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On positive reachability of time-variant linear systems on time scales
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Abstract. Positive reachability of time-variant linear positive systems on arbitrary time scales is studied. It is shown that the system is

positively reachable if and only if a modified Gram matrix corresponding to the system is monomial. The general criterion is then specified

for particular cases of continuous-time systems and various classes of discrete-time systems. It is shown that in the case of continuous-time

systems with analytic coefficients the conditions for positive reachability are very restrictive, similarly as for time-invariant systems.
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1. Introduction

In many applications the variables representing various phe-

nomena take only nonnegative values. Examples from biology,

economics, chemistry can be found e.g. in [1, 2]. Theory of

such systems is significantly different from theory describing

general systems and often requires a different language.

Positive reachability of linear positive systems has been

studied since 1980’s both for discrete- and continuous-time

systems [1–11]. The results show that there is a significant

difference between discrete-time and continuous-time systems

with constant coefficients. In the continuous-time case posi-

tive reachability of the system ẋ = Ax + Bu requires that A
be diagonal and B contain a monomial matrix [10,11], while

in the discrete-time case the conditions are much milder. Pos-

itive fractional systems and, in particular, their reachability,

have been studied in [12–14]

In [15] we have shown that positive reachability of

discrete-time and continuous-time systems can be studied in

a common framework using the theory of systems on time

scales. Modified Gram matrices have been used to charac-

terize positive reachability of systems with constant coef-

ficients on arbitrary time scales. Besides standard discrete-

time and continuous-time systems also discrete-time systems

corresponding to nonuniform sampling or systems arising in

quantum calculus are considered. Similar characterization of

positive observability has been established in [16]. Standard

controllability of linear systems on time scales has been stud-

ied in [17,18], where standard Gram matrices on time scales

have been used. Realizations of linear positive systems on

time scales have been considered in [19].

In this paper we extend the results of [15] to time-variant

systems. Positive reachability is characterized by the condi-

tion that a modified Gram matrix corresponding to the sys-

tem is monomial. The modification is performed by selecting

columns of the matrix B and assigning different intervals of

integration to chosen columns. The essential difference be-

tween discrete-time and continuous-time systems is now rep-

resented by different properties of the standard integral that

is used in the continuous-time case and the discrete integral

used in the discrete-time case.

From the general criterion, valid on all time scales, we

infer different characterizations for particular time scales. We

extend the result of [10] to time-variant continuous-time sys-

tems with analytic coefficients, showing that positive reacha-

bility requires that A be diagonal and B contain a monomial

submatrix. We also deduce the criteria of positive reachabili-

ty for systems on a discrete homogeneous and quantum time

scales.

The paper is organized as follows. In Section 2 we present

necessary information on positive math, calculus on time

scales and systems on time scales. In Section 3 we introduce

positive systems on time scales. Section 4 contains the main

result of the paper: characterization of positive reachability.

2. Preliminaries

We introduce here the main concepts, recall definitions and

facts, and set notation. For more information on positive

continuous-time and discrete-time systems, the reader is re-

ferred to e.g. [1,2], and for information on time scales calcu-

lus, to e.g. [20].

2.1. Positive math. By R we shall denote the set of all real

numbers, by Z the set of integers, and by N the set of natural

numbers (without 0). We shall also need the set of nonnega-

tive real numbers, denoted by R+ and the set of nonnegative

integers Z+, i.e. N ∪ {0}. Similarly, R
k
+ means the set of all

column vectors in R
k with nonnegative components and R

k×p
+

consists of k × p real matrices with nonnegative elements. If

A ∈ R
k×p
+ we write A ≥ 0 and say that A is nonnegative. A

nonnegative matrix A is called positive if at least one of its

elements is greater than 0. Then we shall write A > 0.

A positive column or row vector is called monomial if

one of its components is positive and all the other are zero.

A monomial column in R
n
+ has the form αek for some α > 0

and 1 ≤ k ≤ n, where ek denotes the column with 1 at the

kth position and other elements equal to 0. Then we say that
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the column is k-monomial. An n×n matrix A is called mono-

mial if all columns and rows of A are monomial. Then A is

invertible and its inverse is also positive. Moreover, we have

the following important fact.

Proposition 2.1. A positive matrix A has a positive inverse

if and only if A is monomial.

2.2. Calculus on time scales. Calculus on time scales is a

generalization of the standard differential calculus and the cal-

culus of finite differences.

