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MODELLING THE INFLUENCE OF COMPOSITE STIFFNESS ON ENERGY
DISSIPATION IN REINFORCED COMPOSITE CONCRETE FLOORS

K. GROMYSZ1

A continuous contact layer exists between the top and bottom layer of concrete composite reinforced
floors. The contact layer is characterised by linear elasticity and frictional properties. In this paper
a model of single degree of freedom of composite floor is determined. The model assumes that the
restoring forces and the non-conservative internal friction forces dissipating energy are produced
within the contact layer. A hysteresis loop is created in the process of static loading and unloading
of the model, with the energy absorption coefficient being defined on this basis. The value of the
coefficient is rising along with the growing stiffness of the composite.
A critical damping ratio is a parameter describing free decaying vibration caused by non-conservative
internal friction forces in the contact layer and in the bottom and top layer. The value of the ratio
in the defined model is rising along with the lowering stiffness of the element representing contact
layer.
The findings resulting from the theoretical analyses carried out, including the experimental tests,
are the basis for the established methods of determining the concrete layer state for reinforced
concrete floors. The method is based on energy dissipation in the contact layer.

Key words: reinforced concrete floors, composite structures, internal friction, energy dissipation, free
vibrations.

1. B 

Below are the most important notations referring to the stiffness and energy dissipation
parameters in the models presented in the paper and in real structures:

cq,w – damping coefficient in model of the continuous contact layer,

cQ,w, cQ,m, cQ,w,m –
damping coefficient in model of single degree of freedom, taking into account
internal friction in: contact layer, monolithic floor, entire model of composite
floor,

kq,w –
stiffness of the contact layer, determined experimentally, is an equivalent to the
resultant stiffness kq,w,x

kq,w,el , kq,w, f r−int , –
stiffness of element in a model of the continuous contact layer representing:
linear and elastic properties, elastic and frictional properties,
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kq,w,z, kq,w,x –
substitute stiffness element under growing load, resultant stiffness element in
a model of the continuous contact layer,

kQ,m –
stiffness of the monolithic concrete floor at the point*, determined experimen-
tally on the basis of hysteresis loop is equivalent to the resultant stiffness
kQ,m,x ,

kQ,m,el , kQ,m, f r−int –
stiffness of monolithic floor in model of single degree of freedom representing:
linear and elastic properties, linear and frictional properties,

kQ,m,z, kQ,m,x –
stiffness of monolithic floor in model of single degree of freedom: substitute
stiffness, resultant stiffness,

kQ,w – component stiffness of composite concrete floor at the point*,

kQ,w,el , kQ,w, f r−int –
component stiffness of composite concrete floor in model of single degree of
freedom modeling: linear and elastic properties, linear and frictional proper-
ties,

kQ,w,z, kQ,w,x –
stiffness in model of single degree of freedom of composite concrete floor:
component of substitute stiffness, component of the resultant stiffness,

kQ,w,m –
stiffness of composite concrete floor at the point*; determined experimentally
on basis of hysteresis loop is equivalent to the resultant stiffness kQ,w,m,x ,

kQ,w,m,x –
resultant stiffness of the composite concrete floor model of single degree of
freedom,

χq,w –
energy absorption coefficient in element of a model of the continues contact
layer,

χQ,m, χQ,w,m –
energy absorption coefficient determined experimentally at the point* during
tests: monolithic concrete slab, composite concrete slab,

ψq,w – hysteresis loop area of element in model of a continues contact layer,

ψQ,m, ψQ,w,m –
hysteresis loop area of model of single degree of freedom of: monolithic con-
crete slab, composite concrete slab,

Vq,w –
the smallest area of a rectangle into which the loop of area ψq,w can be inscri-
bed,

VQ,m, VQ,w,m –
the smallest area of a rectangle into which the loops of area ψQ,m and ψQ,w,m

can be inscribed,
ζm, ζw,m – damping ratio of first vibration form of: monolithic floor, composite floor

* the point is meant as a point on the floor of the abscissa where the antinode of the first
vibration form appears.

The parameters to be experimentally determined during the tests carried out on
composite and monolithic floors include: kq,w, kQ,m, kQ,w,m, χQ,m, χQ,w,m, ζm, ζw,m.
The value of the other parameters can be determined based on the parameter values
identified in the tests.

2. I

Composite reinforced concrete floors consist of two layers of concrete: a bottom layer
being a precast element, and a top layer produced on site. It has been assumed that
the contact layer exists between the layers, and forces are induced in the contact layer
connected with elastic and inelastic strains.
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The results of the experimental investigations reveal [1] that if the contact layer
is stiff and does not permit the displacement of the bottom layer in relation to the top
layer, by the value greater than wgr of approx. 0.1 mm, the composite is balancing
the longitudinal shearing forces τs j. The following are responsible for balancing such
forces: conservative forces that are not dispersing the energy and are connected with the
elastic strains of the vertical reinforcement, and with the elastic strains of the contact
concrete layer, as well as non-conservative forces dispersing the energy connected
with internal friction, occurring within the material of contact layer. The continuity of
contact layer strains is maintained in this phase of the structure’s work and elastic and
inelastic strains are present in both, the process of loading and unloading of the slab
(Fig. 1).

Fig. 1. Composite working model for two layers in reinforced concrete floors when the relative
displacements of the layers (w) are smaller than the boundary value (wgr) and when the displacements

are larger than this value.
Rys. 1. Założenia dotyczące pracy zespolenia w żelbetowych płytach warstwowych poczynione na

podstawie wyników badań doświadczalnych [1], w przypadku, gdy wzajemne przemieszczenia warstw
(w) są mniejsze od wartości granicznej (wgr) oraz gdy przemieszczenia warstw są większe od tej

wartości

If the stiffness of the contact layer is small, and the displacement of the bottom
layer is more than wgr , the slippage is experienced of the bottom layer relative to the
top layer, and the continuity of strains in the composite is not maintained (Fig. 1). In
such situation, non-conservative kinetic friction forces are induced in the composite
surface in the loading process. In the unloading process on the other hand, the static
friction forces exist between the bottom and top layer. The issues were analysed in [2].

The subject of this work is a model of a continuous contact layer where continuous
strains are produced under loading, (i.e. bottom layer displacements relative to the top
layer are smaller than wgr), and model of single degree of freedom of a composite
floor is used.

The models defined below, together with the experimental investigations underta-
ken, sets a basis for developing a method of determining the state of the composite in
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reinforced concrete floors based on energy dissipation in the composite. The stiffness
of the composite determines the amount of energy to be dissipated.

