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Suppression of vibration with optimal actuators
and sensors placement

L. STAREK, D. STAREK, P. ŠOLEK and A. STAREKOVÁ

It is proposed to place the actuators to maximize the mean value of energy transmitted from
or dissipated by the actuators, while the sensor location should maximize the mean square value
of system output, which also maximizes the signal-to-noise ratio. By using explicit expressions
for controllability and observability grammians as well as modal energies, it is shown that the
approaches based on the system responses to transient and persistent disturbances are closely
related, and are equivalent for structures which damping is small and the natural frequencies of
which are well spaced. The method of actuator and sensor optimal location via grammians was
proposed and compared it with results given by the method of matrix norms.
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1. Introduction

It is assumed that the controllability and observability measures should depend on
properties of the system and sets of actuators/sensors, but should not depend on a par-
ticular choice of initial conditions or control laws (which are unknown at this stage).
This approach gives actuator/sensor locations based on some measures of controllabil-
ity/observability grammians. In that situation, it is proposed to place the actuators so
as to maximize the mean value of energy transmitted from or dissipated by the actua-
tors, while the sensor location should maximize the mean square value of system output,
which also maximizes the signal-to-noise ratio. By using explicit expressions for con-
trollability and observability grammians as well as modal energies, it is shown that the
approaches based on the system responses to transient and persistent disturbances are
closely related, and are equivalent for structures the damping of which is small and the
natural frequencies of which are well spaced.

The majority of authors considered the problem of location of actuators as a prob-
lem of transferring the system from some initial state x(t0) to a terminal state within a
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given time T (not necessary finite) in such a way that energy, usually defined as the time
integral of a quadratic form of an input, is minimized. The optimal solution to this prob-
lem defines the optimal control energy that explicitly depends on the initial or terminal
conditions, and indirectly is a function of the actuator positions. In [1] this technique is
applied and was proposed as an optimization criterion effect of initial conditions on the
cost function. In [22] a similar approach is used, but the authors included a weighted
quadratic form of the state in the cost function. The cost function corresponds to the
optimal performance index.

In [6] the search for optimal actuator locations that minimize the control energy
under the constraints (which preserve system controllability with a prespecified control
law based on a pole placement algorithm). In [16] it is proposed a minimum input ener-
gy solution which depends not only on the initial conditions but also on the weighting
matrices used in the optimality criterion. Therefore actuator distribution does not depend
on the initial condition but depends on the assumed time required to drive the system to
the state of equilibrium from a given perturbed state.

Several techniques have been proposed to optimize the sensor locations. In [2] is
first proposed to use Kalman filtering in the sensor distribution problem. This method
(which accounts for measurement errors) considers as the best location this one, which
minimizes some measure of the state estimation control problem. The method is com-
putationally intensive and the criterion used for sensor selection does not have a sound
physical basis. In [18] it is proposed to maximize the rate of energy dissipation due to the
control action under the output velocity feedback control law. The dissipated energy de-
pends on the locations of actuators, sensors and the feedback gain matrix, and therefore
can be used as an optimization criterion to determine all of the above. In both cases, the
control law is predetermined and computational requirements are prohibitive for high
order systems.

The goals of this contribution is to propose and apply the method of actuator and sen-
sor location via grammians and compare it with with some results given by the method of
matrix norms. Both methods will assist to design actuator and sensor optimal placement.

2. Actuator and sensor location via grammians

2.1. Controllability and observability

Controllability and observability are structural properties that carry information
useful for structural testing and control. A structure is controllable, if the installed
actuators excite all its structural modes. It is observable if the installed sensors detect
the motions of the system dynamics described by the state variable x is excited by the
input u and measured by the output y. However, the input may not be able to excite
all states. In this case we cannot fully control the system. Also, not all states may be
represented at the output. In this case we cannot fully observe the system. However, if
the input excite all states, the system is controllable, and if all the states are represented
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in the output, the system is observable.

Controllability, as a measure of interaction between the input and states, involves
the system matrix A and the input matrix D. A linear system, or the pair (A,D), is
controllable at t0 if it is possible to find a piecewise continuous input u(t), t ∈ [t0, t1],
that will transfer the system from the initial state, x(t0), to the origin x(t1) = 0 at finite
time t1 > t0. If this is true for all initial moments t0 and all initial states x(t0) the system
is completely controllable. Otherwise, the system, or the pair (A,D) is uncontrollable.

