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Robust output predictive sequential controller design

VOJTECH VESELÝ and DANICA ROSINOVÁ

The paper addresses design problem of a robust parameter dependent quadratically stabi-
lizing output/state feedback model predictive control for linear polytopic systems without con-
straints using original sequential approach. The design procedure ensures stability, robustness
properties and guaranteed cost for the closed-loop uncertain system.

Key words: model predictive control, robust control, parameter dependent quadratic sta-
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1. Introduction

Model predictive control (MPC) has attracted notable attention in control of dynamic
systems in the recent two decades. The idea of MPC can be summarized as follows, ([3],
[11], [20]):

• Predict the future behavior of the process state/output over the finite time horizon.

• Compute the future input signals on line at each step by minimizing a cost func-
tion under inequality constraints on the manipulated (control) and/or controlled
variables horizon.

• Apply on the controlled plant only the first element of vector control variable and
repeat the previous steps with new measured input/state/output variables.

The presence of the plant model is therefore a necessary condition for the development
of the predictive control. The success of MPC depends on the degree of precision of
the plant model. Two typical description of model uncertainty, state space polytope
and bounded unstructured uncertainty, are extensively considered in the field of robust
model predictive control. Most of existing techniques for the robust MPC assume
measurable state, and apply plant state feedback or, if the state estimator is utilized then
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the output feedback is applied. Some results in the field of the robust MPC design can
be summarized as follows:

Analysis of robustness properties of MPC.
For single-input and single-output (SISO) systems and impulse response model

Zafiriou and Marchal [23] have used the contraction properties of MPC to develop
necessary-sufficient conditions for robust stability of MPC with input and output con-
straints. Polak and Yang [16] have analyzed robust stability of MPC using a contraction
constraint on the state.

MPC with explicit uncertainty description.
For SISO finite impulse response (FIR) plants Zheng and Morari [25] have presented

robust MPC schemes with uncertainty bounds on the impulse response coefficients.
Some MPC approaches consider additive type of uncertainty, as de la Pena et al. in [15]
or parametric (structured) type uncertainty using CARIMA model and linear matrix
inequality, as Bouzouita et al. in [2]. In Wang et al. [24] generalized predictive control
(GPC) design technique is used for multi-input and multi-output (MIMO) uncertain
system. In Lovas et al. [10] the unstructured uncertainty is used for open-loop stable
systems with input constraints. The robust stability can be established by choosing the
large value for the control input weighting matrix R in the cost function. The authors
have proposed a new less conservative stability test for determining a sufficiently
large control penalty R using bilinear matrix inequality (BMI). The other technique
constrained tightening to design of the robust MPC have been proposed by Kuwata
et al. [9]. The above approaches are based on idea of increasing the robustness of the
control system by tightening the constraints on the predicted states.

The mixed H2/H∞ control approach.
This design method has been proposed by Orukpe et al. [13].

Robust constrained MPC using linear matrix inequality (LMI).
LMI have been proposed by Kothare et al. [8]. Here, the polytopic model or

structured feedback uncertainty model have been used. The main idea is using infinite
control horizon laws which for state feedback guarantees robust stability. In Ding et
al. [7] output feedback robust MPC for systems with both polytopic and bounded
uncertainty with input/state constraints is presented. In an off-line stage a sequence
of output feedback laws based on the state estimators is calculated, by solving LMI
optimization problem. in an on-line stage, at each sampling time, an appropriate output
feedback law from this sequence is chosen. Robust MPC design with one step ahead
prediction is proposed in Veselý and Rosinová [21]. An extension of two degree of
generalized predictive control for multivariable systems is proposed in Yanou et al. [22].

In this paper a new MPC algorithm is proposed pursuing the idea of Veselý and Rosi-
nová [21]. Proposed robust MPC control algorithm is designed sequentially. Note that
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within sequentially design procedure the degree of plant model does not change when the
output prediction horizon changes. The proposed sequential robust MPC design proce-
dure consists of two steps: In the first step and one step ahead prediction horizon the ne-
cessary and sufficient robust stability conditions have been developed for MPC and poly-
topic system with output feedback using generalized parameter dependent Lyapunov ma-
trix P(α). The proposed robust MPC algorithm ensures parameter dependent quadratic
stability (PDQS) and guaranteed cost. In the second step of design procedure the nomi-
nal plant model is used to design the predicted input variables u(t +1), . . . ,u(t + N −1)
so that the robust closed-loop stability of MPC and guaranteed cost are ensured. Thus,
input variable u(t) guarantees the performance and robustness properties of the closed-
loop system and predicted input variables u(t +1), . . . ,u(t +N−1) guarantee the perfor-
mance and closed-loop stability of uncertain plant model and nominal model prediction.

