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State estimate based control design using the unified
algebraic approach

ANNA FILASOVÁ and DUŠAN KROKAVEC

The LMI based method for the control with the state estimate, subject to the input variable
constraints in the state feedback control of the linear MIMO systems, is presented in the paper.
For this problem are obtained the state feedback as well as the estimator gain matrices that
capture the required stability by solving the linear matrix inequalities formulated in the sense
of the unified algebraic approach. The method is particularly effective when the input variable
constraints and the system output are of interest.
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1. Introduction

The trust in the development of observers for linear causal systems came from the
introduction of the state-space methods by Kalman [7]. In 1963, Luenberger initiated the
theory of observers for the state reconstruction of linear dynamical systems [11] and the
observers has come to take that pride of place in the control system design. For linear
systems, the corresponding theory was quite established for several years now [15] and
large amount of knowledge on designing nonlinear observers and Kalman filters has
been accumulated through the literature [1], [17], too. The problem of observer design
naturally arise with application of the internal system information obtained from the
external measurements, where this need is motivated by many new application purposes,
like system monitoring [2], and the control system fault detection [4], [8].

In recent years, linear matrix inequalities (LMI’s) have emerged as a powerful tool
to approach problems that appear hard if not impossible to solve in an analytical man-
ner [13], [19]. Boosted by the availability of LMI solvers ( [6], [16]), the intention is to
reformulate a given problem using sets of LMIs and to optimize functionals over LMI
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constraints considering LMI variables. These methods lead to an efficient numerical so-
lution and are particularly suited to problems with uncertain data and multiple (possibly
conflicting) specifications.

Linear matrix inequalities (LMI) are now effectively used for synthesis of such
controllers that stabilize given systems. Various variants of statements of such prob-
lems, including requirements of parameter optimization, can be met in the literature, e.g.
in [3], [12], [18].

In this paper the problem of the estimator matrix parameter design for the output li-
mited and the input variable constrained state feedback control is translated into the LMI
framework as the extension of idea presented in [10] and solved through the unified al-
gebraic technique to find the controller and estimator gain matrices. The set of the linear
matrix inequalities is outlined to possess the necessary conditions for the control para-
meter design in given estimator-based control structure. The used principle combines the
unified algebraic approach and the standard convex-optimization-based LMI algorithms
in such a way, that the stable control structure is obtained by solving LMIs which reflect
given input variables constraint conditions.

2. Problem Description

2.1. System Model

Systems under consideration are linear dynamic MIMO systems, represented by the
set of the state-space equations

q̇qq(t) = AAAqqq(t)+ BBBuuu(t) (1)

yyy(t) = CCCqqq(t) (2)

qqq(t) ∈ IRn, uuu(t) ∈ IRr,yyy(t) ∈ IRm are system state, input and output vectors, respectively,
and AAA ∈ IRn×n, BBB ∈ IRn×r, CCC ∈ IRm×n are real matrices. Problem of interest is to design an
asymptotically stable closed loop system with the linear memory-less, and in all inputs
constrained state feed-back controller of the form

uuu(t) = −KKKqqqe(t) (3)

|uh(t)|� uhm, h = 1,2, . . . ,r (4)

where qqqe(t) ∈ IRn is an estimate of the system state vector, uhm ∈ IR is the h-th input
constraint, and KKK ∈ IRr×n is the feedback controller gain matrix.

To allow the stabilization of (1), (2) using output variable measurement only, the
system is extended by Luenberger estimator of the form

q̇qqe(t) = AAAqqqe(t)+ BBBuuu(t)+ JJJ(yyy(t)− yyye(t)) (5)

yyye(t) = CCCqqqe(t) (6)
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where JJJ ∈ IRn×m is the estimator gain matrix.
Since this formulation under constrained inputs is generally non-convex, using the

separability principle the design task will be realized in the two steps. At first a state
controller without estimator is solved in the form

uuu(t) = −KKKqqq(t) (7)

|uh(t)|� uhm, h = 1,2, . . . ,r (8)

and at the second the estimator is designed to solve the problem of state estimation for
the given controller gain matrix.