Observability, as a measure of interaction between the states and the output, involves
the system matrix A and the output matrix C. A linear system, or the pair (A,C), is
observable at t0 if the state x(t0) can be determined from the output y(t), t ∈ [t0, t1],
where t1 > t0 is some finite time. If this is true for all initial moments t0 and all initial
states x(t0) the system is completely observable. Otherwise, the system or the pair
(A,C), is unobservable.

There are many criteria to determine system controllability and observability.
Linear time-invariant system (A,D,C), with s inputs is completely controllable if

and only if the 2n×2sn matrix

Oc =
[

D AD A2D . . . A2n−1D
]

(1)

has rank equal to 2n. A linear time-invariant system (A,D,C) with r outputs is com-
pletely observable if and only if 2rn×2n matrix

Oo =

⎡
⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CA2n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

has rank equal to 2n.
The above criteria, although simple, have two serious drawbacks. First, they answer

the controllability and observability question in yes and no terms. Second, they are useful
only for a system of small dimensions.

An alternative approach uses grammians to determine the system properties. Gram-
mians are nonnegative matrices that express the controllability and observability prop-
erties qualitatively, and are free of the numerical difficulties mentioned above. The con-
trollability and observability grammians are defined as follows

Wc(t) =
t∫

0

exp(Aτ)DDT exp(AT τ)dτ, (3a)
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Wo(t) =
t∫

0

exp(AT τ)CTC exp(Aτ)dτ. (3b)

We can determine them alternatively and more conveniently from the following diffe-
rential equations

Ẇc = AWc +WcAT + DDT , (4a)

Ẇo = ATWo +WoA+CTC. (4b)

The solutions Wc(t) and Wo(t) are time-varying matrices. At the moment we are inte-
rested in the stationary, or time-invariant, solutions. For a stable system, we obtain the
stationary solutions of the above equations by assumingẆc = Ẇo = 0. In this case, the
differential equations (4) are replaced with the algebraic equations, called Lyapunov
equations,

AWc +WcAT + DDT = 0, (5a)

ATWo +WoA+CTC = 0. (5b)

2.2. Aplication on distributed parameter system

Consider a class of distributed parameter systems described by the partial differential
equation (generalized wave equation)

M(v)
∂2w(v, t)

∂t2 +2ζ[M(v)L]1/2
[

∂w(v, t)
∂t

]
+ L[w(v, t)] = F(v, t) (6)

over a compact domain D. In the above, w(v, t) refers to the displacement of the structure
with respect to equilibrium position; it is a function of spatial variable v ∈ D and time
t. F(v, t) refers to external force distribution. The operator L is a linear homogeneous
selfadjoint and nonnegative differential operator consisting of derivatives through order
2q with respect to the spatial coordinates x but not with respect to time; it represents
the stiffness distribution of the system. The mass density M(v) is a positive definite
function of the location v. Without loss of generality it can be assumed that M(v) = 1,
but M(v) is retained in the following development to distinguish between the system
mass and stiffness properties. It is further assumed that the control is accomplished by x
essentially point actuators acting at locations vj, ( j = 1,2, . . . , p). Hence

F(v, t) =
x

∑
j=1

δ(v− v j) f j(t) (7)

where f j(t), ( j = 1,2, . . . , p) are actuator forces and δ(v− vj) denotes a spatial Dirac
delta function. The structure satisfies q boundary conditions

Bk[w(v, t)] = 0 k = 1,2, . . . ,q, (8)
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where Bk are linear homogeneous differential operators containing derivatives normal to
the boundary and along the boundary of order through 2q− 1. According to the expan-
sion theorem the solution to the equation (6) can be represented as the series

w(v, t) =
∞

∑
i=1

Φi(v)ηi(t) (9)

where ηi(t) are modal coordinates and Φi(v) are eigenfunctions. The eigenfunctions
are the solutions of the eigenvalue problem consisting of the differential equation
L[Φ(v)] = ω2M(v)Φ(v) and satisfy the boundary conditions Bk[Φ(v)] = 0, k = 1,2, . . . ,q.
The solution yields an infinite set of eigenfunctions Φi(v) with corresponding natural
frequencies Ωi. The eigenfunctions satisfy the orthogonality condition and can be nor-
malized such that ∫