The research on the composite concrete – concrete-type constructions was prima-
rily focussed on investigating their load capacity. The impact on the composite load
capacity was examined in particular for: the formation of the concrete layers’ contact
[3], concrete strength in the composite, and the percentage of the vertical reinforcement
used in the composite surface [4], and the amount of the reinforced span reinforcement
in the support [5]. It was also pointed out that the load capacity is also influenced by the
stiffness of the composite of two concretes [6]. Proposals for calculating the composite
load capacity depending on the joint geometry and the strength of the materials applied
are presented notably in [7] and are envisaged by the majority of relevant standards
[8].

The other group of the issues tackled by researchers was the impact of rheological
phenomena on the static work of the composite elements being bent. Experimental
studies were conducted, as well as theoretical ones, by taking into account different
models of creep [9].

An analysis of the mechanical and physiochemical phenomena occurring at the
contact of the composite elements should be distinguished as the third group of aspects
pursued by the researchers [4], [10].

The literature concerning bridge structures indicates the possibility of investigating
the variations in the dynamic properties of bridge structures as a consequence of the
developing damages. However, the modal parameters must be changed constantly in
this approach [11].

The review of the literature shows that no works have been carried out to-date
examining losses of energy occurring within the composite of two concretes. No rese-
arch methodology has been established, either, the purpose of which is to identify the
state of the composite in the existing structures and to estimate, on such a basis, the
transmissibility of forces by the composite in the ultimate limit state.

3. M         

 

A band of a reinforced concrete composite floor is considered as working in one
direction with b width loaded with the vertical force Q (Fig. 2). The load causes the
non-dilatational strains of the contact layer (γ) observed as the displacement (w) of the
bottom layer relative to the top layer. As a result of such displacement, the q reaction
expressed with N/m occurs in the contact layer. In addition, the forces induced in the
bottom and top layers, working as a result of bending, are a response to the Q load.
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Fig. 2. Non-dilatational strains of the contact layer (γ) and relative displacement of the bottom and top
layer (w).

Rys. 2. Odkształcenia postaciowe (γ) warstwy kontaktowej oraz wzajemne przemieszczenia warstwy
dolnej względem górnej (w)

3.1. S       

A model of a continuous contact layer is represented by two serially connected elements
(Fig 3a), i.e. a linear and elastic element and elastic frictional element. The linear and
elastic element is characterised by the stiffness kq,w,el expressed in N/m2 defined as a
quotient of the q force by the corresponding elastic displacement wq,el (Fig. 3b)

(3.1) kq,w,el =
q

wq,el
.

The movement of the linear and elastic element in the static loading and unloading
process is carried out in the straight line (Fig 3c).

The elastic and frictional element is modelling the non-conservative forces of
internal friction and has a bilinear characteristic. The element, under the growing load,
is characterised by linear stiffness kq,w, f r−int expressed with N/m2 and is defined as

(3.2) kq,w, f r−int =
q

wq, f r−int
,

where wq, f r−int is the displacement of the elastic and frictional element (Fig. 3b). Inter-
nal friction forces with the value q f r−int (Fig. 3d) exist in the element during unloading.
For this reason, the movement of the elastic and frictional element in the process of
static unloading is represented by a vertical line in the configuration (wq, f r−int , q). If
the elastic and frictional element is loaded cyclically within the range of – q0÷q0, then
its movement takes place accordingly to a hysteresis loop (Fig. 3d).

With the growing load (q), the system (Fig. 3a) is characterised by linear substitute
stiffness kq,w,z corresponding to two springs serially linked,

(3.3) kq,w,z =
kq,w,el · kq,w, f r−int

kq,w,el + kq,w, f r−int
.
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Fig. 3. Element of a model of continuous contact layer a) two serially connected stiffness representing:
linear and elastic properties (kq,w,el) and linear and frictional properties (kq,w, f r−int), b) adopted

designations of displacements, c) element modelling the elastic properties, d) hysteresis loop of the
element modelling linear and frictional properties.

Rys. 3. Modelowanie ciągłej warstwy kontaktowej a) elementy modelujące: cechy liniowo – sprężyste
(kq,w,el) i sprężysto-tarciowe warstwy kontaktowej (kq,w, f r−int), b) przyjęte oznaczenia przemieszczeń,
c) charakterystyka elementu modelującego właściwości liniowo-sprężyste, d) pętla histerezy elementu

modelującego właściwości sprężysto-tarciowe

and for unloading, it is characterised by the stiffness of kq,w,el (Fig 4a). The kq,w,z value,
depending on the properties of concrete and on the formation of the composite in the
tests [1] performed on slabs that are b=0.59 m wide, ranged between 0.5·109 N/m2 to
140·109 N/m2 . On the other hand, composite stiffness determined in [6] for noticeable
cracks is between 10 MPa to 170 MPa, and between 4 000 MPa to 54 000 MPa for the
unnoticeable cracks. The author’s experience shows that it is hard to determine kq,w,z
where the stiffness of the composite is high, because small values of displacements
(w), of around 10−3 mm, must be measured between the top and bottom layer.

The surface of the hysteresis loop of the single element modelling continuous
contact layer, designated as ψq,w (Fig 4a), corresponds to the energy dissipated by the
elastic and frictional element in the cycle of full loading and unloading, and corresponds
to

(3.4) ψq,w = 4q f r−int · w f r−int .

The centre of the hysteresis loop is moved by the section 0 - 0’ in relation to
the point 0’ where the loading of the system started and which represents the start of
the system (w’, q’) (Fig 4a). The point 0 is considered the start of a new system of
coordinates (w, q) where the model will be described further.
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Fig. 4. Hysteresis loop of an element of the model of continuous contact layer a) loop structure with
load capacity variations between – q0, q0, b) impact of variation in the stiffness kq,w,el on the energy

dissipation coefficient, c) hysteresis loop structure with displacement forced within the range of – w0, w0.
Rys. 4. Pętla histerezy elementu modelu warstwy kontaktowej a) budowa pętli przy zmianie obciążenia
w zakresie – q0, q0, b) wpływ zmiany sztywności kq,w,el na współczynnik dyssypacji energii elementu
modelu warstwy kontaktowej (χq,w), c) budowa pętli histerezy przy wymuszeniu przemieszczenia w

zakresie – w0, w0

The loop from the figure (Fig 4a) can be inscribed into a rectangle with its sides
having the length of 4q f r−int , 2wodp and its area of

(3.5) Vq,w = 8q f r−intwodp.