2.2. Basic Preliminaries

Definition 1 (Null space) Let EEE, EEE ∈ IRh×h, rank(EEE) = k < h be a rank deficient matrix.
Then the null space NEEE of EEE is the orthogonal complement of the row space of EEE.

Lemma 1 (Orthogonal complement) Let EEE, EEE ∈ IRh×h, rank(EEE) = k < h be a rank defi-
cient matrix. Then an orthogonal complement EEE⊥ of EEE is

EEE⊥ = DDDUUUT
2 (9)

where UUUT
2 is the null space of EEE and DDD is an arbitrary matrix of appropriate dimension.

Proof. (e.g. see [5], [14]) The singular value decomposition (SVD) of EEE, EEE ∈ IRh×h,
rank(EEE) = k < h gives

UUUT EEEVVV =

[
UUUT

1

UUUT
2

]
EEE
[

VVV 1 VVV 2

]
=

[
ΣΣΣ1 00012

00021 00022

]
(10)

where UUUT ∈ IRh×h is the orthogonal matrix of the left singular vectors, VVV ∈ IRh×h is
the orthogonal matrix of the right singular vectors of EEE and ΣΣΣ1 ∈ IRk×k is the diagonal
positive definite matrix of the form

ΣΣΣ1 =

⎡
⎢⎢⎣

σ1

. . .

σk

⎤
⎥⎥⎦ , σ1 � · · ·� σk > 0 (11)

which diagonal elements are the singular values of EEE. Using orthogonal properties of UUU
and VVV , i.e. UUUTUUU = IIIh, as well as VVV TVVV = IIIh, and[

UUUT
1

UUUT
2

][
UUU1 UUU2

]
=

[
III1 000

000 III2

]
, UUUT

2 UUU1 = 000 (12)
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respectively, where III(·) is the identity matrix of appropriate dimension, then EEE can be
written as

EEE = UUUΣΣΣVVV T =
[

UUU1 UUU2

][ ΣΣΣ1 00012

00021 00022

][
VVV T

1

VVV T
2

]
=
[

UUU1 UUU2

][ SSS1

0002

]
= UUU1SSS1

(13)
where SSS1 = ΣΣΣ1VVV T

1 . Thus, (12) and (13) implies

UUUT
2 EEE = UUUT

2

[
UUU1 UUU2

][ SSS1

0002

]
= 000. (14)

It is evident that for an arbitrary matrix DDD is

DDDUUUT
2 EEE = EEE⊥EEE = 000 (15)

EEE⊥ = DDDUUUT
2 (16)

respectively, which implies (9).

Lemma 2 (Schur Complement) Considering matrices QQQ = QQQT , RRR = RRRT , SSS of appropriate
dimensions where detRRR �= 0, then the following statements are equivalent:[

QQQ SSS

SSST −RRR

]
< 0 ⇔

[
QQQ+ SSSRRR−1SSST 000

000 −RRR

]
< 0 ⇔ QQQ+ SSSRRR−1SSST < 0, RRR > 0. (17)

Proof. (e.g. see [3], [9]) Let the linear matrix inequality takes form[
QQQ SSS

SSST −RRR

]
< 0. (18)

Thus, using Gauss elimination it yields[
III SSSRRR−1

000 III

][
QQQ SSS

SSST −RRR

][
III 000

RRR−1SSST III

]
=

[
QQQ+ SSSRRR−1SSST 000

000 −RRR

]
(19)

where III is the identity matrix of appropriate dimension. Since

det

[
III SSSRRR−1

000 III

]
= 1 (20)

given transformation doesn’t change the negativity of (18), i.e. yields (17).
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3. State feedback controller design

Theorem 1 The system (1), (2) under control law (3), constrained in the input variables
and limited in the output is stable if there exist scalar γ > 0 and matrices YYY = YYY T > 0,
XXX such that [

YYY AAAT + AAAYYY −BBBXXX −XXXT BBBT YYYCCCT

∗ −γIIIm

]
< 0 (21)

[
YYY XXXT

∗ MMMr

]
> 0 (22)

where
XXX = KKKYYY (23)

IIIm ∈ IRm×m is the identity matrix and MMMr ∈ IRr×r is a slack matrix which diagonal ele-
ments are squares of the input variables constraints.

