

The weights of interconnections are modified by an iterative

procedure to force the desired output signal – the response on

a given input pattern. This process is called learning or train-

ing and it is continued until the error between the response

of the neural network and the desired output (called target)

is minimized for a whole set of pairs: given input – known

output. Once the ANN is trained, it is used in recall mode to

obtain the output of the problem at hand.

Fig. 1. General scheme of the neural-like operator (ANN). Neurones

are split into its own input and output, possibly different activation

functions f , g that act on the neural input are shown. Arrows are used

to mark the signal transmision. Weights (real numbers) are attributed

to each arrow. The value of each output from neuron, multiplied by

weight, is put on the input of another one as it is indicated by the

arrows

Many algorithms that allow finding the weights w and bi-

ases b transforming the given input into the given output are

created. For a fundamental introduction to the ANN technique

the reader is referred to general textbooks and codes, for ex-

ample [1–3]. Here we describe this method very briefly. We

focus our attention on the widely used ANN with nodes orga-

nized in layers. Each node of one layer is connected (and ex-

changes its weighted activity) with each node of the next and

previous layers. The strength of these connections (weights)

can be modified. Within one layer the direct communication

between neurons is forbidden. Input and output layers are ac-

cessible to the user. The values obtained at the nodes of the

output layer (result of the network activity) as well as those

given by the user to the input nodes, are interpreted in terms

of the modeled problem.

The nature of nonlinear processing units – neurones, the

architecure of their mutual interconections and the algorithms

of learning imply some very interesting properties of ANN.

The most important one is an ability to simulate numeri-

cally nonlinear behaviour, even very complex, basing on phe-

nomenological knowledge about it. This knowledge is defined

by a sufficiently large set of examples. Each example is com-

posed of values of independent variables describing the prob-

lem and another set of values defining the output, considered

as dependent variables. Formally, the ANN can be understood

as a universal approximate of any functional dependence be-

tween the two set of data, if such a relation exists. It is also

proved that any operator that acts from a set of variables into

another set of data can be approximated by ANN as well (for

details, see for example [3]). Unfortunately, the theorems that

ensure that the ANNs can approximate any function of many

variables are non-constructive. It means that the correct num-

ber of the internal degrees of freedom of this approximate

(i.e. the number of hidden layers, the total number of nodes,

their repartition between the hidden layers that determines the

number of weights and biases) has to be decided by the user.

These characteristics are problem dependent (the acceptable

error of the approximation is given by the tolerance of the

problem) and a general prescription cannot be proposed here.

1.2. Some most important application of ANN in civil en-

gineering. The pioneer application of ANN in mechanics is

attributed to Ghaboussi and al. They have proposed to use

the ANN in civil engineering for direct representation of con-

stitutive behavior of concrete. In his early works, he trained

the ANN with experimental data collected from biaxial stress

test of concrete cube. At the output of the ANN, increments

of stress tensor were computed while strains increments have

been presented at the input of the ANN. In this way, the

ANN memorized, approximated and “generalized” the exper-

imental data. This phenomenological description was neither

constrained nor deformed by any “a priori” speculative, the-

oretical reasoning.

Many revolutionary ideas have been proposed by those au-

thors who introduced the technique of soft computing in the

field of numerical modeling of mechanics of structures. We

mention for example the so called self-learning finite element

procedure introduced first by Ghaboussi in [4-6] and devel-

oped then by Shin and Pande in [7, 8] as a very promising

technique of data acquisition for the ANN training process.

Presentation of this method that was applied immediately to

problems of diaphragma wall dimensioning would exceed the
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frame of this paper. We refer the reader to the papers [9,

10], containing the preliminary experience of the author in

the application of this procedure. Also in [11] this method is

used.

The use of ANNs for the direct identification of macro-

scopic mechanical properties of a composite system with a

very complex internal structure – namely force-displacement

relationship for a bundle of superconducting strands – can be

found in [12] for a one-dimensional case and in [13] for a

two-dimensional one. In [14–17] the non-linear constitutive

behavior of the system has been represented by ANN and di-

rectly incorporated in a Finite Element (FE) code, while in

[18] ANNs are used for the identification of the parameters

of a constitutive law. In [15, 19–27] interesting reviews of

possible applications of ANNs in nonlinear mechanics can be

found.

ANN can serve to create some formulae, basing on train-

ing with experimental data, very useful in design process [28–

30]. The most important advantage of these formulae is that

an updating is always possible, when new experimental data

appear, by retraining of the ANN. Another important appli-

cation of ANN is creation of data bases containing physical

description of soils and their measured properties (National

Geotechnical Databases). Similar data bases are created for

geotechnical technologies. The role of ANN in construction

of the data bases is very important. ANN can directly rep-

resent or post-process the data. An “intelligent shell” created

over the data base using ANNs of special construction as-

sures a search for various, hidden correlation among the data.