D

M(v)Φr(v)Φs(v)dv = δrs (10)

for any r,s = 1,2, . . . , where δrs is a Kronecker delta function. In addition,∫
D

Φr(v)L[Φs(v)]dv = Ω2
r δrs. (11)

The forcing term on the right side of equation (6) can be expanded into a series in Φi(v):

F(v, t) =
∞

∑
i=1

M(v)Φi(v)Qi(t) (12)

where the generalized force Qi(t) associated with generalized coordinate ηi(t) can be
found from

Qi(t) =
∫
D

Φi(v)F(v, t)dx =
x

∑
j=1

Φi(v j) f j(t). (13)

Inserting series representations (9) and (12) into equation (6) and using the standard
orthogonalization procedure (multiplying equation (6) by wj(v), integrating over the do-
main D and using orthogonality relations (10) and (11)), equation (6) can be replaced by
an infinite set of ordinary differential equations:

η̈i +2bpiΩiη̇i + Ω2
i ηi = Qi(t) =

x

∑
j=1

Φi(v j) f j(t), i = 1,2, . . . (14)

Note that actually bpi = b for any i follows from equation (6) but bpi, was used in equa-
tion (14) to account for different damping models. Since higher order modes (say i > n
for some large n) are not likely to be excited in practice and typically exhibit higher
structural damping, they can be neglected in an approximate analysis. Defining the state
and input vectors as contrast to a state vector composed of modal displacements
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x = [η̇1,Ω1η1, . . . , η̇n,Ωnηn]T , u = [ f1, . . . , fp]T , (15)

yields the state representation of equation (14),

ẋ = Ax+ Du (16)

where:

A = diag(Ai), Ai =

[
−2ζiΩi −Ωi

Ωi 0

]
, D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ω1(x1) . . . Ω1(xp)
0 . . . 0
...

. . .
...

Ωn(x1) . . . Ωn(xp)
0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

and velocities, the state vector defined above gives both states corresponding to each
mode of roughly equal magnitude, irrespective of the units used, which has computa-
tional and analytical advantages in the following development. Note the dependence of
matrix D on the location of force actuators vj, j = 1,2, . . . , p. If an actuator is located
at the nodal point of a mode, this mode becomes uncontrollable through that actuator.
Actuator location in the vicinity of the node would require a large effort to control this
mode.

2.3. Actuator location under transient and steady state disturbance

Transient disturbance

Suppose that due to some disturbance the state vector of the system described by
equation (15) was perturbed so that the initial condition x(0) = x0 holds. In placing the
actuators it is desirable to minimize the control energy required to bring the system to
the desired state x(T ) = xT after some time T . This can be accomplished by considering
the following minimum energy problem [23], [24]:

E(u) =
T∫

0

uT (t)u(t)dt (18)

subject to x(0) = x0, x(T ) = xT and the state equation (16). This is a linear quadratic
optimal control with fixed terminal time and fixed terminal state. The optimal solution
is given by

u0(t) = −DT eA(T−t)W−1(T )(eAT x0 − xT ) (19)

where W (·) is the controllability grammian, defined by (3a).
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One should note different definitions of controllability grammian in literature, but
the one given by equation (3a) is the most common. Under the control law (19), the
control energy is

E = (eAT x0 − xT )TW−1(T )(eAT x0 − xT ). (20)

Hence, if W−1(T ) is ‘large’ (i.e., W (T ) is small) there will be some states x0 and xT

such that the system can be transferred from x0 to xT only when large input energy
is used. More precisely, if any eigenvalue of W is small (all eigenvalues of W (T ) are
real and nonnegative since W (T ) is symmetric and nonnegative definite) there will be
at least one structural mode that is difficult to control. One should bear in mind that in
expression (20) only W (T ) depends on the actuator arrangement through matrix D, and
the best arrangement should not depend on unknown initial and terminal conditions. It
is known [24] that W (t) satisfies

Ẇ (t) = AW (t)+W (t)AT + DDT (21)

and when A is an asymptotically stable matrix, W (t) reaches a steady state Wc, which is
the solution of Lyapunov equation

AWc +WcAT + DDT = 0. (22)

To eliminate dependency of the solution on T , we consider a steady state solution with
the controllability grammian, Wc, satisfying equation (22) for asymptotically stable sys-
tems. For structures without damping, equation (22) cannot be applied and the grammian
W (T ) can be found in closed form from equation (3a).