Hereafter, ∗ denotes the symmetric item in a symmetric matrix.
Proof. Since there is given limit on the output, Lyapunov function can be chosen as
follows

v(qqq(t)) = qqqT (t)PPPqqq(t)+
t∫

0

γ−1yyyT (r)yyy(r)dr > 0 (24)

and γ > 0, PPP = PPPT > 0, PPP ∈ IRn×n. Evaluating derivative of v(qqq(t) with respect to t it can
be obtained

v̇(qqq(t)) = q̇qqT (t)PPPqqq(t)+ qqqT (t)PPPq̇qq(t)+ γ−1yyyT (t)yyy(t)− γ−1yyyT (0)yyy(0) < 0. (25)

Then the substitution of (1), (2), and (7) in (25) gives result

v̇(qqq(t)) = −γ−1qqqT (0)CCCTCCCqqq(0)+

+qqqT (t)(AAAT PPP+ PPPAAA−PPPBBBKKK−KKKT BBBT PPP)qqq(t)+ γ−1qqqT (t)CCCTCCCqqq(t) < 0.
(26)

The design problem can be cast as a convex optimization problem. Therefore, (26) is
guarantied to be fulfilled if the matrix inequality

AAAT PPP+ PPPAAA−PPPBBBKKK−KKKT BBBT PPP+ γ−1CCCTCCC < 0 (27)

is satisfied. Pre-multiplying left-hand side and right-hand side of (27) by PPP−1 results in

PPP−1AAAT + AAAPPP−1−BBBKKKPPP−1−PPP−1KKKT BBBT + γ−1PPP−1CCCTCCCPPP−1 < 0. (28)

Thus, using (17) it is [
YYY AAAT + AAAYYY −BBBXXX −XXXT BBBT YYYCCCT

∗ −γIIIm

]
< 0 (29)
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where
YYY = PPP−1, XXX = KKKYYY (30)

which implies (21).
Since the input constraint inequalities given in (8) can be reformulated as

‖KKKqqq(t)‖2 = ‖XXXPPPqqq(t)‖2 = uuuT (t)uuu(t)� uuuT
muuum (31)

where ‖ · ‖ denotes any vector norm, then using Frobenius norm (31) implies

qqqT (t)PPPXXXT XXXPPPqqq(t)� uuuT
muuum = η (32)

qqqT (t)PPP
1
2 PPP

1
2 XXXT XXXPPP

1
2 PPP

1
2 qqq(t)� η (33)

respectively, where η = uuuT
muuum. Setting

PPP
1
2 XXXT XXXPPP

1
2 � ηIII (34)

inequality (33) gives the Lyapunov function limit

qqqT (t)PPPqqq(t)� 1 (35)

and, using Schur complement property, (34) can be rewritten in a closed form as follows

XXXT η−1IIIXXX � PPP−1 = YYY (36)[
YYY XXXT

XXX ηIII

]
=

[
YYY XXXT

XXX uuuT
muuumIII

]
� 0 (37)

respectively. An open form of (37) one can obtained using property

uuuT
muuumIII = trace (uuum uuuT

m)III � uuumuuuT
m = MMMr. (38)

Hence, this implies (22).
Using solutions γ > 0, YYY > 0 and XXX of this problem, defined by inequalities (21),

(22), the controller gain matrix can be found as KKK = XXXYYY−1. This concludes the proof.

