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1. Introduction

Active magnetic bearings (AMBs) are used to support a rotor without mechanical
contact and to control the vibrations [1]. Rotor vibrations compensation is very important
in machines operating with high rotational speeds [4]. The AMBs system uses magnetic
forces to levitate the rotor between two opposing electromagnetic poles. The rotor is
inherently unstable. Thus, the magnetic bearing system must be stabilized with an active
control system.

In the paper, the robust optimal vibrations control system of the rotor supported mag-
netically is presented. The flexible rotor supported by AMBs was analyzed using finite
element method (FEM) such that all flexible modes up to bandwidth of 1106 [Hz] are
considered for non-collocation sensors-actuators. The all matrix of flexible rotor model
were computed in MATLAB and frequencies of the flexible modes are verified in the
ANSYS program. Model of components of AMBs system which included dynamics of
magnetic bearings, rotor model, power amplifiers and sensors dynamics is presented.

The dynamics of the open-loop system is influenced by external disturbances (steady
sinusoidal loads), nonlinearities, uncertainties and signal limits [5, 6]. Thus, a design
methodology which covers the practical issues of optimal robust control based on µ-
synthesis like the modeling of uncertainties, selection of optimal weighting functions is
presented [9]. Then µ-controllers synthesized for the augmented plant model which meet
analysis objectives (µ ¬ 1.0) stabilize the actual plant and meet specified performance
objectives. The µ-synthesis control method for AMB rotor was investigated successfully.
The µ-synthesis control permits the design of multivariable optimal robust controllers for
complex linear systems with any type of uncertainties in their structure. It is convenient
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method for MIMO systems like AMB and offers many knobs that a control designer can
turn. The optimized performance index is well related to real AMB system [5]. The goal
of this method is to design a controller which is robust to variations in plant dynamics.
This procedure is natural augmentation of H∞ control theory with the analysis of the
structured singular value. However, in the case of µ-synthesis control, the uncertainties
are much simpler to be considered than in H∞ case. What is more, the nonlinearity of
the controlled plant can be also considered. Generally, robust control theory says that if
the control is unconstrained, the better performance of robust control can be achieved if
the greater control effort is applied. Thus, if there is a limit on achievable H∞ attenuation
strongly depends on the relative position of the disturbances and the actors. However, the
best control performances can be achieved unfortunately with infinite controller gain.

This paper is focused on the experimental evaluation of the robust performance. The
laboratory stand with the high speed rotor (21 000 [rpm]) supported magnetically was
built. The rigid rotor is supported by two radial active heteropolar magnetic bearings.
Four closed-loops are used to control displacement of the rotor in the air gap of the
radial bearings. The dynamical behavior of the closed-loop system in wide range of ro-
tation speed was evaluated. The stable operation, good stiffness of the rotor and robust
performances of the closed-loop magnetic bearings systems is reached. Finally, the suc-
cess of the robust control is demonstrated through the results of computer simulations
and experiments. The experimental results show the effectiveness of the control system
as well as good vibrations reduction and robustness of the designed controllers. The dy-
namical behavior of the closed-loop system in wide range of rotation speed (from 0 to
21 000 [rpm]) was investigated.

2. Model of AMB rotor system

To measure the rotor displacement in two radial directions, the precision eddy-
current sensors were used. They have high resolution and wide bandwidth up to 10
[kHz], which is over the rotor drive maximal speed. Thus, the model of the sensor was
assumed as a simple proportional gain. The measured signals are filtered by anti-aliasing
filters [2].