For systems with distinct natural frequencies, for i �= j, i, j = 1,2, . . . ,n, we have

βi j =
p

∑
q=1

Φi(xq)Φ j(xq). (23)

It should be pointed out that the expression (20) for minimum energy can be applied to
any initial and terminal conditions. When x0 = 0 and xT �= 0 then

E =
1
2

xT
TW−1(T )xT . (24)

Conversely, if x) �= 0 and xT = 0, then

E =
1
2

xT
0 eAT TW−1(T )eAT x0. (25)

Persistent disturbance

In the case of a persistent disturbance, the distribution of actuators should guarantee
that the system steady state behavior is affected to the largest possible degree by actuators
in order to suppress the effect of disturbances. In particular, energy transmitted from the
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actuators to all the structural modes should be as large as possible (under actuator energy
constraints). To evaluate these energy contributions, we use covariance analysis. Suppose
that the signals generated by the individual actuators are (within the frequency band
considered) white noise processes that are mutually uncorrelated and have the covariance
matrix.

M[u(t)uT (τ)] = Uδ(t − τ) (26)

where U is a positive definite, diagonal matrix (noise intensity). When all actuators have
the same power requirements then it can be assumed that U = I, where I is the identity
matrix. The kinetic and potential (strain) energies of system are given by:

Ek =
1
2

∫
Θ

M(x)ẇ2(x, t)dx, (27)

Ep =
1
2

∫
Θ

w(x, t)L[w(x, t)]dx. (28)

Using the solution of the linear partial differential equation which describes bending
vibration and using orthogonality relations it is easy to show that

Ek =
1
2

∞

∑
i=1

η̇2
i (t) (29)

Ep =
1
2

∞

∑
i=1

Ω2
i η2

i (t) (30)

that is, the system energy can be expressed as a sum of contributions from each mode.
Considering the truncated system (16) (including n modes) under white noise excitation,
the system steady state behavior can be characterized by the state covariance matrix

M[x(t)xT (t)] = X(t) (31)

and is described by equation [5]:

AX + XAT + DUDT = 0 (32)

which is exactly the same as equation (22) when U = I.
Taking advantage of the structure of matrix A, it is straightforward to show that for

U = I, the diagonal elements of X , xii are given by

x2i−1,2i−1 = x2i,2i =
βii

4bpiΩi
, i = 1,2, . . . ,n, (33)

where βii = ∑p
q=1 Φ2

i (xq) follows from equation (23). Hence, the expected values of the
kinetic and potential energies are respectively,
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M{Ek} =
1
2

n

∑
i=1

E(η̇2
i ) =

1
2

n

∑
i=1

x2i−1,2i−1 =
1
8

n

∑
i=1

βii

bpiΩi
(34)

M{Ep} =
1
2

n

∑
i=1

E(Ω2
i η2

i ) =
1
2

n

∑
i=1

x2i,2i =
1
8

n

∑
i=1

βii

bpiΩi
(35)

and the expectation of the total energy is

M{Ek + Ep} =
1
4

n

∑
i=1

βii

bpiΩi
. (36)

It can be seen from expression (28), that just like the kinetic and potential energies of
the structure, the total energy is the sum of the contributions from each mode, calculated
independently.

It follows from the above discussion that considering actuator positioning under con-
ditions of a transient disturbance leads to the requirement of maximizing (in some sense)
the norm of the controllability matrix Wc, while under the steady state disturbance, the
energy transmitted to (or dissipated from) the system at the steady state should be maxi-
mized. Both approaches are energy-based and are related through essentially the same
Lyapunov equation (equation (5a) or (22)) with U = I. Partitioning the grammian Wc

according to

Wc =

⎡
⎢⎢⎣

W11 W12 . . . W1n
...

...
. . .

...