We quote some papers that account for this very important

application of ANNs: [19, 31].

Inverse problem is especially designated to be solved by

ANN, since network approximates very well a solution of

minimization problem. A broad literature of this problem is

known, we suggest only few papers, the further references can

be found there: [24, 32–36]. In the solution of inverse prob-

lem, not only numerical robustness is important but also the

fact that the suitably trained ANN can be used as an inverse

relation between observable data and parameters of the mod-

el. The last section of the present paper is devoted to this

application of ANN.

Among more recent papers some examples of very im-

portant application of ANN should be recalled (also these

examples concern the field of civil engineering). Two com-

panion papers [37, 38] present a numerical approach designed

for material parameter identification for the coupled hydro-

mechanical boundary value problem (BVP) of the piezocone

test (Cone Penetration Test – CPT) in normally and slightly

over-consolidated clayey soils. The papers explore a possi-

bility of using neural networks to solve the complex inverse

problem of the penetration test, including partially drained

conditions. It has been demonstrated that the development of

ANN based inverse models can be based on training data

sets which consist of pseudo-experimental measurements de-

rived from numerical simulations of the piezocone test. The

authors proved the effectiveness of correlating constitutive pa-

rameters with synthetic piezocone measurements, by means of

the ANN modeling. Important for geotechnics, general con-

clusions related to the ANN training with the aid of numeri-

cal database have been drawn. The straightforward continua-

tion of the method developed in the mentioned above papers

was identification of constitutive model parameters using self-

boring pressuremeter tests [34]. This idea of identification of

soil properties, basing on geotechnical laboratory tests (as well

as on the above described “in situ” tests) is very important

and should become the leading method in the field of nu-

merical modeling, in author’s opinion. Also some example of

practical use of ANN in civil engineering can be easily fond.

For instance – data measured with well known Falling Weight

Deflectometer, used to check a quality of layered structure of

pavements and roads, are interpreted with ANN. This is de-

scribed in [33] and in many text books concerning this method

of in situ testing. Another example – correlations between the

data measured on the lateral, cylindrical and conical surfaces

of the tip of the probe in various CPT (pressure and fric-

tion) and the properties that allow to classify the soil and to

predict elements of its classical mechanical description [34].

The most promising method of data elaboration in the case of

CPT is the prediction of the dimension of the pail for given

bearing capacity, inserted in the soil the reaction on the CPT

is known. In this case ANN technique is mostly adequate.

Development of application of ANN in civil engineer-

ing in Poland was triggered by a keynote lecture given by

Z. Waszczyszyn at the 41st Polish Engineering Conference

in Krynica in 1995, which brought attention of many engi-

neers and researchers to this field. Since this moment, many

important contribution concerning theory of ANN and its

application, mainly in structural mechanics, appeared. More

than 15 years of the activity in the field of neural computing

was summarized in 2011, again during the Polish Engineer-

ing Conference in Krynica. Review of main achievements of

the scientific groups from Technical Universities of Kraków,

Rzeszów, Białystok ([30, 35, 39–41]) and others, chaired by

Z. Waszczyszyn can be found in [42]. In parallel, soft com-

puting (first of all genetic algorithms, recently also immuno-

algorithms, fuzzy computing and other generalized methods,

inspired by biological observations) in a context of optimiza-

tion, topological optimization, foults detection and others dis-

ciplines closely related to field of mechanics, mechanical en-

gineering and civil engineering was being developed at the

Silesian University by a group of T. Burczyński. The confer-

ence AIMETH, organized in Gliwice is an important forum

for annual presentation of the current state of art in soft com-

puting in Poland.

2. Representation of a constitutive relationships

using ANN and finite element method

The civil engineers agree that the numerical methods, we dis-

pose in design process, especially the most common – Finite

Element Method (FEM), are not always reliable. To have trust-

worthy results, the numerical procedures should be calibrated

by comparison of the theoretical results with an observed be-

havior of previously modeled and then executed structures.
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The calibration of FEM codes becomes a very important

problem. EUROCODE 7, that defines the rules of geotech-

nical design, explicitly imposes a necessity of monitoring of

the realized structures. This is in context of reliability of the

design procedures, especially numerical computations.

