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Abstract. In many manufacturing segments, container terminals and shipping yards the automation of material handling systems is an

important element of enhancing productivity, safety and efficiency. The fast, precise and safe transfer of goods in crane operations requires

a control application solving the problems, including non-collision trajectory planning and limitation of payload oscillations. The paper

presents the interval arithmetic-based method of designing a discrete-time closed-loop anti-sway crane control system based on the fuzzy

interpolation of linear controller parameters. The interval analysis of a closed-loop control system characteristic polynomial coefficients

deviation from their nominal values is proposed to define a minimum number of fuzzy sets on the scheduling variables universe of discourse

and to determine the distribution of triangular-shaped membership functions parameters, which satisfy the acceptable range of performances

deterioration in the presence of the system’s parameters variation. The effectiveness of this method was proved in experiments conducted

using the PAC system on the laboratory scaled overhead crane.
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1. Introduction

Cranes, which can be classified into different types (e.g. con-

tainer cranes, overhead cranes, tower cranes, jib cranes) are

widely used for shifting all kinds of cargos in various areas.

The automation of cranes operations is very important ow-

ing to necessity of ensuring the safety and efficiency of the

transportation process, that is involved by requirements of en-

hancing the productivity of manufacturing processes [1, 2].

Those requirements motivate scientists and engineers to de-

velop and implement solutions for the crane control system

which faces up to the following problem: transfer a payload as

fast as possible from point to point with avoidance of collision

with obstacles, and precise positioning at a final point with

reduction of sway of a payload suspended at the end of a rope.

The most attention in literature is focused on the problem

of crane positioning and sway of a payload reduction [3, 4].

The best known industrial applications are the open-loop con-

trol systems applying mostly the input shaping techniques.

Other approaches to crane control are based on the time-

optimal control theory [5, 6] combining also the feedback

control schemes for desired motion trajectory tracking [7, 8],

sliding mode techniques [9], a direct or indirect adaptive con-

trol scheme, Lyapunov techniques employed for state-feedback

controller design, gain-scheduling, and Linear Quadratic Gau-

sian robust control [3, 4]. Furthermore, the soft computing

techniques, especially fuzzy logic, are widely employed to

the considered problem. The linguistic-rule-based fuzzy con-

trollers are reported in [10–12], as well as proposed for PID

gains tuning [13, 14], or sliding mode control [15]. TSK-type

fuzzy controllers are proposed in [16–18].

Some researchers have adopted off-line or on-line tech-

niques to design the fuzzy rule-based controller implemented

in a crane control scheme. Membership functions tuning tech-

niques are elaborated based on an inverse dynamic [19], gra-

dient algorithm [20], genetic algorithm [21–23], fuzzy clus-

tering methods [16, 17], and through applying artificial neural

network [16, 24].

The most of the fuzzy logic-based approaches to an anti-

sway crane control problem, which are described in the liter-

ature are linguistic rule-based strategies. The proposed tech-

niques of fuzzy controller designing are mostly applied for

only tuning the membership functions parameters for a fixed

number of rules involving the training data examples. The

robustness of the crane control system is also frequently

analysed taking into account only the rope length variation.

Furthermore, most of the control strategies are only proved us-

ing mathematical models or mechatronic laboratory models.

Thus, there is still place for those researchers who are look-

ing for efficient control laws, software-hardware solutions and

measurement equipment of crane control systems that could

be implemented in industrial practice.

In this paper, the interval arithmetic-based iterative

method is proposed for synthesis a fuzzy logic-based interpo-

lation control scheme adjusting the discrete-time controllers

parameters in the presence of rope length and mass of a pay-

load variation. The interval mathematics [25, 26] provides

useful tools for robust control systems synthesis and stability

analysis taking into consideration the system parameters un-

certainty [27–29]. Numerous authors, studied the closed-loop

control system considering an interval transfer function [30–

32], or state space model with interval parameters [33–34].
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Interval analysis is implemented for modeling interval sys-

tems and designing robust controller according to the itera-

tive procedures [35–37] or through applying soft computing

methods, e.g. genetic algorithms [38–39] and artificial neural

network [40]. The interval analysis of closed-loop control sys-

tem characteristic polynomial coefficients deviation from their

nominal values is proposed in this paper to define minimum

number of fuzzy sets on the scheduling variables universe

of discourse and to determine the distribution of triangular-

shaped membership functions parameters, which sutisfy the

acceptable range of performances deterioration in the pres-

ence of system’s parameters variation.