The AMBs were operated with current control, i.e. at each sampling step the digital
signal processor calculated the size of the magnitude of the control current that was to
supply the electromagnetic coils. These currents were generated by digital power am-
plifiers based on pulse-width-modulation. Each of the amplifiers had an internal control
loop with a simple proportional gain controller. Thus, the coil current was measured
and subtracted from the set current which was proportional to a voltage signal of the
digital signal processor. The demanded set current was created by means of switching
among a positive or negative voltage (U = 180 [V]). The switching frequency was equal
to 18 [kHz]. Thus, the true current oscillated around the switching frequency. For a
good dynamics performance of the operating AMBs, the current should be as smooth as
possible. Thus, the amplifier output filter L−C was used. The AMBs coils were mode-
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led as the series interconnection of a copper resistance R and an inductance L (where:
L = Lcoil +Ladd). The rate of the current change had to be fast enough to follow the cur-
rent command. However, the amplitude and frequency ranges were limited by the R−L
curve of the power amplifier. The coil’s model was a first low-pass filter with cut-off
frequency ωc = R/L. The maximal value of the current was limited to 10 [A]. In the
low frequency range up to the crossover frequency ωc, the output current was limited by
the limit imax. Beyond the frequency ωc, the current was limited by the coil’s low-pass
characteristic denoted by the R−L curve. The model of power amplifiers was designed
as a low-pass filter with cut-off frequency at 700 [Hz] and gain at 1[A/V]. To simplify
the AMBs open-loop model the dynamics of the digital signal processor was neglected
and only the gains of A/C and D/C converters are considered.

2.1. Modal analysis of a flexible rotor in AMB

The complex flexible rotor was modeled by using FEM in order to compute fre-
quency modes. Thus, the rotor was partitioned into 20 discrete elements of simple ge-
ometry based on the model of Timoshenko’s beam. Connecting nodes were introduced
between neighboring elements. Each of nodes had 6 degrees of freedom (DOF), so the
rotor had 120 DOF. Thus, the equation of motion for the free rotor (without external
forces) can be stated as follows:

Mq̈+(D+ΩG)q̇+Kq = 0 (1)

where: M – symmetrical, positive definite mass matrix, D – symmetrical damping ma-
trix, G – skew-symmetric gyroscopic matrix, K – symmetrical, positive semi-definite
stiffness matrix, Ω – rotational speed, q – displacement vector.

The model of the rotor motion can be transformed to state space model of the fol-
lowing form:

ẋ = Ax+Bu
(2)

y = Cx+Du

where:

A =

[
0q×q Iq×q

−M−1K −M−1(D+ΩG)

]
, B =

[
0q×2n

M−1F

]
, C =

[
S 02l×q

]
, D =

[
02l×2n

]
.

The model of external forces acting on the rotor and model of displacement sensors is as
follows:

F =

[
Fx 0
0 Fy

]
, S =

[
Sx 0
0 Sy

]
. (3)

The total rotor mass is 18.5 [kg] and total length is 0.902 [m]. The matrices of flexible
rotor model were computed in MATLAB. Bode plot of the free-free rotor is presented in
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Mode MATLAB [Hz]

1st rigid 0

2nd rigid 0

1st flexible 520.01

2nd flexible 944.95

3rd flexible 1639.68

4th flexible 2648.73

5th flexible 3762.84

6th flexible 5116.51

Table 1. Rigid and flexible natural frequencies of free-free rotor

Fig. 1. The first two flexible modes for free-free rotor appear at 520 [Hz] and 944 [Hz]
respectively. For the free-free rotor, the rigid modes are equal to 0. For the modal analysis
of bending frequencies the non-rotating rotor without couplings by the gyroscopic effects
was assumed.

Figure 1. Bode plot of the free-free rotor, for Ω = 0 [rpm].

Based on the equation (2) the pole-zero distribution of the flexible rotor is shown in
Fig. 2. Due to symmetry of the system, each pole occurs twice, once for each plane and
all poles are very weakly damped. The values of the flexible modes for free-free rotor
computed in MATLAB are presented in Tab. 1.
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Figure 2. Pole-zero distribution of the free-free rotor, for Ω = 0 [rpm].

Figure 3. Campbell diagram of the free-free rotor.

In the case of rotating rotor (i.e. Ω > 0), the motion in the two planes are coupled by
the gyroscopic term ΩG. This causes the flexible rotor poles moving with increasing ro-
tational speed Ω along the imaginary axis towards increasing and decreasing frequencies.
The modes with increasing frequencies which expose a rotation in the same direction as
the rotor are called forward modes (nutations). The modes with decreasing frequencies
rotate in the opposite direction and are called backward modes (precessions). Fig. 3
shows the splitting of the flexible eigenfrequencies with rotational speed from 0 to 100
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000 [rpm]. Dashed line in Fig. 3 corresponds to rotational frequency while the solid lines
correspond to backward and forward flexible modes frequencies respectively.

Figure 4. Bode plot of the flexible rotor in AMBs, for Ω = 0 [rpm].