In the FEM code the only adjustable parameters are con-

stitutive data. Of course, in frame of the classical description

of the constitutive relationships, calibration of the code is well

possible, but the ANN offers the possibility to adjust not only

the values of the parameters of the constitutive relationships

but also its qualitative form. Because of this, the representa-

tion of the constitutive relationships by ANN is, in the author’s

opinion, the central issue for the calibration of the numerical

procedure in civil engineering. This is especially important in

soil mechanics, where the constitutive models are still very

difficult to define. Also parameters of these relations are very

difficult to obtain. Experimental test, both “in situ” and in

laboratory are hardly interpreted, the constitutive data result

rather from correlations with physical description of the soil

and its state than from direct measurements. Representation

of constitutive law by the ANN is the subject of this section

of the paper.

A hybrid ANN-FEM code is also very suitable in solving

an inverse problem. Any laboratory or “in situ” experiment

can be treated as a source of the inverse problem and the

constitutive data should be calibrated to fit well the observ-

able value, measured in experiment. If the constitutive law is

expressed by ANN, the inverse problem can be reduce to the

training of the ANN inserted into the FE code. This calibra-

tion is thus inseparable from FE model.

2.1. ANN as a numerical representation of constitutive re-

lationships. The interest of the application of ANN in the

case when the model is built directly from some available ex-

perimental data is obvious. In such a case an unknown con-

ventional analytical constitutive description can be directly

replaced with a suitably trained ANN.

In the most of applications of the ANN in civil engineer-

ing and in particular in mechanics of composites proposed in

former papers of the author of the present article, for example

in [18, 19, 20], the following form of constitutive model is

privileged:
(

σt+1, F t+1, ρt+1
)

= ANN@
(

σt, F t, ρt, ∆F t
)

,

∆F t = ∆Ḟ t∆t.
(1)

It means that the ANN in the non-symbolic model is trained

in such a manner that it associates with an increment ∆F of a

deformation gradient F at the current moment t and in a given

state of stress σ and at the given current value of F – a new

state of stress (in an incremental manner) and a new value of

gradient of deformation. Density ρ is treated as a state vari-

able. This form is derived from a hypo-plastic approach, and

is very convenient since the only approximation of a tensorial

function is needed to describe a non-linear material behavior

in an admissible region of the stress space (any geometrical

form in the space of stress, like for example – yield criterion,

is not necessary to be defined).

In Fig. 2 a typical scheme of the ANN for representation

of a constitutive relationship is shown. It is seen that the out-

put of the network is a function of stress state, strains and

increment of strains along a chosen path in the strains space.

In Fig. 2 it is marked that the deformation gradient can be

replaced by an infinitesimal strains tensor.

Fig. 2. A typical ANN interpreted as a numerical approximation of

a constitutive function. It is assumed that the numbers of neurons in

the input layer and in the output layer are compatible with number of

components of the respective tensors for the chosen dimensionality

of the model. The ρ is a set of parameters. It can be, for example,

density or porosity

2.2. Implementation of constitutive law represented by

ANN inside the FE code. Technique of implementation of

constitutive law represented by ANN depends strongly on the

role the ANN plays inside the hybrid FEM-ANN procedure:

training of the ANN inside the FE code or the action of the

ANN inside the FE in the recall mode. Training of the ANN

inside the FE code is governed usually by algorithms that are

proposed by the above quoted authors: [6, 16]. These algo-

rithms, fundamental for applications in civil engineering, are

too complex to be analyzed here. Instead, the reader can be

referred to papers recently published by E. Pabisek [17] for

the most competent in the literature analysis of the so called

“in line” and “off line” ANN training process. Some methods

of practical integration of the two components are illustrated

there with examples from the field of civil engineering: identi-

fication of constitutive behavior of the elements of plane truss

and identification of an equivalent model for cohesion-less

soils. The various techniques of fusion of the two component

of the hybrid, FEM-ANN code are described; estimations con-

cerning the numerical effectiveness are given. The situation,

when the ANN is used inside FEM in the recall mode is much

simpler for numerical realization. Various, important for civil

engineering application of the ANN trained “off line”, as for

example – definition of constitutive relationships for compos-

ites or functionally graded materials – are collected in [11,

43, 44]. The problem of iterative calibration of the consti-

tutive relationships is not crucial for these applications. The

only issue is how to incorporate the ANN into the formalism

governed by a matrix notation of the FEM. This is described

with some details in [10]. Here, the only draft of this solution

is given.
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Let us suppose that ε (du) is a strain measure – a function

of the displacements increment computed during an iterative

process of solving nonlinear BVP by FEM. This infinitesimal

strain tensor is conjugate to material stress τ that is usually

computed in points of integration at the level of a single ele-

ment by the product (2). In formula (2) the constitutive tensor

D is assumed for the material attributed to the element while

in the hybrid code it should be computed at the output of a

suitably trained ANN. The first term under the integral (3)

can be computed using a usual constitutive assumption:

dτ = D : dε. (2)

Using the assumed representation of constitutive law by ANN

we have instead of (2):

dτ = Nd,σ@dε. (3)

Index d denotes that the network quality is the best for

some given value of increment d, σ means that the value of

stress increment is computed at the current value of τ = σ.