4. Estimator Gain Design

Theorem 2 Let AAA, BBB, MMMr be given and let KKK and γ be obtained from (21), (22), (23). Then
the controlled system with an estimator which is limited in the output and constrained in
the input variables is stable if there exist matrices SSS > 0, VVV > 0, and ZZZ such that it yields[

SSS(AAA−BBBKKK)+ (AAA−BBBKKK)T SSS+ γ−1CCCTCCC SSSBBBKKK

∗ VVVAAA+ AAATVVV −ZZZCCC−CCCT ZZZT

]
< 0 (39)
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⎡
⎢⎣

SSS 000 KKKT

∗ VVV −KKKT

∗ ∗ MMMr

⎤
⎥⎦> 0 (40)

where
ZZZ = VVV JJJ. (41)

Proof Assembling (1), (2) with (5), (6) gives[
q̇qq(t)
q̇qqe(t)

]
=

[
AAA −BBBKKK

JJJCCC AAA− JJJCCC−BBBKKK

][
qqq(t)
qqqe(t)

]
. (42)

Defining the estimation error vector

eee(t) = qqq(t)−qqqe(t) (43)

and the congruence transform matrix

TTT = TTT−1 =

[
III 000

III −III

]
(44)

then multiplying right-hand side as well as left-hand side of (42) by (44) results in[
q̇qq(t)
ėee(t)

]
=

[
AAA−BBBKKK BBBKKK

000 AAA− JJJCCC

][
qqq(t)
eee(t)

]
(45)

q̇qq•(t) = AAA•qqq•(t) (46)

respectively, where

AAA• =

[
AAA−BBBKKK BBBKKK

000 AAA− JJJCCC

]
, qqq•(t) =

[
qqq(t)
eee(t)

]
. (47)

Using this extended vector variable qqq•(t) and defining the partitioned matrix

PPP• = PPP•T =

[
SSS WWW

WWW T VVV

]
> 0 (48)

then for Lyapunov function of the form

v(qqq•(t) = qqq•T (t)PPP•qqq•(t) > 0 (49)

it can be easily obtained that the derivative of (49) is

v̇(qqq•(t)) = qqq•T (t)(AAA•T PPP• + PPP•AAA•)qqq•(t) < 0. (50)



12 A. FILASOVÁ, D. KROKAVEC

With the same output constraints as were defined in (8) the equivalent form of Lyapunov
function derivative is

v̇(qqq•(t) = qqq•T (t)(AAA•TPPP• + PPP•AAA•)qqq•(t)+ γ−1yyyT (t)yyy(t)− γ−1yyyT (0)yyy(0) < 0. (51)

Since the generalized weighting matrix PPP� can be rewritten as follows

PPP� = AAA•T PPP• + PPP•AAA• = (AAA•T
1 + AAA•T

2 )PPP• + PPP•(AAA•
1 + AAA•

2)+ PPP•
Y < 0 (52)

where

AAA•
1 =

[
AAA−BBBKKK BBBKKK

000 AAA

]
, AAA•

2 =

[
000 000

000 −JJJCCC

]
, PPP•

Y =

[
γ−1CCCTCCC 000

000 000

]
(53)

respectively, then it can be obtained

PPP•AAA•
2 + AAA•T

2 PPP• = −
[

000 WWW JJJCCC

CCCT JJJTWWW T VVVJJJCCC +CCCT JJJTVVV

]
. (54)

Structure of (50) with (54) cannot be written as an LMI and the substitution taking form
(29) cannot be used, since additive rank constraint renders the optimization problem
non-convex. One way to solve this problem is based on the degenerative structure of PPP,
where

WWW = 000, ZZZ = VVV JJJ. (55)

Therefore,

PPP•AAA•
2 + AAA•T

2 PPP• = −
[

000 000

000 ZZZCCC +CCCT ZZZT

]
(56)

PPP•AAA•
1 + AAA•T

1 PPP• =

[
SSS(AAA−BBBKKK)+ (AAA−BBBKKK)T SSS SSSBBBKKK

KKKT BBBT SSS VVV AAA+ AAATVVV

]
(57)

and (50) can be rewritten as

v̇(qqq•(t))� qqq•T (t)PPP�qqq•(t) < 0 (58)

where weighting matrix given in (50) takes form (39).
It is evident, that the input constraints have to be included in the estimator parameter

design, too. Writing (3) with (44) as follows

uuu(t) = −KKK
(
qqq(t)− eee(t)

)
= −

[
KKK −KKK

]
qqq•(t) = −KKK•qqq•(t) (59)

then it is possible to consider

‖KKK•qqq•(t)‖2 = uuuT (t)uuu(t)� uuuT
muuum (60)
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and to obtain
qqq•T (t)PPP• 1