Wn1 Wn2 . . . Wnn

⎤
⎥⎥⎦ (37)

where Wi j, i = 1,2, . . . ,n, j = 1,2, . . . ,n are 2×2 matrices and using particular structures
of matrices A and D (equations (17), equation (16)) makes the problem to be solved in a
closed form [6].

2.4. Proposed criterion for actuator location

To establish a performance criterion for the location of actuators, the following fac-
tors have to be considered. Under a persistent disturbance, the expected value of the total
energy transmitted to the system from the actuators should be large to allow for effective
damping of structural vibration with moderate control effort. Furthermore, the energies
(in a mean sense) transmitted to each individual mode that one wishes to control have to
be large. The use of a global energy index (based on a sum of all modes) in an optimiza-
tion procedure may result in an actuator location that gives good control of one or two
lower order modes (since the total energy expression may be dominated by these modes
for some structures) while some of higher order modes may remain weakly controllable.
It is therefore desirable that the value of the performance index to be maximized drops
sharply in the vicinity of actuator positions that result in loss of controllability of any of
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the first n modes. Based on these considerations, the following performance index PI′ is
proposed:

PI′ = 2

(
n

∑
i=1

Ei

)
n

√
n

∏
i=1

(Ei) (38)

in which Ei, denotes the expectation of the total energy of the i-th mode given by

Ei =
βii

4bpiΩi
. (39)

The particular form of the performance index (38) was chosen after considering a num-
ber of alternatives in simulation runs, and is believed to provide a good balance between
the importance of all modes. The first term on the right hand side of equation (38) is
the total system energy; it will usually be dominated by a few low order modes, since
the modal energies typically decrease with the mode number, i. The term under the root
sign can be interpreted as a volume of an ellipsoid in n-dimensional space, the radius
of which in each direction is proportional to the energy contributed by each mode. This
term vanishes when the controllability of any mode is lost, and ensures that none of the
modes is nearly uncontrollable.

On the one hand, it is desirable to keep the size of the controllability matrix, that can
be characterized by the sum of the eigenvalues, as large as possible; on the other hand,
the individual eigenvalues (corresponding to the various modes) have to remain large
because if any of them are close to zero, the inverse of the controllability matrix Wc, will
be large and there will be some initial states for which it will be difficult to return the
system to the required state. Consequently, the proposed criterion is

PI =

(
n

∑
j=1

λ j

)
2n

√√√√ 2n

∏
j=1

(λ j) (40)

where λ j denotes the eigenvalue of the controllability grammian Wc. It follows from the
argument section that when the damping ratios bpi are small and the natural frequencies
of the structure are well spaced then

λ2i−1 = λ2i = Ei (41)

and the above criteria are identical. However, the criterion (40) is more general, since it
can be applied to general systems including systems that do not exhibit modal structure.

2.5. Sensor location

Consider the system defined in section 2.2. Suppose that r displacements w(xq, t),
q = 1,2, . . . ,r are measured at r points x1,x2, . . . ,xr of the structure the output equation
becomes
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y(t) = Cdx(t) (42)

where y(t) is an r-dimensional output vector and Cd ∈ Rr×2n is given

Cd =

⎡
⎢⎢⎢⎢⎣

0 Φ1(x1)/Ω1 . . . 0 Φn(x1)/Ωn

0 Φ2(x2)/Ω1 . . . 0 Φn(x2)/Ωn
...

...
. . .

...
...

0 Φ1(xr)/Ω1 . . . 0 Φn(xr)/Ωn

⎤
⎥⎥⎥⎥⎦ . (43)

If the r velocities rather than positions are measured, then the output equation is.

y(t) = Cvẋ(t) (44)

where

Cv =

⎡
⎢⎢⎢⎢⎣

Φ1(x1) 0 . . . Φn(x1) 0

Φ2(x2) 0 . . . Φn(x2) 0
...

...
. . .

...
...