The paper is organized as follows: Section 2 presents preliminaries and problem for-
mulation. In Section 3 the main results are given and finally, in Section 4 two examples
using Yalmip BMI solvers show the effectiveness of the proposed method.

Hereafter, the following notational conventions will be adopted: given a symmetric
matrix P = PT ∈ Rn×n, the inequality P > 0,(P� 0) denotes matrix positive definiteness
(semi-definiteness). Given two symmetric matrices P, Q, the inequality P > Q indicates
that P− Q > 0. The notation x(t + k) will be used to define at time t k-steps ahead
prediction of a system variable x from time t onwards under specified initial state and
input scenario. That is estimated predicted output at time k = 1,2, . . . y(t + k|t) will be
denoted as y(t + k). I denotes the identity matrix of the corresponding dimensions.

2. Problem formulation and preliminaries

Consider a time invariant linear discrete-time uncertain polytopic system

x(t +1) = A(α)x(t)+ B(α)u(t)
(1)

y(t) = Cx(t)

where x(t)∈ Rn,u(t)∈ Rm,y(t)∈ Rl are state, control and output variables of the system,
respectively; A(α),B(α) belong to the convex set

S = {A(α) ∈ Rn×n,B(α) ∈ Rn×m}

{A(α) =
M

∑
j=1

A jα j B(α) =
M

∑
j=1

B jα j,α j � 0} (2)

j = 1,2, . . . ,M,
M

∑
j=1

α j = 1.
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Matrix C is known matrix of corresponding dimension. Jointly with the system (1), the
following nominal plant model will be used

x(t +1) = Anx(t)+ Bnu(t)
(3)

y(t) = Cx(t)

where (An,Bn) ∈ S are any matrices with constant entries.
The problem studied in this paper is summarized as follows: in the first step, pa-

rameter dependent quadratic stability conditions for output feedback and one step ahead
robust model predictive control are derived for the polytopic system. The control algo-
rithm is assumed to be given in the following form:

u(t) = F11y(t)+ F12y(t +1). (4)

In the second step of the design procedure, the nominal model and a given prediction
horizon N is considered. The model predictive control is designed in the form:

u(t + k−1) = Fkky(t + k−1)+ Fkk+1y(t + k) (5)

where Fki ∈ Rm×l, k = 2,3, . . . ,N, i = k + 1 is the output (state) feedback gain matrices
to be determined so that the cost function given below is optimal with respect to the
system variables. We would like to stress that y(t + k−1),y(t +1) are predicted outputs
obtained from predictive model (12).

Substituting control algorithm (4) to (3) we obtain

x(t +1) = D1( j)x(t) (6)

where

D1( j) = A j + B jK1( j)

K1( j) = (I −F12CB j)−1(F11C + F12CA j), j = 1,2, . . . ,M.

For the first step of design procedure, the cost function to be minimized is given as
follows:

J1 =
∞

∑
t=0

J1(t) (7)

where
J1(t) = x(t)T Q1x(t)+ u(t)T R1u(t)

and Q1, R1 are positive definite matrices of the corresponding dimensions. For the case
of k = 2 we obtain

u(t +1) = F22CD1( j)x(t)+ F23C(AnD1( j)x(t)+ Bnu(t +1))
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or
u(t +1) = K2( j)x(t)

and closed-loop system

x(t +2) = (AnD1( j)+ BnK2( j))x(t) = D2( j)x(t), j = 1,2, . . . ,M.

Sequentially, for the case k-step ahead prediction (k = N � 2), we obtain the following
closed-loop system

x(t + k) = (AnDk−1( j)+ BnKk( j))x(t) = Dk( j)x(t) (8)

where

D0 = I

Dk( j) = AnDk−1( j)+ BnKk( j)
Kk( j) = (I−Fkk+1CBn)−1(FkkC + Fkk+1CAn)Dk−1( j)

k = 2,3, . . . ,N, j = 1,2, . . . ,M.