A time scale T is an arbitrary nonempty closed subset of

the set R of real numbers. In particular T = R, T = hZ

for h > 0 and T = qN := {qk, k ∈ N} (quantum scale) for

q > 1 are time scales. We assume that T is a topological space

with the relative topology induced from R. If t0, t1 ∈ T, then

[t0, t1]T denotes the intersection of the ordinary closed inter-

val with T. Similar notation is used for open, half-open or

infinite intervals.

For t ∈ T we define the forward jump operator σ : T→T

by σ(t) := inf{s ∈ T : s > t} if t 6= supT and

σ(sup T) = sup T when sup T is finite; the backward jump

operator ρ : T→T by ρ(t) := sup{s ∈ T : s < t} if t 6= inf T

and ρ(inf T) = inf T when inf T is finite; the forward graini-

ness function µ : T→[0,∞) by µ(t) := σ(t)−t; the backward

graininess function ν : T→[0,∞) by ν(t) := t − ρ(t).

If σ(t) > t, then t is called right-scattered, while if

ρ(t) < t, it is called left-scattered. If t < sup T and σ(t) = t
then t is called right-dense. If t > inf T and ρ(t) = t, then t
is left-dense.

The time scale T is homogeneous, if µ and ν are constant

functions. When µ ≡ 0 and ν ≡ 0, then T = R or T is a

closed interval (in particular a half-line). When µ is constant

and greater than 0, then T = µZ.

Let T
k := {t ∈ T : t is nonmaximal or left-dense}. Thus

T
k is got from T by removing its maximal point if this point

exists and is left-scattered.

Let f : T→R and t ∈ T
k. The delta derivative of f at t,

denoted by f∆(t), is the real number with the property that

given any ε there is a neighborhood U = (t − δ, t + δ) ∩ T

such that

|(f(σ(t)) − f(s)) − f∆(t)(σ(t) − s)| ≤ ε|σ(t) − s|

for all s ∈ U . If f∆(t) exists, then we say that f is delta dif-

ferentiable at t. Moreover, we say that f is delta differentiable

on T
k provided f∆(t) exists for all t ∈ T

k.

Example 2.2. If T = R, then f∆(t) = f ′(t). If T = hZ,

then f∆(t) =
f(t + h) − f(t)

h
. If T = qN, then f∆(t) =

f(qt) − f(t)

(q − 1)t
.

A function F : T→R is called an antiderivative of

f : T→R provided F∆(t) = f(t) holds for all t ∈ T
k. Let

a, b ∈ T. Then the delta integral of f on the interval [a, b)T

is defined by

b∫

a

f(τ)∆τ :=

∫

[a,b)T

f(τ)∆τ := F (b) − F (a).

It is more convenient to consider the half-open interval

[a, b)T than the closed interval [a, b]T in the definition of the

integral. If b is a left-dense point, then the value of f at b
would not affect the integral. On the other hand, if b is left-

scattered, the value of f at b is not essential for the integral

(see Example 2.3). This is caused by the fact that we use delta

integral, corresponding to the forward jump function.

Riemann and Lebesgue delta integrals on time scales have

been also defined (see e.g. [21]). It can be shown that every

continuous function has an antiderivative and its Riemann and

Lebesgue integrals agree with the delta integral defined above.

We have a natural property:

b∫

a

f(τ)∆τ =

c∫

a

f(τ)∆τ +

b∫

c

f(τ)∆τ

for any c ∈ (a, b)T . Moreover, if f is continuous, f(t) ≥ 0

for all a ≤ t < b and
b∫

a

f(τ)∆τ = 0, then f ≡ 0.

Example 2.3. If T = R, then
b∫
a

f(τ)∆τ =
b∫

a

f(τ)dτ , where

the integral on the right is the usual Riemann integral. If

T = hZ, h > 0, then
b∫

a

f(τ)∆τ =

b

h
−1∑

t= a

h

f(th)h for a < b.

2.3. Linear systems on time scale. Let us consider the sys-

tem of delta differential equations on a time scale T:

x∆(t) = A(t)x(t), (1)

where x(t) ∈ R
n and A(t) is a n×n matrix. We assume that

A is continuous on T.

If T = R then (1) is the standard differential equation

ẋ(t) = A(t)x(t).

On the other hand, for T = Z we get the discrete-time system

x(k + 1) − x(k) = A(k)x(k),

which can be rewritten in a more standard shift form

x(k + 1) = (I + A(k))x(k).