Φ1(xr) 0 . . . Φn(xr) 0

⎤
⎥⎥⎥⎥⎦ . (45)

If both displacements and velocities are measured, then matrix C becomes a combination
of Cd and Cv. Any measure of the observabi1ity of a dynamic system should reflect
the amount of information concerning the system states that can be derived from the
sensor outputs in the presence of measurement noise. In order to maintain as large as
possible a signal-to-noise ratio, the sensor locations should guarantee that under any
operating conditions the system output, as well as the contributions of individual modes
to the output, be as large as possible. Again, the structure may be either instantaneously
perturbed from its desired state or may be subjected to persistent excitation. If the system
is released from the initial state x(0) = x0 with u(t) = 0, t � 0, then the output energy is
[26]

∞∫
0

yT (t)y(t)dt = xT
0 Wox0 (46)

where Wo is the observability grammian. It can be seen that when the observability gram-
mian is nearly singular then some initial conditions will have little effect on the output
and for asymptotically stable systems it satisfies the Lyapunov equation (5a).

Following the approach used for the controllability grammian, i.e., partitioning Wc

and using the structures of matrices A and C, closed form solutions can be obtained. In
the case of displacement measurements,
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cdi j =
r

∑
k=1

Φi(xk)Φ j(xk)
ΩiΩ j

, (47)

when the velocities are measured,

cvi j =
r

∑
k=1

Φi(xk)Φ j(xk). (48)

When both positions and velocities are measured, then matrix CT =
[
CT

d CT
v

]
, and it

can be easily demonstrated that the grammian obtained for this case is the sum of the
grammians considered above since CTC = CT

d Cd +CT
v Cv.

It is straightforward to show that when the damping is small and all natural frequen-
cies are well-spaced, the grammians are dominated by the diagonal elements which are

Woii = diag

(
cdii

4bpiΩi
,

cdii

4bpiΩi

)
, i = 1,2, . . . ,n, (49)

when positions are measured and

Woii = diag

(
cvii

4bpiΩi
,

cvii

4bpiΩi

)
, , i = 1,2, . . . ,n, (50)

when velocities are measured. In that case

xT
0 Wox0 =

n

∑
i=1

cii

4bpiΩi
(x2

02i+1 + x2
02i) (51)

where cii = cdii, cvii or cdii,cvii, depending on whether the displacements, velocities or
both are measured and x02i−1, x02i, refer to the components of the initial state vector x0.
In order to make the output energy large for any initial state, all diagonal terms of as well
as their sum have to be large. In the general case, the diagonal terms should be replaced
by eigenvalues. By comparing equations (50) and (48) with (33) and (23), it can be seen
that in the case of velocity measurements the eigenvalues of the observability grammian
and the controllability grammian are the same for lightly damped structures with well
separated modes.

Now consider the system subject to a persistent disturbance. Suppose that this dis-
turbance is the spatially distributed white noise process, that is

F(x, t) = f (x)ξ(t) (52)

where ξ(t) is a white noise with unitary intensity. Assume further that the spatial distri-
bution f (x) is such that the first n modes are excited with equal strength. This condition
is satisfied by the choice

f (x) = P(x)
n

∑
j=1

Φ j(x) (53)
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since then

Qi(t) = ξ(t) (54)

follows from equations (52), (53), (10) and (13). The system dynamics are now described
by equation (14), with Qi given by equation (54). This is a linear system, driven by a
white noise process. The mean square value of the system output is

M[xT (t)CTCx(t)] = trace[(CTC)X(t)] (55)

where X(t) is the covariance matrix for the state vector (equation (31)). At steady state,
the matrix X(t) becomes time invariant and satisfies the Lyapunov equation

AX + XAT + ddT = 0 (56)

with A given by equation (17) and d given by

d = [ 1 0 1 0 . . . 1 0 ]T . (57)

If the natural frequencies are well spaced and the damping coefficients are small and
since equation of motion has the same structure as equation (14), the matrix X ap-
proaches a diagonal matrix with

Xii = diag

(
1

4bpiΩi
,

1
4bpiΩi

)
(58)

and, consequently, it follows from equation (55) that

M[yT (t)y(t)] =
n

∑
i=1

cii

4bpiΩi
(59)

with cii defined as before. Comparing equation (59) with (49) and (50), it is seen that
large diagonal elements of the observability grammian will make the system steady state
response to a persistent excitation large, at least for a structure with well spaced natural
frequencies and low damping.

2.6. Examples of applications

To illustrate the proposed method, consider uniform beam with two types of actua-
tors:

• control is accomplished by essentially point actuator, or

• actuator acting on surface area (for example piezoceramics actuator)

and two types of boundary conditions:
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• o simply supported boundary,

• o clamped boundary at x = 0 and free boundary at x = l.