For the second step of the robust MPC design procedure and k prediction horizon the
cost function to be minimized is given as follows:

Jk =
∞

∑
t=0

Jk(t) (9)

where
Jk(t) = x(t)T Qkx(t)+ u(t + k−1)T Rku(t + k−1)

and Qk,Rk,k = 2,3, . . . ,N are positive definite matrices of the corresponding dimen-
sions. We proceed with following two lemmas and definition.

Lemma 1 The closed-loop system matrix of discrete-time system (1) is robustly stable
if and only if there exists a symmetric positive definite parameter dependent Lyapunov
matrix 0 < P(α) = P(α)T < Iρ such that

−P(α)+ D1(α)T P(α)D1(α)� 0 (10)

where D1(α) is the closed-loop polytopic system matrix for system (1).

Definition 1 Consider the system (1). If there exists a control algorithm u(t)∗ and a
positive scalar J∗1 such that the closed-loop system (1) with (4) is stable and closed-loop
value of cost function (7) satisfies J1 � J∗1 , then J∗1 is said to be guaranteed cost and
u(t)∗ is said to be guaranteed cost control law for the system (1).
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The necessary and sufficient robust stability condition for closed-loop polytopic
system with guaranteed cost is given by recent result (Rosinová et al. [19]).

Lemma 2 Consider the system (1) with control algorithm (4). The control algorithm (4)
is the guaranteed cost control law for the closed-loop system if and only if the following
condition holds

Be = D1(α)T P(α)D1(α)−P(α)+ Q1 +
(11)

(F11C + F12CD1(α))T R1(F11C + F12CD1(α)) � 0.

For the nominal model and k = 1,2, . . . ,N the model prediction can be obtained in
the form

z(t +1) = Af z(t)+ Bf v(t)
(12)

y f (t) = Cf z(t)

where

z(t)T = [x(t)T , . . . ,x(t + N−1)T ]
v(t)T = [u(t)T , . . . ,u(t + N−1)T ]

y f (t)T = [y(t)T , . . . ,y(t + N−1)T ]

A f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

An 0 0 . . . 0

AnD1 0 0 . . . 0

AnD2 0 0 . . . 0
...

...
...

. . .
...

AnDN−1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ RnN×nN

B f = blockdiag{B}nN×mN

Cf = blockdiag{C}lN×nN .

Remarks

• Control algorithm for k = N is u(t + N−1) = FNNy(t + N−1).

• If one wants to use the control horizon Nu < N [3], the control algorithm u(t +k−
1) = 0, Kk = 0, FNu+1Nu+1 = 0, FNu+1Nu+2 = 0 for k > Nu.

• Note that model prediction (12) is calculated using nominal model (3), that is
D0 = I, Dk = AnDk−1 + BnKk, Dk( j) is used for robust controller design.
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3. Main results

3.1. Robust MPC controller design – first step

The main results of this paper for the first step of design procedure can be summa-
rized in the following theorem.

Theorem 1 The system (1) with control algorithm (4) is parameter dependent quadra-
tically stable with parameter dependent Lyapunov function V (t) = x(t)T P(α)x(t) if and
only if there exit matrices N11, N12 and F11,F12 such that the following bilinear matrix
inequality holds:

Be =

[
G11 G12

GT
12 G22

]
� 0 (13)

where

G22 = NT
12Ac(α)+ Ac(α)T N12 −P(α)+ Q1 +CT FT

11R1F11C

GT
12 = Ac(α)T N11 + NT

12Mc(α)+CT FT
11R1F12C

G11 = NT
22Mc(α)+ Mc(α)T N22 +CT FT

12R1F12C + P(α)
Mc(α) = B(α)F12C− I

Ac(α) = A(α)+ B(α)F11C.

Note that (13) is affine with respect to α. Substituting (2) and P(α) =∑M
i=1 αiPi to

(13) for the polytopic system the following BMI is obtained

Bie =

[
G11i G12i

GT
12i G22i

]
� 0 i = 1,2, . . . ,M (14)

where

G11i = NT
22Mci + MT

ciN22 +CT FT
12R1F12C + Pi

GT
12i = AT

ciN22 + NT
12Mci +CT FT

11R1F12C

G22i = NT
12Aci + AT

ciN12−Pi + Q1 +CT FT
11R1F11C

Mci = BiF2C− I

Aci = Ai + BiF1C.