Proposition 2.4. Equation (1) with initial condition x(t0) =
x0 has a unique forward solution defined for all t ∈
[t0, +∞)T.

The matrix exponential function (at t0) for A is defined as

the unique forward solution of the matrix differential equation

X∆(t) = A(t)X(t), with the initial condition X(t0) = I . Its

value at t is denoted by eA(t, t0).

Proposition 2.5. The following properties hold for every

t, s, r ∈ T such that r ≤ s ≤ t:
i) eA(t, t) = I;

ii) eA(t, s)eA(s, r) = eA(t, r);
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Remark 2.6. If A is a constant matrix, then for T = R,

eA(t, t0) = eA(t−t0), while for T = Z, eA(k, k0) = Ak−k0 .

Observe that in the second case the exponential matrix may

be not defined for k < k0.

Let us consider now a nonhomogeneous system

x∆(t) = A(t)x(t) + f(t), (2)

where A and f are continuous.

Theorem 2.7. Let t0 ∈ T. System (2) for the initial condition

x(t0) = x0 has a unique forward solution of the form

x(t) = eA(t, t0)x0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ. (3)

3. Positive control systems

Let n ∈ N be fixed. From now on we shall assume that the

time scale T consists of at least n + 1 elements.

Let us consider a linear control system, denoted by Σ, and

defined on the time scale T:

x∆(t) = A(t)x(t) + B(t)u(t), (4)

where t ∈ T, x(t) ∈ R
n, u(t) ∈ R

m, A and B are continuous

matrix-valued functions.

We assume that the control u is a piecewise continuous

function defined on some interval [t0, t1)T, depending on u,

where t0 ∈ T and t1 ∈ T or t1 = ∞. We shall assume

that at each point t ∈ [t0, t1)T, at which u is not continuous,

u is right-continuous and has a finite left-sided limit if t is

left-dense. This allows to solve (4) step by step. Moreover,

for a finite t1 we can always evaluate x(t1). For t1 being

left-scattered we do not need the value of u at t1, and for a

left-dense t1 we just take a limit of x(t) at t1.

Definition 3.1. We say that system Σ is positive if for

any t0 ∈ T, any initial condition x0 ∈ R
n
+, any control

u : [t0, t1)T→R
m
+ and any t ∈ [t0, t1]T, the solution x of

(4) satisfies x(t) ∈ R
n
+.

By the separation principle we have the following charac-

terization.

Proposition 3.2. The system Σ is positive if and only if

eA(t, t0) ∈ R
n×n
+ for every t, t0 ∈ T such that t ≥ t0, and

B(t) ∈ R
n×m
+ for t ∈ T.

Remark 3.3. If A is constant, then the conditions for nonneg-

ativity of the exponential matrix are known (see [2, 15]). For

T = R, A has to be a Metzler matrix (all elements outside

the diagonal are nonnegative), for T = µZ, I + µA has to be

nonnegative, and for T = qN, A has to be nonnegative.

4. Reachability

If Σ is a positive system, then for a nonnegative initial con-

dition x0 and a nonnegative control u, the trajectory x stays

in R
n
+. One may be interested in properties of the reachable

sets of the system. For simplicity we assume that the initial

condition is x0 = 0. Let x(t1, t0, 0, u) mean the trajectory of

the system corresponding to the initial condition x(t0) = 0
and the control u, and evaluated at time t1.

Definition 4.1. Let t0, t1 ∈ T, t0 < t1. The positive reach-

able set (from 0) of the system Σ on the interval [t0, t1]T is

the set R
[t0,t1]
+ consisting of all x(t1, t0, 0, u), where u is a

nonnegative control on [t0, t1)T.

The system Σ is positively reachable on [t0, t1]T if R
[t0,t1]
+ =

R
n
+.

To study positive reachability let us introduce a modified

Gram matrix related to the control system.

Definition 4.1. Let M ⊆ {1, . . . , m} and t0, t1 ∈ T, t0 < t1.

For each k ∈ M let Sk be a subset of [t0, t1)T that is a union

of finitely many disjoint intervals of T of the form [τ0, τ1)T,

and let SM = {Sk : k ∈ M}. By the Gram matrix of system

(4) corresponding to t0, t1, M and SM we mean the matrix

W := W t1
t0 (M,SM )

:=
∑

k∈M

∫

Sk

eA(t1, σ(τ))bk(τ)bT
k (τ)eA(t1, σ(τ))T ∆τ, (5)

where bk(τ) is the kth column of B(τ).
Then we have the following characterization:

Theorem 4.3. Let t0, t1 ∈ T, t0 < t1. System (4) is positively

reachable on [t0, t1]T iff there are M ⊆ {1, . . . , m} and the

family SM = {Sk : k ∈ M} of subsets of [t0, t1]T such that

the matrix W = W t1
t0 (M,SM ) is monomial.