The paper is organized as follows. Section two describes

a fuzzy logic-based discrete-time closed-loop control scheme

for a planar model of a crane. In section three, the iterative

procedure used to design a complete and coherent rule base

(RB) of a fuzzy scheduler is proposed. Section four presents

the experimental results obtained on the laboratory scaled

overhead crane. Section five delivers the final conclusions.

2. Fuzzy interpolation-based control scheme

The system under consideration is the laboratory scaled over-

head traveling crane with lifting capacity of 150 kg and mo-

tion mechanisms driven by DC motors. The planar model of

a crane (Fig. 1) transferring a payload, which is assumed to

be a point-mass suspended at the end of a massless rigid ca-

ble, is simplified to the first and second-order discrete-time

transfer functions, which describe the relation between crane

speed and input function (1), and sway angle of a payload and

crane speed (2), where model’s parameters vary in relation to

the rope length l and mass of a payload m.

G1(z, l, m) =
Ẋ(z, l, m)

U(z, l, m)
=

d0(l, m)

z + c0(l, m)
, (1)

G2(z, l, m) =
α(z, l, m)

Ẋ(z, l, m)

=
b1(l, m)z + b0(l, m)

z2 + a1(l, m)z + a0(l, m)
.

(2)

Fig. 1. Planar model of a crane, where m, l, u and α are, respective-

ly, mass of a payload, rope length, controlling signal corresponding

to control force acting on a crane, and sway angle of a payload

The adaptive control scheme can be based on a set of

linear controllers for crane position, speed and first-order

discrete-time controller of payload sway angle with parame-

ters denoted k1, k2, q0, q1 and s0 which are interpolated

by a MIMO fuzzy system based on l and m input variables

(Fig. 2). The fuzzy interpolation scheme is composed of a set

of N rules (3) with the singleton type conclusions represent-

ing the controller parameters determined at operating point

associating with the centre points of triangular-shaped func-

tions (Fig. 3) used to evaluate the membership degree of l and

m crisp input values to fuzzy sets specified in the antecedent

of a rule.

Rk : If l is Li and m is Mj

Then yk is Kk,
(3)

where yk is the vector of rule output (where k = 1, 2, ..., N ),

KT
k = [k1, k2, q0, q1, s0]k is the vector of controller parame-

ters determined at operating point (li, mj) associating with

the centre points of triangular membership functions of fuzzy

sets Li and Mj on l and m input variables universe of dis-

course, where i = 1, 2, ..., n and j = 1, 2, ..., r (n and r are

the numbers of fuzzy sets defined for l and m, respectively).

Fig. 2. Discrete-time control system with fuzzy logic-based interpo-

lation of controller parameters

Fig. 3. Membership functions defined for fuzzy sets on the l and m

input variables

The fuzzy sets Li and Mj correspond to the triangular

membership functions (4)–(5) with the centre points [l1, l2,

..., ln] and [m1, m2, ..., mr] distributed within the expected

range of scheduling variables changes.
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µLi
(l) = max

(

min

(

l − li−1

li − li−1

,
li+1 − l

li+1 − li

)

, 0

)

, (4)

where li−1 ≤ li ≤ li+1, i = 1, 2, n.

µMj
(l) = max

(

min

(

m − mj−1

mj − mj−1

,
mj+1 − m

mj+1 − mj

)

, 0

)

, (5)

where mj−1 ≤ mj ≤ mj+1, j = 1, 2, ..., r.

The output vector of fuzzy scheduler is calculated as the

weighted average of all rules output:

y =

(

N
∑

k=1

wk · Kk

)

·

(

N
∑

k=1

wk

)
−1

, (6)

where a rule’s activation degree (firing strength) is calculated

as follows:

wk = µLi
(l) · µMj

(m). (7)

Considering the above assumptions, the closed-loop con-

trol system design involves to select minimum RB size corre-

sponding to the midpoints (li, mj) of membership functions

at which the linear controllers are determined. The number of

fuzzy sets and distribution of the membership functions para-

meters should ensure the desired performances in the expected

range of parameters variation.

3. Interval analysis-based control system design

3.1. Interval analysis-based fuzzy control scheme synthe-

sis. In this section, the interval arithmetic-based synthesis of

a fuzzy logic-based control system is described. The closed-

loop control system (Fig. 2) transfer function can be presented

in the following form:

α(z, l, m)

Xr(z)

=

k1(l, m)k2(l, m)d0(l, m)







b1(l, m)z2

+(b1(l, m)s0+b0(l, m))z

+b0(l, m)s0







z5 + zS(l, m)R(l, m)
,

(8)

where z = [z4, z3, z2, z1, z0], S is a matrix of model’s para-

meters and R is a vector containing of controller parameters

interpolated by fuzzy system.