Proof. For the proof of this theorem see the proof of theorem 2.

If the solution of (14) is feasible with respect to symmetric matrices Pi = PT
i > 0,

i = 1,2, . . . ,M, and matrices N11, N12, within the convex set defined by (2) then the gain
matrices F11, F12 ensure the guaranteed cost and parameter dependent quadratic stability
(PDQS) of the closed-loop polytopic system for one step ahead predictive control.
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Note that:

• For concrete matrix P(α) = ∑M
i=1 αiPi BMI robust stability conditions ‘if and only

if’ in (13) reduces in (14) to BMI conditions ‘if’.

• If in (14) Pi = Pj = P, i = j = 1,2, . . . ,M then the feasible solution of (14) with
respect to matrices N11,N12, symmetric positive definite matrix P and the gain ma-
trices F11,F12 guarantee quadratic stability and guaranteed cost for one step ahead
predictive control closed-loop polytopic system within the convex set defined by
(2). Quadratic stability gives more conservative results than PDQS. Conservatism
of real results depends on the concrete examples.

Assume that the BMI solution of (14) is feasible, then for nominal plant one can calculate
the matrices D1 and K1 using (6). For second step of MPC design procedure, the obtained
nominal model will be used.

3.2. Model predictive controller design – second step

The aim of the second step of predictive control design procedure is to design
gain matrices Fkk, Fkk+1, k = 2,3, . . . ,N such that the closed-loop system with nominal
model is stable with guaranteed cost. In order to design model predictive controller with
output feedback in the second step of design procedure we proceed with the following
corollary and theorem.

Corollary (Lemma 2) The closed-loop system (8) or rewritten as (17) is stable with
guaranteed cost iff the following inequality holds

Bek(t) = ΔVk(t)+ x(t)T Qkx(t)+ u(t + k−1)T Rku(t + k−1)� 0 (15)

where ΔVk(t) = Vk(t + k)−Vk(t) and Vk(t) = x(t)T Pkx(t), Pk = PT
k > 0, k = 2,3, . . . ,N.

Theorem 2 The closed-loop system (8) is stable with guaranteed cost iff for k =
2,3, . . . ,N there exist matrices

Fkk, Fkk+1, Nk1 ∈ Rn×n, Nk2 ∈ Rn×n

and positive definite matrix Pk = PT
k ∈ Rn×n such that the following bilinear matrix in-

equality holds

Be2 =

[
Gk11 Gk12

GT
k12 Gk22

]
� 0 (16)

where

Gk11 = NT
k1Mck + MT

ckNk1 +CT FT
kk+1RkFkk+1C + Pk

GT
k12 = Dk−1( j)TCT FT

kkRkFkk+1C + Dk−1( j)T AT
ckNk1 + NT

k2Mck
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Gk22 = Qk −Pk + Dk−1( j)TCT FT
kkRkFkkCDk−1( j)+ NT

k2AckDk−1( j)+ Dk−1( j)T AT
ckNk2

and

Mck = BnFkk+1C− I

Ack = An + BnFkkC

Dk( j) = AnDk−1( j)+ BnKk( j)
Kk( j) = (I −Fkk+1CBn)−1(FkkC + Fkk+1CAn)Dk−1( j), j = 1,2, . . . ,M.

Proof. Sufficiency.
The closed-loop system (8) can be rewritten as follows

x(t + k) = −(Mck)−1AckDk−1( j)x(t) = Aclkx(t). (17)

Because the matrix ( j is omitted)

UT
k = [−DT

k−1AT
ck(Mck)−1 I]

has full row rank, multiplying from the left and right hand side of (16) the inequality
equivalent to (16) is obtained. Multiplying the results from left by x(t)T and right by
x(t), taking into account the closed-loop matrix (17) the inequality (15) is obtained,
which proves the sufficiency.