A diagonal of the rectangle represents the resultant stiffness of the composite kq,w,x
that can be determined experimentally based on the measurements of maximum ”w”
displacement of the bottom layer relative to the top layer. The value

(3.6) χq,w =
ψq,w, f r−int

Vq,w, f r−int

is referred to as an energy absorption coefficient in a composite. The coefficient in the
composite model used assumes values between 0 and 0.5.

The following relationship can be expressed by taking into account the coefficient
(3.5) and (3.2).

(3.7) χq,w =
w f r−int

2wodp
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Taking into consideration (3.2), (3.7) and w0 = 2q f r−int / kq,w,x, which results from
the figure (Fig. 3d), the stiffness kq,w, f r−int is determined as dependent on the kq,w,x that
can be determined experimentally (kq,w,x in tests is represented as kq,w)

(3.8) kq,w, f r−int =
kq,w,x

4χq,w
.

On the other hand, the following is determined according to the relationships (3.1),
(3.2) and the condition wel = w0 – w f r−int

(3.9) kq,w,el =
kq,w,x

1 − 2χq,w
.

The following relationship is obtained by substituting (3.8) and (3.9) to (3.3)

(3.10) kq,w,z =
kq,w,x

1 + 2χq,w
.

For the constant stiffness of kq,w, f r−int , the coefficient χq,w assumes smaller values
for smaller stiffness kq,w,el (Fig. 4b). If the kq,w, f r−int is growing without limits and
kq,w,el = kq,w,z, then the coefficient χq,w assumes a near-zero value meaning that the
model of the contact layer from the figure (Fig. 3a) does not dissipate energy. As
demonstrated further, the situation corresponds to the contact layer with very small
stiffness. On the other hand, in an inverse situation, where χq,w assumes a maximum
value of 0.5, elastic displacements wel do not occur because kq,w,el is rising without
limits. As shown below, the situation corresponds to a composite with its high stiffness.

In the case of monolithic slabs, where no displacement occurs in the composite, the
substitute stiffness kq,w,z can assume any value. Therefore, according to the relationship
(3.3), both kq,w, f r−int , kq,w,el as well as kq,w,el, have any value, and χq,w, according to
the relationship between (3.8) to (3.10), is indefinite.

Note-worthy is the fact that, according to (3.2), (3.8) and (3.9), the force in the
elastic and frictional element is

(3.11) qw, f r−int =
1
2
kq,w,zw0

(
1 + 2χq,w

)

and it depends most of all on the displacement w0 and on the substitute stiffness kq,w,z.
In addition, the force in this element, for the given displacement (w) in the composite,
is higher in the elements characterised by the higher value χq,w.

Finally, it is noted that if the model of the contact layer is loaded with a kinematic
excitation, within the displacement range of – w0, w0, an unestabilised hysteresis loop
is obtained. This means that the final point of the first hysteresis loop (point (4) –
Fig. 4c) does not coincide with the final point of the second loop (point (5) – Fig. 4c),
and this point, again, does not coincide with the final point of the third loop (point
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(6) – Fig. 4c), and so on. However the distance between the final points of the next
loops is decreasing so that the fourth loop can be considered as stabilised in the case
analysed in (Fig. 4c). A stabilised loop is characterised by the same resultant stiffness
kq,w,x, by the same field ψq,w and by the same coefficient χq,w as the loop produced
when loading the model within the range of – q0, q0 with the same stiffness kq,w, f r−int
and kq,w,el.

3.2. A M     

A model of single degree of freedom of a bent monolithic slab is represented by
two elements connected in parallel (Fig. 5a) the displacements of which are equal
and designated as yQ,m. Linear elasticity is represented by an element with the stiffness
kQ,m,el expressed with N/m being a quotient of the force Qm,el that is acting vertically on
such element, in Newtons, by the corresponding displacement yQ,m in meters (Fig. 5b)

Fig. 5. Model of monolithic slab of single degree of freedom a) parallel bonding of the linear elastic
element (kQ,m,el) and elastic and frictional element (kQ,m, f r−int), b) elastic element characteristic, c) elastic
and frictional element characteristic, d) hysteresis loop of the model of monolithic slab for displacement

excitation – yQ,m,0, yQ,m,0.
Rys. 5. Model płyty monolitycznej o jednym stopniu swobody a) połączenie równoległe elementów

liniowo-sprężystego (kQ,m,el) i sprężysto-tarciowego (kQ,m, f r−int), b) charakterystyka elementu
liniowo-sprężystego, c) charakterystyka elementu sprężysto-tarciowego, d) pętla histerezy modelu płyty

monolitycznej w zakresie wymuszenia przemieszczeniem – y0, y0
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(3.12) kQ,m,el =
Qm,el

yQ,m
.

Internal friction in an element loaded statically which, in actual slabs, is generated
mainly by the reinforcement working in the surrounding of vertical cracks, and is
represented by an element with a bilinear characteristic described by the kQ,m, f r−int and
the static friction force Qm, f r−int manifested when the element is unloaded (Fig. 5c).
The stiffness of the elastic and frictional element is defined, accordingly, as a quotient
of the relevant force to displacement

(3.13) kQ,m, f r−int =
Qm, f r−int

yQ,m
.

With the rising load, the model is characterised by the substitute stiffness of kQ,m,z
(Fig. 5d)

(3.14) kQ,m,z = kQ,m,el + kQ,m, f r−int .

A precondition for the return movement during unloading, after reaching an extre-
me displacement, is to release the forces of internal friction. Therefore, in the unloading
process in the extreme position – y0 (Fig. 5d), a decrease of force in the system by
the value Qm, f r−int is marked first. This can be interpreted as the apparent growth of
the system stiffness (Fig. 5d). A permanent displacement occurs after unloading the
system with the value of

(3.15)
Qm, f r−int

kQ,m,z
.

A hysteresis loop of the model of the slab of single degree of freedom is created,
within the displacement range of – yQ,m,0, yQ,m,0, in the loading and unloading pro-
cess with vertexes designated as (2)÷(5). Their coordinates (yQ,m,i ,Qm,i, i=2. . . 5) are
provided in (Fig. 5d).

The area of the loop calculated according to the formula

(3.16) ψm =

5∑

i=2

Qm,i
(
yQ,m,i+1 − yQ,m,i−1

)

is

(3.17) ψm = 4yQ,m,0
(
Q0 − kQ,m,elyQ,m,0

)
.