2 PPP•− 1
2 KKK•T KKK•PPP•− 1

2 PPP• 1
2 qqq•(t)� η (61)

where
KKK• =

[
KKK −KKK

]
, η = uuuT

muuum. (62)

Setting
PPP•− 1

2 KKK•T KKK•PPP•− 1
2 � ηIII2n (63)

inequality (61) gives the Lyapunov function limit

qqq•T (t)PPP•qqq•(t)� 1. (64)

Using Schur complement property (63) can now be rewritten in the closed form as fol-
lows

KKK•T η−1KKK• � PPP• (65)[
PPP• KKK•T

KKK• ηIIIr

]
=

[
PPP• KKK•T

KKK• uuuT
muuumIIIr

]
� 0 (66)

[
PPP• KKK•T

KKK• MMMr

]
� 0 (67)

respectively, which implies (40). This concludes the proof.

Using the solutions VVV , ZZZ of (39) and (40) the estimator gain matrix can be found as
JJJ = VVV−1ZZZ.

Theorem 3 (Unified algebraic approach) Let AAA, BBB, MMMr are given and let KKK and γ are
obtained from (21), (22), (23). Then the controlled system with an estimator which is
limited in the output and constrained in the input variables is stable if there exist matrices
SSS > 0, VVV > 0 such that[

000

CCCT

]⊥[
SSS(AAA−BBBKKK)+ (AAA−BBBKKK)T SSS+ γ−1CCCTCCC SSSBBBKKK

∗ VVVAAA+ AAATVVV

][
000

CCCT

]⊥T

< 0 (68)

⎡
⎢⎣

SSS 000 KKKT

∗ VVV −KKKT

∗ ∗ MMMr

⎤
⎥⎦> 0. (69)

Then the estimator gain matrix exists if for obtained SSS, VVV there exist symmetric matrices
RRR > 0, NNN > 0 such that it yields[

−FFFRRRFFFT −HHH FFFRRR+ GGGT LLLT

∗ −RRR

]
< 0 (70)
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where

FFF =

[
000

CCCT

]
, LLLT =

[
000

−JJJ

]
, GGG =

[
SSS 000

000 VVV

]
(71)

HHH = NNN −
[

SSS(AAA−BBBKKK)+ (AAA−BBBKKK)T SSS + γ−1CCCTCCC SSSBBBKKK

∗ VVV AAA+ AAATVVV

]
< 0. (72)

Proof. Now inequality (57) can be partitioned as follows[
SSS(AAA−BBBKKK)+ (AAA−BBBKKK)T SSS + γ−1CCCTCCC SSSBBBKKK

KKKT BBBT SSS VVV AAA+ AAATVVV

]
+

+

[
000

CCCT

][
000 −JJJT

][ SSS 000

000 VVV

]
+

[
SSS 000

000 VVV

][
000

−JJJ

][
000 CCC

]
< 0.

(73)

Using the orthogonal complement

CCC•T⊥ =

[
000

CCCT

]⊥
(74)

then pre-multiplying left-hand side of (73) by (74), and right-hand side of (73) by the
transposition of (74) leads to the inequality[

000

CCCT

]⊥[
SSS(AAA−BBBKKK)+ (AAA−BBBKKK)T SSS + γ−1CCCTCCC SSSBBBKKK

KKKT BBBT SSS VVV AAA+ AAATVVV

][
000

CCCT

]⊥T

< 0. (75)

In the sense of (73) one can set

FFFLLLGGG+ GGGT LLLT FFFT −HHH < −NNN (76)

where NNN = NNNT > 0,

FFF =

[
000

CCCT

]
, LLLT =

[
000

−JJJ

]
, GGG =

[
SSS 000

000 VVV

]
(77)

HHH = NNN −
[

SSS(AAA−BBBKKK)+ (AAA−BBBKKK)T SSS + γ−1CCCTCCC SSSBBBKKK

KKKT BBBT SSS VVV AAA+ AAATVVV

]
< 0. (78)

Then there exists a matrix RRR > 0 such, that

FFFLLLGGG+ GGGT LLLT FFFT −HHH + GGGT LLLT RRR−1LLLGGG < 0. (79)

After completing the square it can be obtained

(FFFRRR+ GGGT LLLT )RRR−1(FFFRRR+ GGGT LLLT )T −FFFRRRFFFT −HHH < 0 (80)
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and any solution LLL of (80) exists if there exist symmetric positive definite matrices RRR > 0,
NNN > 0 such that the LMI[

−FFFRRRFFFT −HHH FFFRRR+ GGGT LLLT

∗ −RRR

]
< 0 (81)

is satisfied. This concludes the proof.