Necessity.
Suppose that for k-step ahead model predictive control there exists such matrix 0 < Pk =
PT

k < Iρ that (15) holds. Necessary, there exists a scalar β > 0 such that for the first
difference of Lyapunov function (15) holds the following

AT
clkPkAclk −Pk �−β(AT

clkAclk). (18)

Inequality (18) can be rewritten as follows

AT
clk(Pk + βI)Aclk −Pk � 0.

Using Schur complement formula one obtains[
−Pk −AT

clk(Pk + βI)
(Pk + βI)Aclk −(Pk + βI)

]
� 0 (19)

and taking

Nk1 = −(Mck)−1(Pk + βI/2)
NT

k2 = −DT
k−1AT

ck(M
−1
ck )T M−1

ck β/2
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results in

−AT
clk(Pk + βI) = DT

k−1AT
ckNk1 + NT

k2Mck

−Pk = −Pk + NT
k2AckDk−1 + DT

k−1 (20)

AT
ckNk2 + β(DT

k−1AT
ck(M

−1
ck )T M−1

ck AckDk−1)− (Pk + βI) = 2MckNk1 + Pk.

Substituting (20) to (19) for β → 0 one has got the inequality (16) for the case of Qk = 0,
Rk = 0. If one substitute to second part of (15) instead of u(t + k− 1) (5), rewrite the
obtained result into the matrix form and add previously obtained matrix inequality (16)
then the necessity condition of the theorem is proven. This completes the proof.

If there exist feasible solution of (16) with respect to matrices Fkk, Fkk+1, Nk1 ∈ Rn×n,
Nk2 ∈ Rn×n, k = 2,3, . . . ,N and positive definite matrix Pk = PT

k ∈ Rn×n, then the de-
signed MPC ensure the quadratic stability of the closed-loop system and guaranteed cost.

Remarks

• Due to the proposed design philosophy predictive control algorithm u(t +k), k� 1
is the function of corresponding performance index (9) and previous closed-loop
system matrix.

• In the proposed design approach constraints on system variables are easy to be
included by LMI (BMI) using a notion of invariant set [1], [18].

• The proposed MPC with sequential design is a special case of classical MPC.
Sequential MPC may not provide ‘better’ dynamic behavior than classical one but
it is another approach to design of MPC.

• Note that in the proposed model predictive control sequential design procedure,
the size of system does not change with increasing N.

• If in the convex set (2) there exists feasible solution for both step, the proposed
algorithm (4) and model predictive control (5) guarantee the PDQS and robustness
properties of the closed-loop MPC system with guaranteed cost.

The sequential robust MPC design procedure can be summarized in the following steps:

• Design of robust MPC controller with control algorithm (4) using (14).

• For nominal and uncertain model of system calculate matrices K1, D1 and K1( j),
D1( j), j = 1,2, . . . ,M given in (6).

• For a given k = 2,3, . . . ,N and control algorithm (5) sequentially calculate Fkk,
Fkk+1 using (16) and Kk, Dk given in (8).

• Calculate the matrices Af , B f and Cf (12) for model prediction.
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4. Examples

Example 1. First example serves as a benchmark. The model of a double integrator turns
to (3) where

An =

[
1 0

1 1

]

Bn =

[
1

0

]
, C =

[
0 1

]
and uncertainty matrices are

A1u =

[
0.01 0.01

0.02 0.03

]

B1u =

[
0.001

0

]
.

For the case when number of uncertainties p = 1 the number of vertices is M = 2p = 2,
the matrices (2) are calculated as follows

A1 = An −A1u,A2 = An + A1u

B1 = Bn −B1u,B2 = Bn + B1u.

For the parameters of ρ = 20000, prediction N = 4, Nu = 4, performance R1 = · · · =
R4 = 1, Q1 = 0.1I, Q2 = 0.5I, Q3 = I, Q4 = 5I the following results are obtained using
the sequential design approach proposed in the paper:

• For prediction k = 1, the robust control algorithm is given as follows

u(t) = F11y(t)+ F12y(t +1).

Using (14), one obtains the following gain matrices F11 = 0.9189, F12 =−1.4149.
The eigenvalue of closed-loop first vertex model system are as follows

Eig(Closed-loop) = {0.2977±0.0644i}.

• For k = 2, control algorithm is

u(t +1) = F22y(t +1)+ F23y(t +2).