By introducing the resultant stiffness kQ,m,x as a quotient

(3.18) kQ,m,x =
Qm,0

yQ,m,0
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and considering that Qm, f r−int = (kQ,m,x - kQ,m,el)yQ,m,0, the loop area can be expressed
as

(3.19) ψQ,m = 4yQ,m,0Qm, f r−int

and the area of the rectangle into which the loop can be inscribed as

(3.20) VQ,m = 4kQ,m,xy2
Q,m,0.

An energy dissipation coefficient defined by the quotient

(3.21) χQ,m =
ψQ,m

VQ,m

after considering (3.19) and (3.20) is

(3.22) χQ,m =
kQ,m, f r−int

kQ,m,x

and can assume values between 0 and 0.5. By using the stiffness between (3.12) and
(3.22), the specific stiffness can be expressed by the values kQ,m,x and χQ,m that can be
determined in experimental studies (resultant stiffness kQ,m,x is equivalent to stiffness
kQ,m, determined experimentally at the point according to the hysteresis loop)

(3.23)
kQ,m, f r−int = χQ,mkQ,m,x,

kQ,m,el =
(
1 − 2χQ,m

)
kQ,m,x,

kQ,m,z =
(
1 − χQ,m

)
kQ,m,x.

If kQ,m, f r−int equals zero, then energy in monolithic slab is not dissipated, meaning
that χQ,m =0, and kQ,m,el = kQ,m,x. In the situation where χQ,m =0.5 then kQ,m,el assumes
a value equal to 0, kQ,m, f r−int = 0.5 kQ,m,x, and system deflection after unloading is
Qm, f r−int / kQ,m, f r−int .

3.3. M         

A model of an element of a continuous contact layer is described in the coordinates
(w, q). A model of a monolithic slab of single degree of freedom is described in the
coordinates (y, Q) (Fig. 2). In order to construct a model of a composite floor of single
degree of freedom that takes into account a model of a contact layer, the description
of the model of the contact layer should be changed from the coordinates (w, qw) to
the coordinates (yQ,w, Q). Displacement yQ,w is the deflection of the slab model in
the direction in which the force (Q) is acting. The displacement yQ,w is caused by
displacement in the composite (w). In addition, the model of the contact layer should
be combined adequately with the model of the monolithic slab.
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The model of the monolithic slab and the model of the contact layer, under the
rising load, behave linearly, and are characterised by the stiffness kq,w,z (3.3) and kQ,m,z
(3.14). Hence, the relationship between the stiffness of the contact layer kq,w,z descri-
bed in the coordinates (w, qw) and the stiffness of this layer kQ,w,z described in the
coordinates (yQ,w, Q) can be examined with a linear and elastic numerical model FEM.

A numerical FEM model of the composite slab consists of three layers (Fig. 6a):
a bottom layer that is hd =0.07 m thick, a top layer that is hg =0.11 m thick, and a
contact layer that is hw =0.003 m thick. The top and bottom layer is b = 0.59 m wide,
whereas the width of the contact layer, designated as bw, varied. The materials for
all the layers is concrete with the elasticity modulus of E = 40 GPa and the Poisson
coefficient of ν = 0.3.

Fig. 6. Composite floor model a) FEM model, b) model of single degree of freedom built of linear and
elastic and frictional elements.

Rys. 6. Modele płyty warstwowej a) model tarczowy (MES), b) model o jednym stopniu swobody
zbudowany z elementów liniowo-sprężystych i sprężysto-tarciowych oraz interpretacja struktury modelu
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The non-dilatational strain of the contact layer depends on the width of this contact
layer and equals (Fig. 6a)

(3.24) γ =
qw

Ghw
,

and the displacement of the bottom layer relative to the top layer (w) is represented
by the angle of non-dilatational strain (γ) multiplied by the height of the contact layer
(hw)

(3.25) w = γ · hw.

Taking into consideration the relationships (3.24) and (3.25) and the fact that
kq,w,z = qw/w occurs when the model is loaded, an expression for stiffness kq,w,z is
obtained depending on the width of the contact layer of

(3.26) kq,w,z =
G
hw

bw,

where as G = E/(1+2ν).
The displacement of the model of the composite slab of single degree of freedom

impacted by both, the stiffness of the monolithic slab and the stiffness of the contact
layer, was designated with yQ,w,m,z. The inverse of the deflection yQ,w,m,z multiplied by
the loading force Q represents the substitute stiffness of the composite slab

(3.27) kQ,w,m,z =
Q

yQ,w,m,z
.

The FEM model calculations were performed for a freely supported floor loaded
with the concentrated force Q in the middle of the slab span (item A – Fig 6a). The
width bw in the calculations was changed starting from 0.59 m, which corresponded to
the stiffness of kq,w,z = 4.92·1012 N/m and to the monolithic slab’s working conditions,
to 10−11 m, which corresponded to the stiffness of kq,w,z = 86.9 N/m. The stiffness of
the composite slab kQ,w,m,z determined according to (3.27) is provided in Table 1. The
deflection produced by the contact layer existing in the slab with the stiffness of kQ,w,z
is calculated from the following relationship

(3.28) yQ,w,z = yQ,m,z − yQ,w,m,z

where yQ,m,z is the monolithic slab deflection, i.e. the deflection of the model discussed
above by assuming bw = b determined from the following relationship

(3.29) kQ,m,z =
Q

yQ,m,z
.
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Table 1
Results of numeric (FEM) calculation.

Wyniki obliczeń numerycznych (MES) modelu płyty warstwowej

bw

[m]
kq,w,z

[N/m2]
kQ,w,m,z

[N/m]
kQ,w,z

[N/m]
bw

[m]
kq,w,z

[N/m2]
kQ,w,m,z

[N/m]
kQ,w,z

[N/m]
0,59 4,92·1012 2,03·107 3,76·109 10−6 8,69·106 7,87·106 1,29·107

10−1 8,33·1011 2,02·107 5,00·109 10−7 8,69·105 7,19·106 1,11·107

10−2 8,33·1010 1,98·107 9,09·108 10−8 8,69·104 6,91·106 1,05·107

10−3 8,33·1009 1,74·107 1,22·108 10−9 8,69·103 6,87·106 1,04·107

10−4 8,33·1008 1,12·107 2,49·107 10−10 8,69·102 6,87·106 1,04·107

10−5 8,33·1007 8,49·106 1,46·107 10−11 86,9 6,87·106 1,04·107

The substitute stiffness of the composite in the direction where the force Q is
acting is defined as

(3.30) kQ,w,z =
Q

yQ,m,z

and, considering the relationships (3.28) and (3.30), is expressed by means of the
substitute stiffness of the monolithic and composite slab

(3.31) kQ,w,z =
kQ,w,zkQ,w,m,z

kQ,w,z − kQ,w,m,z
.