It is clear that following the scheme of the constitutive neural

network, both increment of the stress tensor and its initial val-

ue at the current step of iterations are available. It is possible

to include these values of stress τ with some manipulation at

the level of the FEM code but the easiest way is to replace the

neural operator in (3) by the matrix D similar to the one in (2)

but constructed directly using the given, neural representation

of the constitutive law. This is done by trial incrementing of ε.

Let us suppose that both tensors dτ and dε are represented

by column vectors:

[dσ] =
[

dτ1 dτ2 dτ3

]

=
[

Nd,σ@dε1 Nd,σ@dε2 Nd,σ@dε3

]

,
(4)

[

dε
t
]

=
[

dε1 dε2 dε3

]

D = [dσ]
[

dε
t
]

−1
. (5)

In the algorithm proposed in [10] the matrix of trial

vectors dε
t is always proportional to the strains at the last

equilibrated point during the FE iterative solution (at the

preceding step). Trial vectors cannot be arbitrary because

Nd,σ@dε 6= −Nd,σ@(−dε (ANN is nonlinear). In fact, two

different tangent stiffness matrices can be defined in any point:

one for loading and the other for unloading it is supposed thus

that the loading (unloading) is continued during the current in-

crement in the Newton iterations. Computation of increments

of the stress tensor can be also achieved by of computing the

derivatives of the neural network with respect to input values

(The method proposed in [12, 45]).

The stress (3) is computed using neural network in the

recall mode for given, constant step dε, until the strain ε at

the trial solution at the current step is reached. The ANN

acts here in the autonomous activity mode as it was defined

before. This process corresponds to the classical integration

of incremental constitutive equation for updating σ. It starts

always at the last equilibrated point and the increment dε

is proportional to the one, defined for this step (loading or

unloading).

2.3. Example of application of ANN – virtual testing

method in mechanics of composites. As it is stated in the

previous sections, the available experimental or numerical da-

ta are sufficient sources of information to describe the consti-

tutive dependence between the scalar, vector or tensor fields

of interest. In the publications [14, 17, 43, 44] the only numer-

ical tests made on a sufficiently large portion of the composite

were used to identify the mechanical behavior of the homog-

enized material. For a non-linear composite or for a complex

hierarchical heterogeneity, very frequent in materials used in

civil engineering, an adequate description of the effective be-

havior is usually difficult to obtain on a purely theoretical way.

The classical, symbolic constitutive law is usually identified

from known properties of a representative volume element

(RVE), based on a suitable version of some homogenization

theory. An alternative to the theoretical development is given

by the numerical testing of the composite. This approach is

well known: numerical experiments can be carried out on a

RVE of the composite using e.g. a FE code. Usually defor-

mations are kinematically imposed and the material properties

are obtained from the relation between average strain - aver-

age stress measures, computed from the FE solution. This

method is also known as virtual testing and can be used to

compose the input-output data set to train the network. ANN

is used both as a numerical representation of the effective

constitutive law and as a numerical tool for the analysis of

the constitutive relations between averaged quantities. ANN

approximation replaces the usual symbolic description of the

effective constitutive law.

By performing a sufficient number of numerical tests the

network can be trained. ANN representation of the constitu-

tive law cannot be used out of a numerical environment since

its parameter (weights and biases) have no physical meaning.

After the training process, inside the FE code ANN is used

in recall mode to identify the stress value or the stress incre-

ment for a given strain, strain increment and possibly other

variables (e.g. temperature, porosity etc. depending upon the

assumed model). The results of the virtual testing, can always

be rearranged to form the system of equations (5), where D

contains the 21 independent elastic constants (the elements of

the effective stiffness matrix)

The following overall algorithm is proposed to define ef-

fective properties of any hierarchical composite material and

to solve the resulting, homogenized boundary value problem:

i Preparation of the learning data: for casual values of the

materials data and for each geometry of the cell of period-

icity the effective material characteristics are computed by

a FEM solution of BVP with periodic conditions and are

suitably post-processed.

ii Training of the network with the pairs of sets: given ran-

dom input and computed (as is said above), corresponding

output. Interpretations of input and output data are defined

in Subsection 1.1.