Specially it is possible to define (74) as follows

CCC•T⊥ =

[
000

CCCT

]⊥
=
[

CCCT⊥ CCCT⊥
]
. (82)

Then (75) implies

CCCT⊥(SSS(AAA+ AAAT )SSS +VVV (AAA+ AAAT )VVV )CCCT⊥T < 0 (83)

which gives the condition
SSS = VVV . (84)

These can be formulated as the corollary.

Corollary 1 (Separability principle) Let AAA, BBB, MMMr be given, and let KKK and γ are obtained
from (21), (22), (23). Then the controlled system with an estimator which is limited in
the output and constrained in the input variables is stable if there exists a matrix SSS > 0
such that

CCCT⊥SSS(AAA+ AAAT )SSSCCCT⊥T < 0 (85)⎡
⎢⎣

SSS 000 KKKT

∗ SSS −KKKT

∗ ∗ MMMr

⎤
⎥⎦> 0. (86)

Then the estimator gain matrix exists if for obtained SSS there exist symmetric matrices
RRR > 0, NNN > 0 such that it yields (70) through (72) with GGG = diag[SSS SSS].

Knowing once LLL one can obtain JJJ.

5. Illustrative example

The system was given by (1), (2), where

AAA =

⎡
⎢⎣

0 1 0

0 0 1

−5 −9 −5

⎤
⎥⎦ , BBB =

⎡
⎢⎣

0 0

1 1

1 0

⎤
⎥⎦ , CCCT =

⎡
⎢⎣

1 1

2 1

1 0

⎤
⎥⎦ , uuuT

m =

[
0.5

0.01

]
.
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Solving (21), (22) for LMI matrix variables γ > 0, YYY > 0, XXX using SeDuMi (Self-Dual-
Minimization) package for Matlab [16] the feedback gain matrix design was feasible
with

γ = 0.4725

YYY =

⎡
⎢⎣

0.3045 −0.1586 −0.0595

−0.1586 0.1981 −0.1090

−0.0595 −0.1090 0.3355

⎤
⎥⎦ , XXX =

[
0.0448 0.0670 −0.1316

0.0009 0.0013 −0.0026

]

to give the design parameter as follows

KKK =

[
0.4838 0.6784 −0.0861

0.0097 0.0136 −0.0017

]

ρ(AAA−BBBKKK) = {−0.7903, −2.4078± i2.1951}.
It is evident, that the eigenvalues spectrum of the closed control loop is stable.

Now solving (85), (86) it was obtained

SSS = VVV =

⎡
⎢⎣

6.3661 2.9359 0.4581

2.9359 9.5564 0.5212

0.4581 0.5212 1.0022

⎤
⎥⎦ .

Constructing (72) for γ, KKK, SSS, VVV , and NNN = 5III2n, and solving inequality (70) as the feasible
problem with RRR = 0.1 III these results were found immediately

LLLT =

[
0 0 0 −0.0024 −0.0152 −0.0896

0 0 0 −0.0134 −0.0068 0.0093

]

JJJT =

[
−0.0024 −0.0152 −0.0896

−0.0134 −0.0068 0.0093

]

ρ(AAA− JJJCCC) = {−1.0000, −1.9287± i1.0567}.
It can be seeing that the state estimator is stable, too.

6. Concluding remarks

The paper presents one new method to design the state estimator parameters for
known controller gain matrix and the prescribed input variables constraints. The method
is based on the unified algebraic approach using LMI principle and can easily be modi-
fied for the discrete-time system models.
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