In the second step of design procedure gain matrices obtained using (16) are F22 =
0.4145, F23 = −0.323. The eigenvalues of closed-loop first vertex model system
are as follows

Eig(Closed-loop) = {0.1822±0.1263i}.
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• For k = 3, control algorithm is given

u(t +2) = F33y(t +2)+ F34y(t +3).

In the second step of design procedure the obtained gain matrices are F33 =
0.2563;F34 = −0.13023. The eigenvalues of closed-loop first vertex model sys-
tem are as follows

Eig(Closed-loop) = {0.1482±0.051i}.

• For prediction k = N = 4, control algorithm is given

u(t +3) = F44y(t +3)+ F45y(t +4).

In the second step the obtained gain matrices are F44 = 0.5797, F45 = 0.0. The
eigenvalues of closed-loop first vertex model system are as follows

Eig(Closed-loop) = {0.1002±0.145i}.

Example 2. Nominal model for the second example is given as follows

An =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.6 0.0097 0.0143 0 0

0.012 0.9754 0.0049 0 0

−0.0047 0.01 0.46 0 0

0.0488 0.0002 0.0004 1 0

−0.0001 0.0003 0.0488 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Bn =

⎡
⎢⎢⎢⎢⎣

0.0425 0.0053

0.0052 0.01

0.0024 0.0001

0 0.0012

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The linear affine type model of uncertain system (2) can be obtained in the form

Ai = An + θ1A1u, Bi = Bn + θ1B1u

Ci = C, i = 1,2

where A1u,B1u are uncertainty model of the system with constant entries, θ1 is an uncer-
tain real parameter with θ1 ∈< θ1,θ1 > . When lower and upper bounds of the uncertain
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parameter θ1 are substituted to affine type model, the polytopic system (1) is obtained.
Let θ1 ∈< −1,1 > and

A1u =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.025 0 0 0 0

0 0.021 0 0 0

0 0 0.0002 0 0

0.001 0 0 0 0

0 0 0.0001 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

B1u =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0001 0

0 0.001

0 0.0021

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In this example two vertices (M = 2) are calculated (see Example 1). The problem is
to design two PS(PI) model predictive robust decentralized controllers for plant input
u(t) and prediction horizon N = 5 using sequential design approach. The cost function
is given by following matrices

Q1 = Q2 = Q3 = I, R1 = R2 = R3 = I,

Q4 = Q5 = 0.5I, R4 = R5 = I.

In the first step calculation for the uncertain system (1) yields the robust control algo-
rithm

u(t) = F11y(t)+ F12y(t +1)

where the matrix F11 with decentralized output feedback structure containing two PS
controllers, is designed.

From (14), the obtained gain matrices F11 and F12 are

F11 =

[
−18.7306 0 −42.4369 0

0 8.8456 0 48.287

]

where decentralized proportional and integral gains for the first controller are

K1p = 18.7306, K1i = 42.4369

and for the second one
K2p = −8.8456,K2i = −48.287.
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Note that in F11 sign - shows the negative feedback. Because predicted output y(t + 1)
is obtained from model prediction (12), for output feedback gain matrix F12 there is no
need to use decentralized control structure

F12 =

[
−22.0944 20.2891 −10.1899 18.2789

−29.3567 8.5697 −28.7374 −40.0299

]
.

In the second step of the design procedure, using (16) for nominal model, the matrices
(5) Fkk, Fkk+1, k = 2,3,4,5 are calculated. The eigenvalues of the closed-loop first vertex
model system for N = Nu = 5 are as follows

Eig(Closed-loop) = {−0.0009; −0.0087; 0.9789; 0.8815; 0.8925}.

The feasible solutions of bilinear matrix inequality have been obtained by YALMIP with
PENBMI solver.