The relationship between kq,w,z, described in the coordinates (w, qw), and the
substitute stiffness of kQ,w,z, described in the coordinates (yQ,w, Q) and determined
with a numerical model (Fig. 6a), is provided in the figure (Fig. 7).

Fig. 7. Relationships between stiffness determined in FEM model a) kQ,w,z (kq,w,z) b) kQ,w,m,z (kq,w,z).
Rys. 7. Zależności między sztywnościami wyznaczonymi pod narastającym obciążeniem w modelu

tarczowym (MES) a) kQ,w,z – kq,w,z b) kQ,w,m,z – kQ,w,z

The relationship (3.28) means that model for the composite slab is the serial
combination of the model of the contact layer and the model of the monolithic slab
(Fig. 6b).
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A hysteresis loop of the model of the composite floor is developed by assuming that
the structure of the model of the composite slab is the same also during unloading,
when non-linear effects appear defined in the previous section. Two such loops are
provided in (Fig. 8) for χq,w < 0.5 and χq,wt =0.5. An area of the hysteresis loop of
the model of composite slab ψQ,m is larger for the slabs characterised by a higher
coefficient χq,w. While defining the coefficient χq,w for the model of the composite slab
one can note that, the same as in the models of the composite and of the monolithic
slab, as the quotient

Fig. 8. Shape of the hysteresis loop of the slab model according to energy dissipation in the composite.
The continuous line corresponds to χq,w < 0.5 and the intermittent line to χq,w =0.5

Rys. 8. Kształt pętli histerezy modelu płyty warstwowej o jednym stopniu swobody w zależności od
wartości współczynnika dyssypacji energii w zespoleniu (χQ,w); linia ciągła odpowiada χQ,w < 0.5 a linia

przerywana odpowiada χQ,w =0.5

(3.32) χQ,w,m =
ψQ,w,m

VQ,w,m

while decreasing the stiffness of the contact layer, the value is falling. This results
directly from the growing deflection caused by the decreased stiffness of the composite
(yQ,w – Fig. 8).

4. M      

Internal friction in the structures loaded dynamically demonstrates itself as viscous
forces [12] the value of which is proportional to the rate of deformation. Such forces
are performing work and cause energy to dissipate. The continuous strains of the
contact layer are analysed in the model presented. For this reason, no damping is
investigated related to the kinematic friction of the bottom layer relative to the top
layer.
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4.1. M     

It analogously assumed as for the model from the figure (Fig. 6b) that the element
of a model of continuous contact layer is represented by the serial connection of the
element with the stiffness kq,w (3.3) and of the energy dissipating element described
by the Newton law. The following relationship is a physical relationship describing an
element of the model of the continuous contact layer in the coordinates (w, qw)

(4.1) ẇ =
q̇

kq,w
+

q
cq,w

,

where cq,w is a damping coefficient expressed in kg/(m·s), and ẇ is the rate of displace-
ment of the top layer relative to the bottom layer (Fig. 9a). The relationship (4.1) is the
same as the equation describing a Maxwell body [13]. The influence of the continuous
contact layer on the model of single degree of freedom in the system of coordinates
(yQ,w, Sw), where Sw is designated as the internal force (Fig. 9b), analogous to (4.1)
is described as

Fig. 9. Contact layer modelling a) Maxwell body as an element of a model of continuous contact layer,
b) model of single degree of freedom representing contact layer.

Rys. 9. Modelowanie warstwy kontaktowej a) ciało Maxwella jako model ciągłej warstwy kontaktowej,
b) element modelujący wpływ warstwy kontaktowej w modelu płyty warstwowej o jednym stopniu

swobody

(4.2) ẏQ,w =
Ṡw

kQ,w
+

Sw

cQ,w
.

The damping coefficient cQ,w is expressed in kg/s.

4.2. M   

An element with stiffness kQ,m connected parallel with the energy dissipating element
is the model of the monolithic slab of single degree of freedom loaded dynamically,
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analogously to the model from (Fig. 5a). By assuming, as above, that the energy
dissipating element describes the Newton law with the damping coefficient cQ,m, the
internal force Sm equals

(4.3) Sm = kQ,m · yQ,m + cQ,m · ẏQ,m.

The above equation is the same as the relationship describing a Kelvin – Voigt
body [13].

4.3. M          

A model of the slab of single degree of freedom subjected to a dynamic load is
represented by the parallel connection of the model of the contact layer and the model
of the monolithic slab. This derives from the assumption that the displacement of the
composite slab in the direction of the acting load Q (yQ,w,m) is a sum of the displace-
ments of the model of the monolithic slab (yQ,m) and of the displacement (yQ,w), that
are resulting from the occurrence of the contact layer. What is new, as compared to the
existing elaborations discussing the dissipation of energy during vibrations (for example
[14], [15]), is that a physical interpretation is assigned to the particular elements of the
model from the figure (Fig. 11a), and that continuity is ensured between the static and
dynamic model of the composite slab. A Maxwell or Kelvin-Voigt body is considered
in the relevant literature [14], [15].

Fig. 10. A Kelvin-Voigt body as a model of the monolithic floor.
Rys. 10. Element o strukturze ciała Kelvina-Voigta jako model płyty monolitycznej

A differential equation is obtained for the displacement of the model of the com-
posite slab (yQ,w,m) by multiplying the equation (4.2) by kQ,m and the equation (4.3)
by cQ,m, and then by adding the multiplied equations, and by considering that yQ,w,m =

yQ,w+ yQ,m. The following relationship is formulated by differentiating further the
equation produced and then by multiplying by the quotient cQ,w/kQ,m

(4.4) S + Ṡ
(
cQ,m

kQ,m
+

cQ,w

kQ,w
+

cQ,w

kQ,m

)

︸                      ︷︷                      ︸
a

+S̈
cQ,m

kQ,w

cQ,w

kQ,m︸      ︷︷      ︸
b

= ẏQ,w,m · cQ,w︸︷︷︸
c

+ÿ Q,w,m
cQ,m · cQ,w

kQ,m︸             ︷︷             ︸
d

.
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The relationship describes the response S to displacement yQ,w,m of the model cha-
racterised by the velocity ẏQ,w,m and acceleration ÿQ,w,m. The structure of the equation
corresponds to a Bürgers body [16].