The RB of a fuzzy scheduler can be determined through

assigning the closed-loop control system poles at the mid-

points of desired poles intervals. The objective of fuzzy sched-

uler is to place all the closed-loop control system characteristic

polynomial coefficients within desired intervals. Thus, a set

of operating points associating with the centre points of mem-

bership functions, which satisfy the robust performances, can

be obtained based on the objective function derived from the

interval Diophantine equation. Considering the that all poles

zf (where f = 1, 2, ..., 5) of a closed-loop control system

at each k = 1, 2, ..., N operating point (li, mj) are assigned

at the midpoints of the real numbers intervals representing

desired region of stable poles denoted as:

[zf ]
k

=
[

z−f , z+

f

]

k
=
{

zf ∈ ℜ | z−f ≤ zf ≤ z+

f

}

, (9)

the performances of fuzzy logic-based control system satisfy

desired conditions if the coefficients of closed-loop system

characteristic equation lie within the coefficients intervals of

desired polynomial (10) determined using the arithmetic op-

erations on intervals [24, 37]:

Pk(z) =
5
∏

f=1

(

z −
[

z−f , z+

f

]

k

)

= z5 + z [Pk] , (10)

where [Pk] is an interval vector of desired characteristic equa-

tion coefficients:

[Pk] = [[p4]k , [p3]k , [p2]k , [p1]k , [p0]k]
T

. (11)

Hence, the controller parameters vectors Kk defined in rules

conclusions can be determined based on the equations system:

SkRk = Pk, (12)

where

Sk =









































a1 + c0 − 1

(

a0 − a1+

c0 (a1 − 1)

) (

c0 (a0 − a1)

−a0

)

−a0c0 0

d0 d0 (a1 − 1) d0 (a0 − a1) −d0a0 0

0 0 −d0b1 d0 (b1 − b0) −d0b0

0 −d0b1 d0 (b1 − b0) d0b0 0

1 a1 + c0 − 1

(

a0 − a1+

c0 (a1 − 1)

) (

c0 (a0 − a1)

−a0

)

−a0c0

Tsd0 Tsd0a1 Tsd0a0 0 0

0 d0 d0 (a1 − 1) d0 (a0 − a1) d0a0

0 Tsd0 Tsd0a1 Tsd0a0 0









































T

,
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Rk = [1, k2, q0, q1, s0, k1k2, k2s0, k1k2s0]
T

, and Pk con-

sists of interval vector [Pk] midpoints.

The robust performances objective function derived from

the equations system (12) is defined as:

S(l, m)R(l, m) ∈ [Pk] . (13)

Therefore, the fuzzy logic-based control scheme satisfies the

desired performances for the system’s parameters varying

within the expected ranges of rope length l ∈ [l−, l+] and

mass of a payload m ∈ [m−, m+], if the condition (13) is

not violated for the interval vectors (11) associating with the

rules which has been activated to interpolate the controller

parameters with the firing strength factor wk > 0.

3.2. Iterative method used for fuzzy logic-based anti-sway

control design. In this section, the iterative procedure applied

to determine minimum number of fuzzy sets on l and m input

variables universe of discourse is described. The proposed al-

gorithm involves to identify the parametric models (1–2) of

crane dynamic at operating points corresponding to the lower

and upper bounds of scheduling variables intervals [l−, l+]

and [m−, m+], and to assume the centre points of triangular

membership functions as l1 = l−, ln = l+, m1 = m− and

mr = m+. Assuming the desired poles intervals (9) for each

operating point (l1, m1), (l1, mr), (ln, m1) and (ln, mr), the

vectors of controller parameters are derived from (12), and

RB is formulated as:

R1 : If l is L1 and m is M1 Then y1 is K1,

R2 : If l is L1 and m is Mr Then y2 is K2,

R3 : If l is Ln and m is M1 Then y3 is K3,

R4 : If l is Ln and m is Mr Then y4 is K4.

(14)

The iterative design of fuzzy interpolation control scheme is

a two-stage process in which the intervals of input variables

[l−, l+] and [m−, m+] are divided into small intervals to

obtain Nl and Nm sample points. In the first stage (Algo-

rithm 1), starting from the lower bound of interval [l−, l+],

the sample points are incremented from s = 1 until s = Nl.