Proof. “⇐” Let x ∈ R
n
+. By ẽ1,. . . , ẽm we denote the

vectors of the standard basis in R
m. Define control u :

[t0, t1)→R
m
+ by u(τ) =

∑
k∈M

uk(τ)ẽk , where uk(τ) =

bk(τ)T eA(t1, σ(τ))T W−1x for t ∈ Sk and uk(τ) = 0 for

t /∈ Sk. The control u is nonnegative and

x(t1) =

t1∫

t0

eA(t1, σ(τ))B(τ)u(τ)∆τ

=
∑

k∈M

t1∫

t0

eA(t1, σ(τ))bk(τ)uk(τ)∆τ

=
∑

k∈M

∫

Sk

eA(t1, σ(τ))bk(τ)bT
k (τ)eA(t1, σ(τ))T

·W−1x∆τ = x.

Thus (4) is positively reachable on [t0, t1]T.

“⇒” Positive reachability implies that all the vectors

e1, . . . , en can be reached using nonnegative controls. Let us

fix some ei. Then there is a piecewise continuous nonnegative

control u = (u1, . . . , um) on [t0, t1)T such that

ei =
m∑

j=1

t1∫

t0

eA(t1, σ(τ))bj(τ)uj(τ)∆τ.

Since all the integrals in the sum are nonnegative, for some

ki the integral
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t1∫

t0

eA(t1, σ(τ))bki
(τ)uki

(τ)∆τ

is an i-monomial vector. Then for every τ ∈ [t0, t1)T the vec-

tor eA(t1, σ(τ))bki
(τ)uki

(τ) is either i-monomial or 0. Let

Ti be the set of all τ for which eA(t1, σ(τ))bki
(τ)uki

(τ) is

i-monomial. Then for τ ∈ Ti the matrix

eA(t1, σ(τ))bki
(τ)bT

ki
(τ)eA(t1, σ(τ))T

is diagonal with the only nonzero element at

the ith place. The same is true for the matrix∫
Ti

eA(t1, σ(τ))bki
(τ)bT

ki
(τ)eA(t1, σ(τ))T ∆τ . This implies

that the matrix

C :=

n∑

i=1

∫

Ti

eA(t1, σ(τ))bki
(τ)bT

ki
(τ)eA(t1, σ(τ))T ∆τ

is monomial (and diagonal). Let M consist of all ki for i =
1, . . . , n. Observe that if ki = kj for i 6= j, then Ti ∩ Tj = ∅.

Define Sk =
⋃

ki=k Ti and let SM = {Sk : k ∈ M}. Then

C =
∑

k∈M

∫

Sk

eA(t1, σ(τ))bk(τ)bT
k (τ)eA(t1, σ(τ))T ∆τ

= W t1
t0 (M,SM ),

so W t1
t0 (M,SM ) is monomial.

Corollary 4.4. If the ordinary Gram matrix

W t1
t0 =

t1∫

t0

eA(t1, σ(τ))B(τ)BT (τ)eA(t1, σ(τ))T ∆τ

is monomial, then system (4) is positively reachable on

[t0, t1]T.

Proof. Observe that W t1
t0 = W t1

t0 (M,SM ) for M =
{1, . . . , m} and Sk = [t0, t1)T for all k ∈ M . Thus posi-

tive reachability follows from Theorem 4.

Remark 4.5. The condition that W t1
t0 is monomial is not nec-

essary for positive reachability on [t0, t1]T. Consider the sys-

tem (see [15])

x∆ =

(
−1 1

1 0

)
x +

(
1 1

0 1

)
u (6)

on T = Z. Choose t0 = 0 and t1 = 2. System (6) is positively

reachable on [t0, t1]T. Indeed, let M = {1} and S1 = [0, 2)T.

Then

W = b1b
T
1 + (I + A)b1b

T
1 (I + A)T

=

(
1

0

)
(1, 0) +

(
0 1

1 1

)(
1

0

)
(1, 0)

(
0 1

1 1

)
=

(
1 0

0 1

)

is a monomial matrix. However

W t1
t0 = BBT + (I + A)BBT (I + A)T =

(
3 3

3 6

)

is not monomial.