Fig. 11. The model of a dynamically loaded composite floor a) a Bürgers body where S is internal
force, b) a model of the floor with weight attached and load with a variable force S.

Rys. 11. Model płyty warstwowej o jednym stopniu swobody obciążony dynamicznie a) element
o strukturze ciała Bürgersa, w którym występuje siła wewnętrzna S, b) model płyty warstwowej o

jednym stopniu swobody z dołączoną masą i obciążony zmienną siłą Q

By applying mass and an external load Q(t) variable in time (Fig. 11b) to the
model from the figure (Fig. 11a), and then by assuming that the force of inertia of the
mass (m) moving with the acceleration ÿQ,w,m has the opposite sense to the loading
force (Q(t)), and the internal force (S) has the opposite sense to the load (Q), then the
equation of the element with the mass (m) is as follows

(4.5) m · ÿQ,w,m = Q (t) − S(t).

The following is obtained by substituting the expression (4.5) to (4.4) and by
ordering it

(4.6) Q + aQ̇ + Q̈b = cẏQ,w,m + (d + m) ÿQ,w,m + mayQ,w,m + mby ....
Q,w,m,

where a, b, c is according to (4.4).
The author conducts the experimental verification of the analyses performed by

examining the free vibrations of composite slabs during which the external load Q(t)
equals zero and the initial conditions exist

(4.7) yQ,w,m (0) = −y0, ẏQ,w,m (0) = ÿQ,w,m (0) = yQ,w,m(0) = 0.



M        . . . 89

After considering the above conditions and after differentiating once the equation
(4.6), the final equation was obtained of free slab vibrations
(4.8)

m
cQ,m

kQ,w
yQ,w,m +m

(
cQ,m

cQ,w
+

kQ,m

kQ,w
+ 1

)
ÿQ,w,m +

(
cQ,m + m

kQ,m

cQ,w

)
ẏQ,w,m +kQ,myQ,w,m = −kmy0.

Note that if stiffness in the composite kQ,w and the damping coefficient cQ,w in the
composite grow inorganically, then the equation (4.8) comes down to the commonly
known equation describing vibrations with viscous damping

(4.9) mÿQ,m + cQ,mẏQ,m + kQ,myQ,m = −kQ,my0.

4.4. F         

It is assumed that free vibrations are induced by releasing suddenly the force loading the
model which can be achieved physically by removing a temporary support installed
at the centre of the span of the slab, where force – Q0 was induced statically. The
following initial deflection value y0 was assumed in the slab state equation (4.8) before
removing the support

(4.10) y0 =
Q0

kQ,w,m

and the value is substituted in the equation (4.8), leading to the following relationship

(4.11)

m
cQ,m

kQ,w
yQ,w,m + m

(
cQ,m

cQ,w
+

kQ,m

kQ,w
+ 1

)
ÿQ,w,m +

(
cQ,m + m

kQ,m

cQ,w

)
ẏQ,w,m+

+kQ,myQ,w,m = −kQ,m
Q0

kQ,w,m
.

The following is obtained by introducing a new variable

(4.12) ξ = yQ,w,m − Q0

kQ,w,m

and by substituting the variable to the equation (4.11)

(4.13) m
cQ,m

kQ,w
ξ + m

(
cQ,m

cQ,w
+

kQ,m

kQ,w
+ 1

)
ξ̈ +

(
cQ,m + m

kQ,m

cQ,w

)
ξ̇ + kQ,mξ = 0.

The above equation can be recorded as follows

(4.14) a1 · ξ + b1 · ξ̈ + c1 · ξ̇ + d1ξ = 0,
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and its solution is searched as an exponential function [17]

(4.15) ξ (t) = ert .

A characteristic equation is obtained by substituting an exponential function and
its derivatives

(4.16) a1 · r3 + b1 · r2 + c1 · r + d1 = 0,

the solution of which are the three elements r1, r2, r3. If one element is real and two
composite ones are complex, then the system vibrates. It can be thus assumed that

(4.17) r1 = −α, r2 = −nw,m + ωw,m i, r2 = −nw,m − ωw,mi.

The three functions are the particular integrals of the equation

(4.18) ξ1 (t) = e−αt , ξ2 (t) = e(−nw,m+ωw,mi)t , ξ3 (t) = e(−nw,m−ωw,mi)t .

The further transformations were conducted using Euler’s equation

(4.19)
ξ2 (t) = e−nw,mt (cosωw,mt + i sinωw,mt

)
ξ3 (t) = e−nw,mt (cosωw,mt − i sinωw,mt

) , (4.19)

and in order to rid of the imaginary unit ”i”, new functions were introduced as com-
binations of the two above functions

(4.20)


ξ̄2 =

ξ2 + ξ3
2

= e−nw,mt cos
(
ωw,mt

)

ξ̄3 =
ξ2 − ξ3

2i
= e−nw,mt sin

(
ωw,mt

) .

The total integral of the equation (4.13) is the linear combination of the three
above functions

(4.21) ξ (t) = C1e−αt + e−nt (C2 cos (ωt) + C3 sin (ωt))

and the general solution of the output equation (4.11) has the form of

(4.22) yQ,w,m (t) =
Q0

kQ,w
+ C1e−αt + e−nt (C2 cos (ωt) + C3 sin (ωt)) .

It is assumed according to the initial conditions (4.7) that in the initial moment
of t = 0 the support is removed suddenly, meaning that the force Q0 directed upwards
is abruptly applied to the slab. The force is represented by the initial deflection y0
multiplied by the stiffness kQ,w

(4.23) Q0 = y0 · kQ,w.
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The constants of integration are determined from the initial conditions

(4.24) yQ,w,m (0) =
Q0

kQ,w
, ẏ (0) = 0, ÿ (0) = 0.

The ultimate solution of the equation (4.11) is as follows

(4.25) yQ,w,m (t) =
Q0

kQ,w
+ C1e−αt + A0e−nw,mt sin

(
ωw,mt + φ

)

where

(4.26) tgφ =
αωw,m

(
α − 2nw,m

)
nw,mα2 + αω2

w,m − n2
w,mα,

(4.27) A0 = Q0

√
α2 (

α − 2nw,m
)2

+
(
ω2

w,m
+ n2

w,m

)2

kQ,a,z

(
ω2

w,m + n2
w,m + α2 − 2nw,mα

) .