Having the well trained ANN, starting at the micro-level, for

each structural level and for each kind of cell of periodicity

at the current level:
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iii Run the neural network in the recall mode with input data

that characterize the current level of the structure.

iv Complete the sets of input data for each cell of higher

structural level from ANN outputs obtained at the previous

level.

v Run the same neural network in the recall mode with suit-

ably completed input data plus information characterizing

the geometry of the cell of periodicity of the higher struc-

tural level.

vi At the macro level algorithm stops.

2.4. Example of determination of mechanical properties

of soils using ANN. While in [17] the constitutive law has

been obtained by virtual pseudo-experiment, in this section we

describe the idea of introduction into FEM of the “true”, phe-

nomenological constitutive law for soils via ANN. Determina-

tion of mechanical properties of soils is a well known proce-

dure regulated by geotechnical praxis and codes. Three meth-

ods are possible here: method A, when the soil properties are

defined basing on laboratory or “in situ” tests; method B bas-

ing on the experiment indirectly, through a knowledge about

correlation between some well defined geotechnical proper-

ties and state of soils (called “leading properties”) and the

mechanical properties needed for estimation of deformation

and strength on the other hand; finally – method C accord-

ing to which the accumulated experience and some similarity

to the existing examples of “good engineering practice” is

sufficient. The three possibilities classify the geotechnical ex-

perience of a very difficult and costly experimental process

that is at the basis of geotechnical engineering.

Application of ANN opens in this domain a lot of new

possibilities. Constitutive modeling of geomaterials is often

basing on non uniform or non classical material tests, thus

unusual tools of interpretation are necessary. Non uniform or

non classical material tests – means the tests, in which the

state of stress and/or strain is neither homogeneous nor uni-

form (for example: various cone penetration tests – CPT [37],

pull out-test [46]). Many papers have been published (for ex-

ample [29]), in which ANN is used to discover and describe

correlations among measured, observable quantities and the

properties that are classically used to model the soil within the

frame of classical method like FEM or others. Clearly speak-

ing: elastic moduli and failure parameters are defined as it has

been imposed directly by practice of laboratory investigations

of steel, concrete or other traditional material. The mechani-

cal models of soils require the same classical description by

Young moduli and parameters describing failure of the ma-

terial structure while the geotechnical tests quite never result

directly with these descriptors! We have cited above in the

Sec. 1 some papers that present correlations between mea-

sured parameters and the ones needed for analysis established

with various use of different ANNs. Below we describe short-

ly our own preliminary results concerning this subject.

According to the presented method of incorporation of

the ANN that carries constitutive information into the FEM

code, we exemplify the calibration of such a finite element

using oedometric and triaxial test. The algorithmic scheme

of the calibration process including the ANN training is the

following:

i Information on material properties is furnished in the form

of graphs of the observable data, observed during a se-

quence of experiments. This is a proposed “standard” ele-

ment of the input data for the FEM code with ANN inside

(such a code does not exists yet at the market, the research

version is still under construction).

ii At the first step, calibration procedure is running: FEM dis-

sertation of the laboratory tests is defined, boundary con-

dition is applied; the observed data in the form of usual

graphs are supplied (in our case - the oedometric test and

the triaxial test). This is illustrated in Fig. 3. These bound-

ary value problems are then solved and weights of the ANN

are modified iteratively to assure the best accordance of the

computed graphs and the experimental ones, given at the

input.

iii If the process of calibration is successful within a given tol-

erance, we are sure that the ANN at the elementary level

is well calibrated. We note that the ANN represents consti-

tutive information concerning the material under consider-

ation in the context of the assumed discretization and the

kind of the element chosen for the model! The same types

of element should be thus used in the numerical FE-ANN

modeling of the engineering problem.

In the example, we have used for calibration, the most

promising (in the authors opinion) method called by the au-

thors of [8, 9] – “a self learning Finite Element code”. De-

tailed description of this method can be found also in [15,

16]. It is too specific to be explained here. We mention only

that, according to this method, at each successive step of the

iteration the ANN is re-trained with constitutive data correct-

ed by results of Finite Element computations (stress, strains

and/or corresponding increments) obtained for the minus error

committed in preceding step of approximation.

Fig. 3. Scheme of the oedometric test and its simplified numerical

model needed for process of calibration of the ANN

It is seen in Fig. 3 that the numerical model for ANNs

calibration is very simple (this is an easier, the drained test). It

is assumed 25 hybrid FE-ANN axially-symmetric eight node

elements with common ANN for each, inserted in the sense

of the formulae quoted in Sec. 2. Oedometric data are taken

from our own test of sandy clays from glacial moraine from

Łódź. In Fig. 4, few of these data are drawn with pointed line.