Figure 1. Model of actuator acting on the surface area (for example piezoceramics).

First we derive a mathematical model of actuator acting on the surface area. Actuator
acting on the surface area can be presented as distributed moment load Fig. 1 given by

m(x, t) =

{
M(t) for x ∈ 〈x1,x2〉
0 for x /∈ 〈x1,x2〉

}

where

m′(x, t) = M(t)[δ(x− x1)−δ(x− x2)]. (60)

If the natural frequencies are well spaced and bpi are small damping coefficients, then
after small manipulation for grammian we receive (for application of single piezoceram-
ics)

Wii = diag

(
βii

bpiΩi
,

βii

bpiΩi

)
, βii =

[
ϕ′

i(x2)−ϕ′
i(x1)

]
(61)

where i is the number of mode shape and φ′i(x1) is the slope of deflection at the boundary.
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Case 1: Point actuator & simply supported boundary
Maximum of the curves is optimal placement.
l is length of beam, k is number of modes.

Figure 2. The first three mode shapes for the cases 1 and 3.

Figure 3. Performance index for the first three mode shape.
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Case 2: Point actuator & clamped boundary at x = 0 and free boundary at x = l

Figure 4. The first three mode shapes for the cases 2 and 4.

Figure 5. Performance index for the first three mode shapes.
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Case 3: Actuator acting on surface area & simply supported boundary

k = 3
The mode shapes for the case 3 are the some as ones for the case 1 (see Fig. 2).

Figure 6. Performance index for the first three mode shapes.

Case 4: Actuator acting on surface area & clamped boundary at x = 0 and free
boundary at x = l

k = 3
The mode shapes for the case 4 are the some as ones for the case 2 (see Fig. 2).

Figure 7. Performance index for the first three mode shapes.
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2.7. Examples of applications of matrix norms

To illustrate the method, consider uniform beam with two types of boundary condi-
tions:

• simply supported boundary

• clamped boundary at x = 0 and free boundary at x = l

Maximum of the curves is optimal placement

Case 1: Clamped boundary at x = 0 and free boundary at x = l

Evaluation of the actuator (sensor) placement indices via H∞

Figure 8. Evaluation of the first, second and third mode shapes simultaneously.

Evaluation of the actuator (sensor) placement indices via H2

Figure 9. Evaluation of the first, second and third mode shapes simultaneously.
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Case 2: Simply supported boundary

Evaluation of the actuator (sensor) placement indices via H∞

Figure 10. Evaluation of the first and second mode shapes simultaneously.

3. Conclusions

In this paper the systematic procedure is outlined that is intended to assist the de-
signer in the selection of sensor and actuator placement in control problems of flexible
structures prior to the development of a control strategy. The energy required to transfer
the system from the perturbed state to the desired state is minimized by actuator loca-
tion; the sensor locations are chosen to maximize the output energy integrated over the
transient system, which also maximizes the signal-to-noise ratio. It is shown that both
transient and perturbed systems are closely related and are equivalent when the structural
damping is small and natural frequencies are well separated.

The approach relies on computation of the controllability and observability gram-
mians for which closed form solutions exist for flexible structures. Determination of
the objective function for a given actuator/sensor location requires computation of only
the eigenvalues of the controllability/observability grammian. For structures with small
structural damping and well separated frequencies, these eigenvalues can be approxi-
mated by the diagonal elements of the corresponding grammians.

The goals of this paper was to propose and apply the method which is based on
grammians for actuator and sensor optimal location and consecutive, compare the results
with the results of the method of matrix norms (H∞ and Hankel are used for definition of
the actuator (sensor) index). The comparison both methods look as follow:
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• both methods give the same main results,

• the method which used grammians is computational simpler (it required only com-
putation eigenvalues of grammian),

• the method which used grammians can be used only for smaller amount of actua-
tors (sensors), than the method which used matrix norms.

It is advisable to pay a special attention to modeling of actuators, because the results for
point actuator and clamped boundary at x = 0 and free boundary at x = l and actuator
acting on surface area and clamped boundary at x = 0 and free boundary at x = l gives
significant difference in the optimal placement of sensors and actuators. Both methods
will assist to design actuator and sensor optimal placement.
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