The figure (Fig. 12) presents the solution (4.25) graphically. One of the parameters
describing energy dissipation when vibrations are performed by the model composite
slab is the damping coefficient being the quotient of

Fig. 12. Graphical representation of the equation solution (4.25).
Rys. 12. Graficzna interpretacja rozwiązania równania (4.25)

(4.28) ζw,m =
nw,m

ωw,m



92 K. G

where

(4.29) ωw,m =

√
kQ,w,m,z

m

is referred to as the natural angular frequency of the model of composite slab damping
vibrations with the stiffness of kQ,w,m and the modal mass of m.

Variations to the critical damping ratio ζw,m, corresponding to the first form of
the model of composite slab free vibrations according to the composite stiffness kQ,w,
is examined. The model of the slab examined is presented in figure (Fig. 6a) where
the stiffness of the monolithic concrete floor at the point kQ,m = 2.03·107 N/m, and
the modal mass as for the slab freely supported performing free vibrations correspon-
ding to the first form with the assumed volume mass of ρ = 24.5 kN/m3, is m =

17/35·l·b·(hg+hd)ρ = 379 kg.
The damping coefficient cQ,m corresponding to the monolithic slab is assumed

constant, is equal to

(4.30) cQ,m = 2ζm
√

kQ,m,wm,

where ζm is the monolithic slab critical damping coefficient with its value equal to
0.015.

The damping coefficient cQ,w corresponding to viscous damping, that is modelling
damping in the composite, is dependent linearly on the stiffness kQ,w and is expressed
with the following relationship

(4.31) cQ,w =
kQ,w

d
,

where d is a constant changed in the calculations from 3 to 50.
It is justified to assume the relationship (4.31) in the remark made in chapter 3,

where it is noted that force in the element modelling energy dissipation with constant
displacement is dependent linearly on the substitute stiffness in the composite (3.11).

The component stiffness kQ,w in the calculations performed is changed from 1·106

N/m to 1·109 N/m. This corresponds to the stiffness of the composite slab kQ,w,m
determined with the relationship (3.31) changing between 0.105·109 N/m to 2.00·109

N/m. Physically, the stiffness kQ,w,m can change from 0.585·109 N/m, which corresponds
to the stiffness of two layers working independently to 2.03·109 N/m, which corresponds
to the stiffness of the monolithic slab at point (kQ,m).

The figure (Fig. 13a) presents a variation in the critical damping ratio ζw,m ac-
cording to stiffness kQ,w and according to stiffness of the composite floor at the point
kQ,w,m for the d parameter values of 3, 10, 20, 30, 50. In all the cases, the value ζw,m
is approaching 0.015, along with the increased stiffness of the kQ,w,m (i.e. increased
component stiffness of the composite floor kQ,w), reaching this value in the situation
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where the stiffness of the composite floor of kQ,w,m,z reaches the stiffness of the mo-
nolithic slab of kQ,m = 2.03·109 N/m. By omitting the small ranges of stiffness for d
= 3 and 10, the growth of the critical damping fraction is observed along with the
declining stiffness of the slab of kQ,w,m. This means that the slabs with small stiffness
of the contact layer will be characterised by greater value of the damping parameter
ζw,m. This conclusion is of basic importance for the experimental investigations held
currently and is of a huge practical importance. As presented in the introduction, the
destruction of slabs with small composite stiffness is accompanied by the slippage of
the bottom layer relative to the top layer [1].

Fig. 13. Results of calculations for the composite floor model a) critical damping factor ζm,w as the
function of the composite slab stiffness kQ,w,m and stiffness kQ,w. The damping factor cQ,w = kQ,w/d (d =

3, 10, 20, 30, 50) and damping ratio of monolithic slab ζm = 0.015, b) the values of the exponent α, c),
d) the fading of model vibrations by assuming: kQ,m =2·107 N/m, cQ,m according to (4.30) by assuming
ζm = 0.015, cQ,w = kQ,w/30, m=379 kg and kQ,w =1·109 N/m (Fig. c) and kQ,w =1·106 N/m (Fig. d).
Rys. 13. Wyniki obliczeń modelu płyty warstwowej o jednym stopniu swobody a) ułamek tłumienia
krytycznego płyty warstwowej (ζm,w) jako funkcja sztywności płyty warstwowej kQ,w,m i sztywności

opisującej wpływ warstwy kontaktowej kQ,w; współczynnik tłumienia cQ,w = kQ,w,z/d (d = 3, 10, 20, 30,
50) przy przyjęciu ułamka tłumienia krytycznego płyty monolitycznej ζm = 0,015, b) wartości

wykładnika α, c) zanikanie drgań modelu przy przyjęciu: kQ,m =20·106 N/m, cQ,m według (4.30) przy
założeniu ζm = 0,015, cQ,w = kQ,w,z/30, m=379 kg oraz kQ,w =1·109 N/m, d) jak (c) dla kQ,w =1·106 N/m

A variation of the value α according to the stiffness of the slab kQ,w,m is presented
in Fig. 13b. The values of this parameter are by several grades higher than the value
nw,m, meaning that it is irrelevant for the conducted analyses of fading of free vibrations.
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Fig. 13c presents the curves of the damped vibrations obtained from the solution of the
equation (4.13) for the high stiffness of the composite kQ,w =1·109 N/m, and (Fig. 13d)
for the small stiffness of the composite kQ,w =1·106 N/m. The curves show huge
differences both in the damping of the vibrations occurring according to the composite
stiffness, and in the frequency of vibrations. The author obtains such curves during the
experimental works conducted with the actual composite floors.

5. S

It was assumed that the composite reinforced concrete floor consists of the bottom
layer, top layer and contact layer. A model of single degree of freedom of this floor
was defined. It was assumed that elastic strains and inelastic strains existed in the
elements of the model.

Studies into the model revealed that a hysteresis loop was created in the process of
static loading and unloading allowing to determine the coefficient of energy dissipation
for a static kinematic excitation. Model with low composite stiffness exhibits smaller
values of such coefficient.

The defined model assumes that, during vibrations, the inelastic forces of internal
friction in the composite and in the concrete of the bottom layer and of top layer are
manifested as viscous friction. It is demonstrated that the vibrations of the model of
the composite slabs characterised by low composite stiffness are damped stronger than
the vibrations of the slabs with a stiff contact layer. Moreover, the lower stiffness of
the element modelling the contact layer corresponds to the smaller frequencies of the
model of free vibrations.