Figure 5. Pole distribution of the flexible rotor in AMB.
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2.2. Model of AMB flexible rotor

Flexible rotor supported in AMBs is modeled by combining the model of the flexible
rotor with the model of AMBs. Thus, the model of the flexible rotor in AMBs can by
described as follows:

Mq̈+(D+ΩG)q̇+Kq = Ksq+Kii (4)

where: Ks, Ki – matrices of the AMBs displacement and current stiffness coefficients
respectively. Transformation to modal coordinates yields:

Mrq̈r +(Dr +ΩGr)q̇+(Kr−Ksr)q = Kiri. (5)

Obtained stiffness matrix Kr−Ksr is not exactly diagonal, but the diagonal elements
are significantly larger than other elements. The simulation were performed for the fol-
lowing parameters of the magnetic bearings system: air gap x0 = 0.25 [mm], nominal
bias current i0 = 2 [A], ki = 50 [A/m], ks = 400000 [N/m].

The flexible rotor supported by magnetic bearings was also analyzed using FEM
such that all flexible modes up to the bandwidth of 11̇06 [Hz] were considered. Fig. 4
shows the rigid and flexible modes of the rotor with respect to the frequency. If the sys-
tem is collocated (sensors and actuators act at the same point along the shaft), then the
poles and zeros are interlaced and phase is between 0 and−1800. However in AMBs sys-
tem discussed here, the distance between sensors and magnetic actuators was 0.035 [m].
Thus, AMBs system is non-collocated. Comparing with Fig. 1, we can notice that the
poles of the AMBs model are independent on the sensor location while the zeros are
strongly sensitive to sensor location. The poles and zeros are no longer interlaced which
produces additional stability problems. This can be explained as follows: the poles do
not stay in the left half plane if the frequency rises (root locus analysis) but travel into
the right half plane.

Fig. 5 shows the poles distribution of the flexible rotor in uncontrolled AMBs. Design
process of stabilizing controllers of the AMBs which brings all poles to the left half plane
is rather difficult. If the controller gain increases, the poles firstly move to the left half
plane, but if the gain is further increased, they split and follow the positive and negative
imaginary axis. Thus, the controller with added damping behavior should be applied.
This illustrates that the process of controller design that stabilizes the rigid body modes
of the flexible rotor without destabilizing the weakly damped flexible modes is difficult
and complicated task.

The rigid and flexible modes of the AMBs rotor are presented in Tab. 2. Fig. 6 shows
the form of the first 4 flexible modes of the analyzed AMB flexible rotor conducted
in ANSYS program. Fig. 7 shows the splitting of the flexible eigenfrequencies with
rotational speed from 0 to 100 000 [rpm]. The solid lines in Fig. 7 corresponds to the
rigid and flexible modes frequencies respectively.
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Mode MATLAB [Hz]

1st rigid 32.34

2nd rigid 58.63

1st flexible 522.95

2nd flexible 945.59

3rd flexible 1640.47

4th flexible 2648.90

5th flexible 3763.04

6th flexible 5116.66

Table 2. Rigid and flexible natural frequencies of AMBs rotor

Figure 6. Flexible modes of the AMB flexible rotor.

3. µ-controller design

In the µ-synthesis control, the cost factor is a minimal value of the norm ||Tzw||∞,
where Tzw is a closed-loop transfer function. The µ-synthesis algorithm bases on the
D−K iteration procedure. After performed the singular value analysis, the µ-controller
should pass the condition in frequency domain [9]:

sup
ω∈IR

σ̄(T ( jω))¬ 1. (6)
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Figure 7. Campbell diagram of the flexible rotor in AMBs for Ω from 0 to 100 000 [rpm].

The robust controller is designed for augmented control plant. In this case, the aug-
mented plant includes nominal models of: rotor, magnetic bearings, power amplifiers,
sensors, delayed model of digital signal processor and also models of uncertainties and
weighting functions. The first two flexible modes for free-free rotor condition appear
at 520 [Hz] and 944 [Hz] respectively, which is over the drive maximal angular speed.
Therefore, for control design the rigid rotor model was partitioned. The weighting func-
tions were putted on the input and output signals like error signal, control signal and
rotor displacement signal. Thus, the AMB signals are scaled and limited and also the
performances of the real control loop are considered [2,3].