5. Conclusion

The paper addresses the design problem of a new MPC with special control algo-
rithm. Because proposed robust MPC control algorithm is designed sequentially, the
degree of plant model does not change when the output prediction horizon changes. The
proposed sequential robust MPC design procedure consists of two steps. In the first step
for one step ahead prediction horizon the necessary and sufficient robust stability condi-
tions have been developed for MPC and the polytopic system with output feedback using
generalized parameter dependent Lyapunov matrix P(α). The proposed robust MPC en-
sures parameter dependent quadratic stability (PDQS) and guaranteed cost. In the second
step of the design procedure the plant uncertain, nominal model and sequential design
approach is used to design the predicted input variables u(t +1), . . . ,u(t + N−1) so the
robust closed-loop stability of MPC and guaranteed cost is ensure. Main advantages of
the proposed sequential method are: the design plant model degree is independent on
prediction horizon N; robust controller design procedure ensures PDQS and guaranteed
cost and, the obtained results are easy to be implemented in real plant. In the proposed
design approach constraints on system variables are easy to be implemented by LMI
(BMI) using a notion of invariant set. The feasible solution of BMI has been obtained by
YALMIP with PENBMI solver.

References

[1] H. AYD, F. MESQUINE and M. AITRAMI: Robust control for uncertain linear
systems with state and control constraints. Proc. of the 17th World Congress IFAC,
Seoul, Korea, (2008), 1153-1158.



ROBUST OUTPUT PREDICTIVE SEQUENTIAL CONTROLLER DESIGN 45

[2] B. BOUZOUITA, F. BOUANI and M. KSOURI: Efficient implementation of multi-
variable MPC with parametric uncertainties. Proc. ECC 2007, Kos, Greece, (2007),
TuB12.4, CD-ROM.

[3] E.F. CAMACHO and C. BORDONS: Model predictive control. Springer-Verlag,
London, 2004.

[4] D.W. CLARKE and C. MOHTADI: Properties of generalized predictive control.
Automatica, 25(6),(1989), 859-875.

[5] D.W. CLARKE and R. SCATTOLINI: Constrained receding-horizon predictive con-
trol. Proc. IEE, 138(4), (1991), 347-354.

[6] H. DERMICIOGLU and D.W. CLARKE: Generalized predictive control with end-
point weighting. Proc. IEE, 140, Part D(4), (1993), 275-282.

[7] B. DING, Y. XI, M.T. CYCHOWSKI and T. O’MAHONY: A synthesis approach
for output robust constrained model predictive control. Automatica, 44 (2008), 258-
264.

[8] M.V. KOTHARE, V. BALAKRISHNAN and M. MORARI: Robust constrained
model predictive control using linear matrix inequalities. Automatica, 32(10),
(1996), 1361-1379.

[9] Y. KUWATA, A. RICHARDS and J. HOW: Robust receding horizon using general-
ized constraint tightening. Proc. ACC, New York, (2007), CD-ROM.

[10] CH. LOVAS, M.M. SERON and G.C. GOODWIN: Robust model predictive control
of input-constrained stable systems with unstructured uncertainty. Proc. ECC, Kos,
Greece, (2007), CD-ROM.

[11] J.M. MACIEJOWSKI: Predictive control with constraints. Prentice Hall, 2002.

[12] D.Q. MAYNE, J.B. RAWLINGS, C.V. RAO and P.O.M. SCOKAERT: Contrained
model predictive control: stability and optimality. Automatica, 36, (2000), 789-814.

[13] P.E. ORULPE, I.M. JAIMOUKHA and H.M.H. EL-ZOBAIDI: Model predictive
control based on mixed H2/H∞ control approach. Proc. ACC, New York, (2007),
CD-ROM.

[14] D. PEAUCELLE, D. ARZELIER, O. BACHELIER and J. BERNUSSOU: A new ro-
bust D-stability condition for real convex polytopic uncertainty. Systems and Con-
trol Letters, 40 (2000), 21-30.

[15] D.M. DELA PENA, T. ALAMO, T. RAMIREZ and E. CAMACHO: Min-max model
predictive control as a quadratic program. Proc. of 16th IFAC World Congress,
Prague,(2005), CD-ROM.



46 V. VESELÝ, D. ROSINOVÁ

[16] E. POLAK and T.H. YANG: Moving horizon control of linear systems with input
saturation and plant uncertainty. Int. J. Control , 53 (1993), 613-638.

[17] J. RAWLINGS and K. MUSKE: The stability of constrained receding horizon con-
trol. IEEE Trans. on Automatic Control, 38 (1993), 1512-1516.

[18] B. ROHAL-ILKIV: A note on calculation of polytopic invariant and feasible sets
for linear continuous-time systems. Annual Rewiew in Control, 28 (2004), 59-64.
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