The above findings, concerning the dissipation of energy while loading a slab
statically and dynamically, are of a great practical importance. This is due to the
fact that, after being verified practically, they allow to determine the stiffness of the
composite of two concretes in reinforced concrete composite floors. The investigations
[1] revealed that the slabs with low composite stiffness reach a boundary value of
displacement of wgr under a lower load and a loss in their load capacity is accompanied
by delamination.

The outcomes of the carried out theoretical analyses set one of the basis for the
experimental investigations pursued at present into the dissipation of energy in the
reinforced concrete floors subjected to kinematic, static, and dynamic excitations.

6. A

This paper was sponsored under the POIG.01.01.02-10-106/09-00 programme.



M        . . . 95

R

1. K. G, Testing stiffness of contact layer in composite concrete slabs [in Polish]. The 56th Scien-
tific Conference of the Civil and Environmental Engineering of the Polish Academy of Sciences and
of the Committee of Science of the PZITB. Kielce – Krynica 19–24 September 2010, pages 529-537.

2. K. G, Hysteresis loop of model of concrete composite slab [in Polish]. Polish Academy of
Sciences. Scientific and Research Problems of Construction Białystok University of Technology Edi-
tions, 6, pages 187-194, Białystok 2008.

3. T. K, V.C. L, The effect of surface preparation on the fracture behavior of ECC/concrete repair
system, Cement and Concrete Composites, 22, 423-431, 2000.

4. A. H, Shear bond test for analysis of composite concrete structures, Proccedings 5 th Inter-
national Conference AMCM 2005 “Analytical models and new concepts in concrete and masonry
structures”, Gliwice – Ustroń 2005, p. 53-54.

5. W. S, K. G, Composite slab floors. Force distribution between contact surface
and main bars anchored in ring beam [in Polish], The VIIth Scientific Conference on Composite
Structures, pages 133-143, Zielona Góra June 2005.

6. A. H, A study of the stress – strain state in the interface and support zones of composite struc-
tures with shrinking and expansive concretes [in Polish], Lublin University of Technology Editions,
Lublin 2007.

7. K. G, Combined floors. Normative calculations guidecurves and capacity of actual structures.
5-th international conference AMCM Analytical Models and New Concepts in Concrete and Masonry
Structures, Gliwice-Ustroń June 12-14 2005, p. 51-52.

8. Eurocode 2: Design of Concrete Structures – Part 1-1: General rules and rules for buildings. EN
1992-1-1:2004. European Committee for Standardization., Brussels 2004.

9. K. F, Composite bridges [in Polish], PWN, Warszawa – Kraków 1999.
10. K. G, Calculation of deflection of delaminated reinforces concrete composite floor based on

assumed frictional – elastic model of composite surface. AMCM’ 2008 6th International Conference,
June 9-11, Łódź, p. 219-220.

11. M. J́, Damage detection in steel – concrete composite beams using modal analysis. Research
and Analyses of the Selected problems of Construction. Silesian University of Technology Editions,
p. 555-563, 2011.

12. W.J. P, Mechanical vibration, John Wiley & Sons, Inc 2006.
13. D.J. I, Engineering vibration, Pearson, 2008.
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MODELOWANIE WPŁYWU SZTYWNOŚCI ZESPOLENIA NA ROZPRASZANIE ENERGII
W WARSTWIE KONTAKTOWEJ ŻELBETOWYCH STROPÓW ZESPOLONYCH

S t r e s z c z e n i e

Żelbetowe stropy zespolone składają się z dwóch warstw betonu: dolnej stanowiącej element prefabryko-
wany oraz górnej wykonywanej na budowie. Przyjęto, że między tymi warstwami znajduje się warstwa
kontaktowa, w której wywoływane są siły związane z odkształceniami sprężystymi oraz niesprężystymi.

Zdefiniowano model ciała reprezentującego warstwę kontaktową przyjmując że występują w nim
naprężenia liniowo-sprężyste i niesprężyste związane z tarciem wewnątrz materiałowym.

Następnie zbudowano model żelbetowego stropu zespolonego o jednym stopniu swobody. Model ten
składa z dwóch połączonych szeregowo modeli o jednym stopniu swobody: płyty monolitycznej i elementu
reprezentującego liniowo-sprężyste i niesprężyste właściwości warstwy kontaktowej.

Niesprężyste właściwości w modelu, przy statycznym wymuszeniu kinematycznym były reprezento-
wane przez elementy sprężysto-tarciowe. Przy wymuszeniu kinematycznym tłumienie modelowano ele-
mentami wiskotycznymi. Z fizycznego punktu widzenia rozważano sytuację, w której występują ciągłe
odkształcenia w warstwie kontaktowej, to znaczy nie zachodzi poślizg między betonem warstwy dolnej
i górnej.

Badania modelu wykazały, że w procesie statycznego obciążania i odciążania modelu płyty zespolo-
nej powstaje pętla histerezy, która pozwala wyznaczać wartości współczynnika pochłaniania energii przy
statycznym wymuszeniu kinematycznym. Mniejszymi wartościami tego współczynnika cechują się modele
o małej sprężystości zespolenia.

W zdefiniowanym modelu przyjęto, że w trakcie drgań, niesprężyste siły tarcia wewnętrznego w ze-
spoleniu oraz w betonie warstw dolnej i górnej ujawniają się w postaci tarcia wiskotycznego. Wykazano, że
drgania modeli płyt zespolonych cechujących się małą sztywnością odpowiadającą zespoleniu są tłumione
mocniej niż drgania modeli płyt ze sztywną warstwą kontaktową. Ponadto mniejszej sztywności warstwy
kontaktowej odpowiada mniejsza częstotliwości drgań własnych modeli płyt.

Powyższe spostrzeżenia dotyczące dyssypacji energii w czasie statycznego i dynamicznego obciąża-
nia zdefiniowanych modeli płyt mają duże znaczenie praktyczne, ponieważ, po ich praktycznym zweryfi-
kowaniu, umożliwią określanie sztywności zespolenia dwóch betonów w zespolonych stropach deskowych.
Jak wykazano bowiem we wcześniejszych badaniach doświadczalnych, płyty o małej sztywności zespo-
lenia pod mniejszym obciążeniem osiągają graniczną wartość przemieszczenia i utracie ich nośności
towarzyszy rozwarstwienie.

Wyniki przeprowadzonych analiz teoretycznych są jedną z podstaw prowadzonych aktualnie badań
doświadczalnych, w których bada się dyssypację energii w żelbetowych stropach deskowych poddanych
wymuszeniom kinematycznym statycznym i dynamicznym.
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