This kind of sandy clays is very typical for the geology of the

region of Łódź, thus the calibrated ANN can be considered

as a numerical representation of the data concerning a typi-

cal soil. In Fig. 4 we show a comparison of the measured data
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a)

b)

c)

d)

Fig. 4. In Fig. a) the graph “executed” by very simple ANN of the

geometry: 4751 (continuous line) trained with data from dynamic

consolidation of composite structure. This graph is compared with

the experimental observation (dotted line). The other graphs present

a classical result of the oedometric drained test: thickness of the

sample as a function of applied stress. Learning data are collected

in Fig. b). In Figs. c) and d) – comparison of the autonomous ANN

activity and the measured data is shown for two loading paths

and the data resulting from “autonomous” network activity. It

is to note, that the data inscribed in the hybrid FE-ANN ele-

ment are qualitatively different: usually engineer asks for oe-

dometric moduli, various for primary and secondary loading

and unloading. The values of these moduli can be defined as

finite quotients for chosen range of stress. In the proposed pro-

cedure, constitutive description is consisting of weights and

biases of ANN that are impossible for interpretation, except

– the interpretation shown in Fig. 4: by the graph of the re-

sults of the “virtual” experiment! It is seen that the qualitative

agreement between measured and simulated displacements is

quite good.

We stress that the presented above calibration should be

performed “over” all the accessible experimental data. It can

be treated as knowledge based soil description and corre-

sponding software for geo-engineering. Creation of the new

type intelligent data base and a suitable, postprocessor and

preprocessor can be proposed for all “difficult” material as

for example – concrete. The concrete soft modeling was at

the beginning (from chronological point of view, [5]) of the

history of the application of the ANN in civil engineering. All

constitutive doubts concerning existing, adapted or revitalized

structures in civil engineering should be arbitrated using the

proposed methodology.

3. Example of solution of inverse problem

using ANN in environmental geotechnics

An inverse problem is, in the author’s opinion, the second

central problem of applications of ANN in civil engineering.

Examples of some solutions of the inverse problem in cali-

bration of constitutive law and in identification of parameters

of the physical process are presented in the next sections of

the paper.

The problem of identification of source position of the

suspension that propagates in the domain of porous medium

is very important. For example, in environmental geomechan-

ics – identification of leakage from waste disposal basing on

data from standard monitoring of the suspensions concentra-

tion in some piezometers – can be interpreted as the problem

of identification of convective flow in a domain of porous

media from observations of concentration of a solute in given

points, using artificial neural networks and a numerical mod-

el. In this work, only virtual observations are used. Virtual

observations consist of data read from numerical solutions of

the problem of propagation of the solute in a porous medi-

um. An artificial neural network is trained to solve the inverse

problem with the data acquired from several direct solutions.

The direct problem can be understood as a mapping between

a given set of data (source position and its intensity, diffusivi-

ty vector and others, velocities etc.) and the set of elements of

the corresponding solutions (e.g. the concentrations observed

at the given points). On the contrary in this case, the ANN

approximates the inverse mapping that attributes the source

position, its intensity and the other input parameters – to the

concentrations computed in some selected points.

It is well known that ANN has the properties of a uni-

versal approximating of a function or of an operator. If an

unequivocal dependence of source positions (and other para-
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meters of the convection problem) on the data observed at the

test point exists, it is approximated with some tolerance by an

ANN created for this problem. The uniqueness of the solution

is one of the main issues of an inverse problem. In this con-

text, the use of ANNs is advantageous since the response of

the networks is always possible and usually it can be suitably

interpreted [47, 48].

As an example we examine the problem of propagation

of a pollutant in the soil. First we consider a 2D flow in a

homogeneous medium in which the propagation is governed

by advection and diffusion, a field of hydraulic head is given

and the source of pollutant is prescribed. Direct solution for

the steady state is obtained using Finite Differences method.

Results of the direct solution – concentrations of pollutant in

a few test points – are given at the input of the ANN; the

coordinates of the position vector of the source (and its inten-

sity if it changes) are given at the output of the ANN during

training mode. In recall mode the network responds with the

unknown leakage source position having at the input the given

observations from the piezometers. The quality of the solution

is discussed for identification of various flow parameters.

3.1. Convection in soils. Let us suppose that the convection

problem is defined by the following equation, defined over of

a 2D unbounded domain Ω:

∂

∂xi

(

Dij

∂c

∂xi

)

+ vi

∂c

∂xi

=
∂c

∂t
, (6)

where D is diffusivity, the concentration c and velocity v are

defined as some averages of the corresponding 3D porous

medium across a permeable stratum. Since we are interested

in the inverse solution, we are not going to enter into details

neither of physical meaning of the variables in (6) nor the

mathematical solution in general, which is strongly marked

by the proportion between the diffusivity vector and the given

velocity field (Peclet number is small in the present applica-

tion). Here we consider only a stationary case with constant,

given velocity. It can be interpreted as the situation for t suf-

ficiently far from an initial moment in which an activity of

source of c starts and remains constant in time and the con-

stant velocity is given as, for example, for a river of a vein

or an artesian aquifer). Furthermore, we suppose that the ve-

locity field is derivable from a given hydraulic head field h.