Corollary 4.6. If there exists M ⊆ {1, . . . , m} such that the

matrix

W t1
t0 (M) =

t1∫
t0

eA(t1, σ(τ))B̃(τ)B̃T (τ)eA(t1, σ(τ))T ∆τ is

monomial, where B̃ is a submatrix of B consisting of column

bk, k ∈ M , then system (4) is positively reachable on [t0, t1]T.

Proof. Observe that W t1
t0 (M) = W t1

t0 (M,SM ) where Sk =
[t0, t1)T for all k ∈ M . Thus positive reachability follows

from Theorem 4.3.

Remark 4.7. The condition that W t1
t0 (M) is monomial is not

necessary for positive reachability on [t0, t1]T. Let the time

scale T = {0} ∪ [1, 2] ∪ {3}. Consider the system (see [15])

x∆ =

(
−1 0

1 −1

)
x +

(
1

0

)
u. (7)

The system is positively reachable on [0, 3]T. Indeed, let

M = {1} and let S1 = [0, 1)T ∪ [2, 3)T. Then

W =

∫

[0,1)T

eA(3, σ(τ))BBT eA(3, σ(τ))T ∆τ

+

∫

[2,3)T

eA(3, σ(τ))BBT eA(3, σ(τ))T ∆τ

=

(
0 0

0 e−2

)
+

(
1 0

0 0

)
=

(
1 0

0 e−2

)

is monomial. Observe that we remove here the points t with

µ(t) = 0. This is essential in order to get a monomial matrix.

To calculate the full Gram matrix we have to add to W the

following matrix
∫

[1,2)

eA(3, σ(τ))BBT eA(3, σ(τ))T dτ.

Its off-diagonal elements are equal to
2∫
1

(3 − τ)e−2(3−τ)dτ .

Since they are positive, W t1
t0 (M) is not monomial.

From the general characterization of positive reachability

presented in Theorem 4.3 we can deduce more concrete results

for particular time scales. For T = R we get very restrictive

conditions for positive reachability. The following result was

first obtained in [10] for constant matrices A and B.

Proposition 4.8. Let T = R and t0, t1 ∈ R, t0 < t1. Let

A and B be analytic. System (4) is positively reachable on

[t0, t1] iff A is diagonal and B contains an n × n submatrix

that is monomial for almost every t ∈ [t0, t1] (so m ≥ n).

Proof. “⇐” Let B̃(t) denote the monomial submatrix of B(t)

and let the indices of columns of B̃(t) form the set M . Then

B̃(t)B̃T (t) is a diagonal matrix with all the diagonal elements

being positive and so is

W t1
t0 (M) =

t1∫

t0

eA(t1, σ(τ))B̃(t)B̃T (t)eA(t1, σ(τ))T ∆τ.

908 Bull. Pol. Ac.: Tech. 61(4) 2013
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Thus W t1
t0 (M) is monomial, so system (4) is positively reach-

able by Corollary 4.6. Observe that the proof of this implica-

tion works for all time scales.

“⇒” Assume that the system is positively reachable on

[t0, t1]. From Theorem 4.3 it follows that for some set M
and some family SM the Gram matrix W = W t1

t0 (M,SM )
is monomial. Let jth column of W be i-monomial. Then for

some k ∈ M and for τ from some subinterval of [t0, t1) the

jth column of the matrix eA(t1, τ)bk(τ)bT
k (τ)(eA(t1, τ))T is

i-monomial. Let c(τ) = eA(t1, τ)bk(τ). Since the jth column

of the matrix c(τ)c(τ)T is i-monomial, then c(τ) must be j-

monomial and eventually i = j. This means that at least one

column of eA(t1, τ) must be i-monomial. As the exponen-

tial matrix is invertible such a column must be unique. This

implies that bk(τ) is monomial. Moreover the i-monomial col-

umn of eA(t1, τ) must be its ith column. Otherwise we would

get 0 on the diagonal of the analytic exponential matrix for

all τ from some interval, which is impossible. Thus eA(t1, τ)
is diagonal on some interval, which means that A(t) is also

diagonal. Now to get all n monomial columns in W we need

n different monomial columns bk(t). Thus B(t) contains an

n × n monomial submatrix.

For discrete homogeneous time scales the conditions for

positive reachability are much less restrictive. The follow-

ing result and its equivalent formulations are well known for

µ = 1 (see e.g. [7]). We derive the conditions from our gen-

eral result on positive reachability.