Each sample point ls is assumed as the centre point ln−1 of

a new membership function (4). Assuming the desired poles

intervals (9), the controller parameters are calculated for the

operating points

(ln−1, m1) , (ln−1, mr) , (15)

according to the equations system (12). It leads to complete

the RB by adding the two new rules:

RN+1 : If l is Ln−1 and m is M1 Then yN+1 is KN+1,

RN+2 : If l is Ln−1 and m is Mr Then yN+2 is KN+2,
(16)

where N is the number of fuzzy rules in the previous iteration.

In the next step, the condition (13) is tested for operating

points corresponding to the crossover point of membership

functions µLn−1

(l) and µLn−2

(l), and the centre points of

functions µM1

(m) and µMr
(m):

((ln−1 + ln−2) /2, m1) , ((ln−1 + ln−2) /2, mr) . (17)

If the condition (13) is satisfied, the temporary fuzzy set An−1

and rules (16) are removed from the fuzzy scheduler. If it is

violated, the new fuzzy set is created with the centre point

of membership function at ls−1, and the conclusions of rules

(16) are determined for operating points which has been tested

successfully in the previous iteration.

Algorithm 1. Selecting the minimum number of fuzzy sets for l

Input: s := 1; n := 2; N = 4;

1: while s < Nl do

2: n := n + 1;

3: ln−1 := ls;

4: define the fuzzy set

Ln−1 =
�
l, µLn−1

(l); l ∈
�
l−, l+

�	
,

where µLn−1
(l) is defined according to (4);

5: determine [PN+1], [PN+2], KN+1, KN+2,

for operating points (15) according to (12);

6: add the rules (16) to the RB;

7: N := N + 2;

8: test the condition (13) for operating points (17);

9: if the condition (13) is satisfied

10: remove the fuzzy set Ln−1;

11: remove the rules (16) from the RB;

12: s := s + 1; n := n − 1; N := N − 2;

13: else

14: ln−1 := ls−1;

15: repeat step 5;

16: end if

17: end while

In the second stage, the Algorithm 2 leads to obtain the

minimum number of fuzzy sets on the [m−, m+] universe of

discourse. At each iteration, the temporary fuzzy set Mr−1 is

determined, and fuzzy rules are added to the current RB:

RN+1 : If l is L1 and m is Mr−1ThenyN+1 is KN+1,

RN+2 : If l is L2 and m is Mr−1 Then yN+2 is KN+2,

...

RN+n : If l is Ln and m is Mr−1 Then yN+n is KN+n,
(18)

where the conclusions parameters are determined for operat-

ing points:

(li, mr−1) for i = 1, 2, ..., n. (19)

The condition (13) is tested for most hazardous operating

points associating with the crossover points of membership

functions:

(li, (mr−1 + mr−2) /2) for i = 1, 2, ..., n,

((li + li+1) /2, (mr−1 + mr−2) /2)

for i = 1, 2, ..., n − 1,

((li + li+1) /2, mr−1) for i = 1, 2, ..., n − 1

(20)
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Algorithm 2. Selecting the minimum number of fuzzy sets for m

Input: s := 1; r := 2; N = 2n;

1: while s < Nm do

2: r := r + 1;

3: mr−1 := ms;

4: define the fuzzy set

Mr−1 =
n

m,µMr−1

(m); m ∈

�
m−, m+

�o
,

where µMr−1

(m) is defined according to (5);

5: determine [PN+1], [PN+2], ..., [PN+n],

and KN+1, KN+2, ..., KN+n

for operating points (19) according to (12);

6: add the rules (18) to the RB;

7: N := N + n;

8: test the condition (13) for operating points (20);

9: if the condition (13) is satisfied

10: remove the fuzzy set Mr−1;

11: remove the rules (18) from the RB;

12: s := s + 1; n := n − 1; N := N − n;

13: else

14: mr−1 := ms−1;

15: repeat step 5;

16: end if

17: end while

The Algorithms 1 and 2 involve interpolating the crane dy-

namic model parameters between operating points (l1, m1),
(l1, mr), (ln, m1) and (ln, mr) at which the open-loop iden-

tification experiments were conducted.

Owing to the assumed conditions, the two-stage procedure

results in selecting the minimum number of membership func-

tions, their parameters distribution within the expected ranges

of scheduling variables, as well as complete and coherent RB.

Nevertheless, the parameters of the crane’s model should be

identified at new operating points determined through apply-

ing Algorithm 1 and 2, and the iterative procedure should

be repeated to validate the robustness of closed-loop control

system.