The set of stationary equations (Problem P1 – direct) writes

as follows:

∂

∂xi

(

Dij

∂c

∂xi

)

− kij

∂h

∂xj

∂c

∂xi

=
∂c

∂t
, (7)

with

xs =
(

xs ys

)

∈ Ω c (xs) = cs

x∞ ∈ Ω : |x∞ − xs| → ∞ ⇒ c (x∞) → 0.
(8)

In (7) k is a matrix of Darcy’s permeability coefficients. At

infinity the concentration goes asymptotically to zero. For nu-

merical computations we must cut the domain Ω in some dis-

tance from the source of concentration. This distance should

be large enough. Finite difference method allows us to obtain

a family of solution of equations (7). In Fig. 5 a typical solu-

tion (represented by a map of concentration c) is shown. The

presence of the velocity field superimposed on the source ac-

tivity can make the identification even very difficult. The most

difficult case seems to be the identification of the velocity field

having only the data concerning the concentration field. As

defined by equation (6), direct convection model attributes a

field of concentration to a set of given data: boundary con-

dition for c, given concentration sources and velocity field

treated as a given parameter. In this case, the inverse problem

P2 can be defined as follows:

For a given n points of observation xpi, i = 1..n, (called

piezometers), for given ci = c(xpi) and hi = h(xpi).

Find xs = (xs, ys) ∈ Ω and c(xs) such that c(x) verifies

equations (6) (direct problem P1).

In this preliminary research we limit ourselves to propose

an algorithm that works well in a typical, engineering situa-

tion. We do not discuss thus the problem of non-uniqueness

of the solution.

a)

b)

Fig. 5. Qualitative graphs, for which the inverse problem is numer-

ically solved: a) concentration graph for convection with constant

source and v = [1, 0]; b) concentration graph for convection with

constant source and threshold shaped (discontinuous) graph of v
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3.2. ANN for solving the inverse problem. Since the ANN

has properties of a universal approximate, we can approximate

with it the inverse relations defined in problems P2. We put,

as the ANN target, the values of xs and cs corresponding to

the hydraulic head and concentrations in observation points

(known from the direct solution or from piezometers in a re-

al situation) presented at the input of the ANN. Weights of

the ANN are shaped to obtain a required output signal. We

train thus the ANN to approximate the solution of the inverse

problem P2 that we have defined above.

Figure 6 reports the interpretation of input and output

nodal values suitable for the problem considered. The se-

quence of activation values for nodes in the input (or out-

put) layer is called “the input-output pattern”. Hidden node

activation has no physical meaning.

Fig. 6. ANN for solution of the inverse problem of the source iden-

tification

3.3. Examples of inverse solution: identification of source

of the pollutant and its intensity. In practice of porous me-

dia, for example in environmental geotechnics, velocities are

difficult to be measured in situ. It is natural, indeed, to express

the velocity field in the domain of observation by gradient

of hydraulic head. Hydraulic head is perfectly observable in

piesometers. Numerical experiment of identification problem

P2 in the case when data are collected in real conditions of

various and unknown velocity field requires the ANN with

number of nodes at the input layer twice than the number

of piezometers: values of head and concentration in each of

them. The minimal reasonably correct ANN in the case for

which the velocity vector and source intensity are unknown

is 10 83 3 (concentrations and head from 5 piezometers at

10 input nodes, 8 and 3 nodes in hidden layer and coordi-

nates of the sources xc, yc and intensity cs at three output

nodes).

Quality measures are the following in this case (RMS er-

ror means: Root Mean Square error):

Learning set RMS error: 0.00669

Learning set correlation: 0.9996

Test set RMS error: 0.00691

Test set correlation: 0.9989

Fig. 7. Blue line indicates the correct values of the x coordinate of

the source, red points – network output in learning mode. The output

is well aligned with the target (ANN 10 83 3)

Fig. 8. Blue line indicates the correct values of the y coordinate of

the source, red points – network output in learning mode. The output

is well aligned with the target (ANN 10 83 3)

Fig. 9. Blue line indicates the correct value of the intensity of the

source, red points – network output in learning mode. Small oscilla-

tion are visible. These errors are admissible from practical point of

view. (ANN 10833)
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Fig. 10. Blue line indicates the correct values of the x coordinate

of the source, red points – network output are the ANN answers in

recall mode (ANN 10 83 3)