Observe that for µ = 1 the system x∆ = Ax+Bu can be

rewritten in the shift form as x(k+1) = (I+A)x(k)+Bu(k),
which is more common in the literature. Thus the matrix

I + A naturally appears in the condition of positive reach-

ability.

Proposition 4.9. Let T = µZ for a constant µ > 0. Let A
and B be constant. Let t0 ∈ T and t1 = t0 + kµ for some

k ∈ N. System (4) is positively reachable on [t0, t1]T iff the

matrix [B, (I +µA)B, . . . , (I +µA)k−1B] contains a mono-

mial submatrix.

Proof. “⇐” Observe that x(t1) =
k−1∑
i=0

m∑
j=1

(I +µA)ibjuj(k−

1 − i). If (I + µA)ibj = γes for some γ > 0, then setting

uj(k − 1 − i) = 1/γ and all other components and values at

different times putting to 0 we get x(t1) = es. This means

positive reachability on [t0, t1]T.

“⇒” By Theorem 4 positive reachability implies existence of

a set M and subsets Sk of [t0, t1] for k ∈ M such that the

matrix

W =
∑

k∈M

∫

Sk

eA(t1, σ(τ))bkbT
k eA(t1, σ(τ))T ∆τ

is monomial. Moreover
∫

Sk

eA(t1, σ(τ))bkbT
k eA(t1, σ(τ))T ∆τ

=
∑

t∈Sk

(I + µA)(t1−t−µ)/µbkbT
k ((I + µA)(t1−t−µ)/µ)T µ.

This implies that for every i = 1, . . . , n there are k ∈
M , t ∈ Sk and 0 ≤ j ≤ n such that the jth col-

umn of (I + µA)(t1−t−µ)/µbkbT
k ((I + µA)(t1−t−µ)/µ)T is i-

monomial. This means that the column (I +µA)(t1−t−µ)/µbk

is i-monomial. But this column is one of the columns of the

matrix [B, (I + µA)B, . . . , (I + µA)k−1B].
Proposition 4.9 may be extended to nonhomogeneous

discrete-time scales and nonconstant matrices A and B.

Proposition 4.10. Assume that µ(t) > 0 for all t ∈ T,

t0 ∈ T and t1 = σk(t0). System (4) is positively reachable

on [t0, t1]T iff the matrix

[B(σk−1(t0)), (I + µ(σ(t0))A(σ(t0)))B(σk−2(t0)),

(I + µ(σ2(t0))A(σ2(t0)))

(I + µ(σ(t0))A(σ(t0)))B(σk−3(t0)), . . . ,

(I + µ(σk−1(t0))A(σk−1(t0))) . . .

(I + µ(σ(t0))A(σ(t0)))B(t0)]

contains a monomial submatrix.

The proof is similar to the proof of Proposition 4.9, but

we have to take into account that the exponential matrix is no

longer a power of I + µA for a constant µ but rather a prod-

uct of such terms with possibly different values of µ and A.

This criterion may be used for systems on T = qN. When the

functions A and B are constant, this implies a very restrictive

condition of positive reachability.

Proposition 4.11. Let T = qN, t0 ∈ T and t1 = qkt0 for

some k ≥ 1. Assume that A and B are constant. System (4)

is positively reachable on [t0, t1]T iff the matrix B contains a

monomial submatrix.

Proof. Observe that under the assumptions made in the propo-

sition, the matrix in Proposition 4.10 is now

[B, (I + (q − 1)qt0A)B,

(I + (q − 1)q2t0A)(I + (q − 1)qt0A)B, . . . ,

(I + (q − 1)qk−1t0A) . . . (I + (q − 1)qt0A)B].

The sufficiency is obvious. To show that the condition is

also necessary, let us recall that the necessary and suffi-

cient condition for positivity of the exponential matrix eA

on T = qN is that A be nonnegative (see [15]). This im-

plies that each matrix I + (q − 1)qit0A is nonnegative and

has a positive diagonal. Thus for any nonnegative vector v,

(I+(q−1)qit0A)v = v+(q−1)qit0Av. This implies that we

are not able to acquire new monomial vectors besides those

that sit in B.

Remark 4.12. Proposition 4.11 can be extended to an arbi-

trary time scale T for which sup µ(t) = +∞. For such a time

scale we have the same requirement for positivity of the ex-

ponential matrix: nonnegativity of A (see [15]), which is the

essential ingredient of the proof.
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