4. Results of experiments conducted

on the laboratory stand

The proposed algorithm was employed to design the fuzzy

logic-based control scheme of the DC motors driven mo-

tion mechanism of laboratory scaled overhead crane. The

hardware-software equipment utilized during identification

and control process was composed of PC with I/O board and

Matlab software used in the open-loop identification experi-

ments and control system design, and PAC system on which

the control algorithm was implemented in the form of struc-

tured text and tested during experiments conducted on the

lab-scaled material handling device. The objective of closed-

loop system synthesis was to design a fuzzy scheduling con-

trol scheme taking into consideration the parameters variation

within the intervals [0.8, 2.2] m and [10, 90] kg. The models

of system’s dynamic at operating points corresponding to the

bounds of those intervals were identified using output error

(OE) method with sample time Ts = 0.1 s. At each operating

point considering as the centre point of membership function,

the intervals of desired stable poles were assumed as:

[zf ]
k

= [exp ((−ωn ∓ 0.1ωn) Ts)]k , (21)

where the natural not dumped pulsation of considered system

can vary in the interval ωn ∈ [2.06, 2.95] rad/s. For those

assumptions, the expected range of step unit response settle

time is [5.5, 6.5] s.

Through dividing the expected ranges of rope length and

mass of a payload into Nl = 14 and Nm = 8 intervals, the

iterative method, which has been described in Sec. 3, results

in designing the fuzzy scheduler with 6 rules, and 3 and 2

fuzzy sets determined for l and m, respectively, with the cen-

tre points fixed at l1 = 0.8 m, l2 = 1.5 m, l3 = 2.2 m, and

m1 = 10 kg, m1 = 90 kg. The open-loop identification ex-

periments were conducted for operating points (1.5 m, 10 kg)

and (1.5 m, 90 kg) determined using iterative method, and Al-

gorithm 1 and 2 were used again to confirm the performances

robustness. Figure 4 depicts the natural pulsation of a dynam-

ic model at the identified operating points and for operating

points at which the model’s parameters were linearly inter-

polated between bounds of the interval [0.8, 2.2] m (during

designing the fuzzy scheduler), and between bounds of the

intervals [0.8, 1.5] m and [1.5, 2.2] m (during closed-loop

control system validation). The maximum interpolation error

was 7.26% in designing process, and 0.9% during validation.

Fig. 4. The natural pulsation for operating points at which the pa-

rameters of a pendulum model were linearly interpolated between

points at which the OE identification was conducted

Figures from 5 to 10 present the examples of unit step

responses obtained during experiments conducted for oper-

ating points corresponding to the midpoints (Fig. 5–8) and

crossover points (Fig. 9–10) of triangular membership func-

tions. The experiments conducted for selected operating points

confirmed the robust performances: settle time was in the de-

sired interval [5.5, 6.5] s, while crane positioning and reduc-

tion of payload deviation were obtain with the expected toler-

Bull. Pol. Ac.: Tech. 61(4) 2013 867
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ance ±0.02 m. Thus, the results of the experiments prove the

effectiveness of the proposed method for designing a fuzzy

logic-based scheduling control system.

Fig. 5. Crane position – experiments for m = 10 kg

Fig. 6. Payload deviation – experiments for m = 10 kg

Fig. 7. Crane position – experiments for m = 90 kg

Fig. 8. Payload deviation – experiments for m = 90 kg

Fig. 9. Crane position – experiments for m = 50 kg

Fig. 10. Payload deviation – experiments for m = 50 kg

5. Conclusions

The fast, precise and safe transfer of goods in crane opera-

tions requires a control application to solve the problems of

868 Bull. Pol. Ac.: Tech. 61(4) 2013
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payload oscillations limitation. The interval arithmetic-based

iterative method is proposed to design the robust fuzzy logic-

based control scheme. The fuzzy rule-base system is applied

to interpolate the controller parameters for adjusting control

performances for the rope length and mass of a payload vari-

ation. The problem of fuzzy interpolation control scheme

design is solved by interval analysis of closed-loop control

system characteristic polynomial coefficients. The proposed

method based on the interval Diophantine equation is applied

to find minimum number of fuzzy sets on the scheduling vari-

ables universe of discourse and to determine the distribution

of triangular-shaped membership functions parameters, which

satisfy the acceptable range of performances deterioration in

the presence of the system’s parameters variation. The effec-

tiveness of this method was proved in experiments conducted

using the PAC system on the laboratory scaled overhead crane.

The future challenge is the implementation of this method for

design the control system of a large scale material handling

device.
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