The model of magnetic bearing is uncertain. The uncertainty and nonlinearity follow
mainly form the characteristics of power amplifiers and electromagnetic coils. Thus, the
modeling of AMB system uncertainty was divided into model uncertainty and parametric
uncertainty. The model uncertainty in the system dynamics is described by unknown,
structured, norm-bounded perturbations. This perturbation acts on the nominal model via
linear fractional transformation (LFT) and is represented as feedback gains connected to
the plant anywhere inside. The magnetic bearing model error was described with an
uncertainty weighting function. At low frequency, below 96 [rad/s], the variation can
reach 10% of the nominal value. Over 96 [rad/s] the uncertainty (percentage variation)
starts to increase and reaches 140% at about 3200 [rad/s]. The frequencies 96 [rad/s]
and 3200 [rad/s] are the values of 2nd rigid and 1st flexible mode of AMBs system. Also
some parameters of AMBs system can vary from the nominal values during operation.
Thus, the uncertainties in the current stiffness ki and displacement stiffness ks for the two
AMBs were modeled by scalar real models representing uncertainty of 5%. The actuator
gain uncertainty was modeled as 1%. If robust controller is designed for rotational speed
equal zero, there are no guarantee that the system will be stable for other values of
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rotational speed. Thus, the nominal value of rotational speed Ω was equal 10 000 [rpm],
with uncertainty of 100%, such as rotational speed could change from 0 to 20 000 [rpm].
The model of AMB system uncertainty with external signals is presented in Fig. 8.

Figure 8. Model of AMB system uncertainty and Bode plots of µ-controllers.

The µ-controller was computed using function dksyn of The Robust Control Tool-
box of MATLAB [8]. Fig. 9 presents the Bode plot of designed µ-controllers com-
puted for AMB system with uncertainties and weighting functions with one of them
being optimized for AMB rotor vibrations compensation. The optimized µ-controller
was computed for properly selected weighting functions. The magnitude of the opti-
mized µ-controller is minimized due to maximal value of the power amplifier current.

4. Experimental results

The µ-controllers used to stabilize the rotor in two directions of two radial AMBs
were experimentally verified. The four independent µ-controllers were applied for rotor
model with couplings between the vertical and horizontal axes of the rotor known as
gyroscopic effect. The open-loop AMB model includes: rotor model, model of actuator
dynamics, sensor dynamics, A/C and D/C converters gains. The control algorithm was
implemented in DSP as a discrete time state space system. Real Time Interface and Real
Time Workshop of MATLAB was used. Since the µ-controller cannot levitate the rotor
alone, the program firstly brings the rotor into support under a low performance PID
control algorithm. After that, the program switches to the µ-control algorithm. Both, the
µ-synthesis and PID control algorithms are implemented in DSP with a sampling rate of
10 [kHz]. In experimental tests the disturbances as mass unbalance, gravity loads and
sensor noise were considered. The aerodynamic loads and the nonlinear phenomena like
eddy-currents loses and hysteresis were neglected for the model simplification. Tests
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Figure 9. Bode plot of µ-controllers.

were performed for the range of angular speed 0 ÷ 21 000 [rpm]. For experimental
investigations the AMB rotor ring was built. The experimental set-up is presented in
Fig. 10. Orbit plot of rotor operation at 21 000 [rpm] is presented in Fig. 11.

Figure 10. Experimental test ring and orbit plot for rotor operation speed at 21 000 [rpm].
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Figure 11. Orbit plot of rotor for rotational speed at 21 000 [rpm].

5. Summary

The presented simulation and experimental results show the capability of µ-synthesis
control method of AMBs to improve vibrations control performance. For proper design
of the control law, the FEM rotor model was obtained and the modal analysis of flexible
rotor supported by AMBs was performed. The vibrations compensation in wide range of
rotation speed changes was performed successfully. The µ-controllers have good vibra-
tions damping, disturbance rejection and robustness to the plant structural uncertainty.
All designed control systems with µ-controllers were stable and able to realize a high
bandwidth. The general disadvantage of µ-synthesis control is requirement of a detailed
model of control plant i.e. model of rotor, magnetic bearings, actuators and sensors.
Therefore, the order of computed controller is large, thus order reduction is necessary
before the model is implemented in a real processor.
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