All the above numerical experiments are performed in or-

der to identify the elements of the ideal, mathematical formu-

lation. In practice, both hydraulic head and concentration are

measured in piezometers with finite tolerance. The error com-

mitted during measurements superposes usually with the error

due to non-homogeneity of the domain. Discussion of both is

difficult and exceeds the frame of this paper. In fact, during

the identification process, the measurement errors are to be

avoided but the errors resulting from the real structure of the

porous media in a large scale are to be interpreted. We present

here a very short numerical analysis of the sensitivity of the

measurement errors on the results of the identification of the

source position and the source intensity. We retrain again the

ANN 10 83 3 but now – with perturbed “measured” data.

We have chosen the same random perturbation for both: head

and concentration values (this is the “worse case”), the pertur-

bation is obtained by superposition of the data with normal

distribution of the mean value equal to 1.25%, 2.5%, 5%,

7.5% and 10% of the mean measured data. Results of the

training of the ANN are clearly influenced by this perturba-

tion. For 5% perturbation the new network output is illustrated

in Fig. 11.

Fig. 11. Red line indicates the correct values of the intensity of the

source, blue dots are for training results, blue dots are test output

in the case of 5% perturbation of the measured data. The differ-

ence with respect to the data illustrated in Fig. 9 are clearly visible

(ANN 10 83 3)

We conclude that the presented identification procedure

in the case when velocity field is homogeneous has been suc-

cessfully done. In this case the input data for identification

are not only concentrations in five piezometers but also hy-

draulic head in these points. Identification process requires

large network. The precision of the identification is admissi-

ble. If the velocity field is not homogeneous (in the example,

the jump of velocity was considered), identification is more

difficult: the position of source is to be discovered precisely

when the intensity of source is given. For unknown intensity

the precision of the predicted source position is very low.

4. Conclusions

In situ material testing (properties of concrete or steel of ex-

isting structures that are to be reinforced, revitalized or adapt-

ed) and, first of all, properties of soils and interpretation of

geotechnical tests seem to be the most important field of ap-

plication of ANN in civil and geotechnical engineering.

With some details, the application of the ANN for consti-

tutive materials description, namely for soils, was presented

in this paper. The preferred form of this representation is the

hybrid FE-ANN code. An incremental form of the constitutive

relation is privileged from the point of view of the adopted

strategy. Corresponding structure of the ANN for this appli-

cation is shown. We can conclude that the proposed represen-

tation is not very complicated from numerical point of view

and, at the same time – very reliable. We observe also that

the proposed strategy is known in the literature, it becomes

more and more popular and it probably will lead to a qualita-

tively new description of materials behavior in form of bases

of knowledge.

Only five experiments used in the training of the ANN in

the example have been sufficient to obtain good representa-

tion of the considered soil. In the opinion of the author of his

paper, it should be created a common system of constitutive

data description (similar to the one proposed in this paper) and

corresponding data base accorded with the presented, hybrid

ANN-FEM numerical treatment of BVP in civil and geotech-

nical engineering.

The presented approach is particularly efficient if nonlin-

ear material behavior dominates the static work of the struc-

ture, as it is usually in soil mechanics. The loop of hysteresis

for loading and unloading can be easily taken into account.

The most important advantage of the proposed approach

is the following: the constitutive representation is constructed

automatically, without any qualitative “a priori” consideration

that can constrain the solution. These considerations need usu-

ally a great deal of scientific creativity which is impossible at

the engineering level of application.

Important element of the proposed computational strategy

is a solution of the inverse problem. The exemplary solution

has been presented to introduce the ANN of the special struc-

ture that works well in this context. The ANN based solution

of the inverse problem is insensitive on some defects of the

problem formulation like for example redundant or repeated

experimental data.

It is seen also that the relatively complex problems, like

for example – simultaneous identification of source position
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vector and source intensity – is not very difficult and can be

correctly done with ANN.

What is very important in the use of ANN to solve in-

verse problem in civil engineering – the ANN is always the

numerical representation of the inverse relation and thus – it

can be used in the same application as many times as needed,

replacing typical “ad hoc” back calculation for any new set

of experimental data.

Until recently, engineering knowledge has been deposited

mainly in the heads of people. In some countries, applications

of the ANN for creating various data bases of engineering

knowledge enables the specialist to access know-how and en-

gineering data, stored in a structured way. Some data bases

contain now thousands of ‘experiences’ that are of particular

importance. It enables engineers to use former experience in

future realization in the field of civil engineering. More and

more designers adopt the knowledge contained in this ‘col-

lective brain’ each day via Internet.
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