
Archives of Control Sciences
Volume 20(LVI), 2010
No. 2, pages 209–226

Quasi-optimal PZT distribution
in active vibration reduction of the triangular plate

with P-F-F boundary conditions

ADAM BRAŃSKI and STANISŁAW SZELA

An active reduction of transverse vibration of the triangular plate with P-F-F boundary
conditions is considered. The cracked plate is idealized research model as partially clamped on
one edge with varying clamped length. The active reduction is realised with PZTs. In the paper,
assuming the detached base clamped length, the influence of PZTs distribution on the bending
moment and the shearing force at the clamped edge is investigated. To realize the purpose two
cases are considered. At the former the PZTs are attached at points in which the curvatures
of the surface locally take their maximum (MC sub-areas or quasi-optimal ones). At the latter,
the PZTs are somewhat shifted. The plate is excited with harmonic plane acoustic wave. The
second mode is considered only.

The active vibration reduction study with a finite element method (FEM) is carried out. The
numerical calculations show that better results are obtained for MC distribution of the PZTs.

Key words: triangular plate, PZT (piezoelectric zirconate titanate actuator), P-F-F (partial-
free-free) boundary condition, active vibration reduction

1. Introduction

An important contemporary technical problem is an active vibration reduction of
mechanical structures. The vibration reduction of the beams, plates, shells [18, 23, 25]
and rotating structures [19] plays a mayor part. The vibration reduction can be realized
with piezoelectric zirconate titanate actuators (PZTs) [4, 5, 7, 9]. One of the most impor-
tant problems is the distribution of PZTs on the structure. This problem is particularly
difficult, if the structure has not either an axis or a point of symmetry. The best example
of an unsymmetrical structure is the triangular plate.

The vibrations and its reduction of triangular plates are an important scientific prob-
lem in mechanics [6, 10, 21]. The effect of the cracked length on the dynamic behavior of
the triangular plates was investigated in [16] and references cited therein. But only free
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vibrations of partial-free-free (P-F-F) cantilever plate were taken into account. The finite
element method (FEM) was used in this study. The natural vibrations of the plates men-
tioned above were also determined experimentally in [20] and the results were compared
with the FEM solution and published in [16].

The solution of the PZTs distribution problem on the triangular plate was solved
in [1, 2]. It was proposed to bond of PZTs at surface places with maximum curvatures
(MC); they were so called MC sub-areas or quasi-optimal ones (the solution is not opti-
mal because the optimization theory was not applied). In [1, 2] the triangular plate with
only clamped-free-free (C-F-F) boundary conditions was considered. So, the curvature
of the plate surface might be determined in approximate manner, namely, the curvature
of the cross section line of the plate perpendicular to the clamped edge was taken into
account instead of the curvature of the surface. It was possible because this curvature
is much greater than the ones in any other direction. But in the case of P-F-F boundary
conditions, there is no direction of the dominated curvature. So, the curvature of the sur-
face should be considered. It should be noted few papers on PZTs distribution on the
vibration structure [8, 13, 14, 26]. But it is not pointed out the method of the problem
solution. Furthermore, the symmetrical (in some sense) research objects are considered,
viz. the beams and rectangular or square plates.

The aim of this paper is to confirm the idea of the MC distribution of PZTs to the
active vibration reduction of the triangular plate with P-F-F boundary conditions. To
realize the aim, the MC sub-areas must be determined based on curvature of the sur-
face. An effect of the vibrations reduction is measured directly through the change of
the vibration amplitude on the plate surface, bending moment and shearing force at the
clamped edge. To do this, these quantities are calculated for two cases. In the first case
PZTs are bonded at MC places. In the second case they are a bit shifted. The reduction
effect is measured via appropriate coefficients. Note, that the reduction effect may be
also measured indirectly, via parameter of the acoustic field radiated by the structure
without and with PZTs acting [3, 12, 13, 14, 25, 26].

The validity of the idea of the MC distribution of PZTs is substantiated mathemati-
cally and numerically.

2. Formulation of plate theory

The governing equation of transverse vibration motion of the plate, on the basis of
Kirchhoff’s classical small deflection theory, has the following form [6, 15]

N∆2u+ρhD2
t u = F (1)

where: u = u(x,y, t) – transverse deflection, F = F(x,y, t) – external force, ρ – mass
density, h – thickness, N = Y h3/12(1− v2) – flexural rigidity, Y – Young’s modulus,
∆ – Laplace’a operator, ∆ = D2

x + D2
y , D2

x(·) = ∂2(·)/∂x2, D2
y(·) = ∂2(·)/∂y2, D2

t (·) =
∂2(·)/∂t2, v – Poisson’s ratio.
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Figure 1. External loading by plane acoustic wave
(numerical interpretation).

Figure 2. Triangular plate with P-F-F boundary
conditions.

The external force consists of two components,

F = FE +FP (2)

where: FE = FE(x,y, t) – external excitation forced by plane acoustic wave, Fig. 1, FP =
FP(x,y, t) – control force due to PZTs.

The P-F-F boundary conditions imposed on the plate are defined in [11, 16, 20], Fig.
2. The boundaries at the clamped edge (b-edge) are described by

u = 0, θ = Dxu = 0. (3)

For simplicity at free edges (a-, c- and d-edge respectively) the boundary conditions are
described in compact form, i.e.

Qx = 0, Mxx = 0, (4)

Qy = 0, Myy = 0, (5)

Qn = 0, Mnn = 0, (6)

where Qn, Qx, Qy – equivalent shear forces, Mnn, Mxx, Myy – bending moments, nnn –
outside normal to the boundary, sss – outside tangential to the boundary, α - the angle
between normal sss and x-axis.

All calculations relay on FEM. This method is well-known (e.g. [17]). FEM is the
base of ADINA computer code and this program was used.

3. Interaction between plate and PZTs

The system consists of the triangular plate and PZTs perfectly bonded to the plate
surface. The mass and stiffness of PZTs are omitted, as they are far less than the same
quantities of the plate. If PZT is excited, the interaction between PZT and the plate ap-
pears. The interaction process is presented in detail in [7, 9] and references cited therein.
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The interaction leads to the reduction of the plate vibrations. Assuming the spatially uni-
form PZT, it provides boundary induction solely in terms of the external line moment
distributed along the edges of the PZT [4, 22].

In the plate equation of motion (1), the action of PZT is given by [7, 9]

FP = −Mx
(
< x− x1>

−2−< x− x2>
−2)(

< y− y1>
0−< y− y2>

0)
(7)

−My
(
< y− y1>

−2−< y− y2>
−2)(

< x− x1>
0−< x− x2>

0)

where < x >0= H(x), < x >−1= δ(x), < x >−2= δ′(x), Mx, My – line moments ampli-
tudes [4].

The PZT induces bending moments in x- and y-direction. They are given by the
formula

MP = Mx = Ca
d31

ha
V, My = Ca

d32

ha
V (8)

where Ca – constant depending on geometry and mechanical properties of PZT and plate,
d31, d32 – piezoelectric material strain constants, ha – PZT thickness, V – voltage in the
direction of polarization.

For example the bending moment along y-axis MP = Mx is presented in Fig. 3(a). As
the ADINA code is applied, the MP must be replaced by the pair of linear forces, Fig.
3(b),

MP =
FPlP

2
(9)

where lP = lx – PZT length in x-direction. The acting of forces FP on the plate models
the acting of the PZT.

Figure 3. (a) Bending moments of PZT. Figure 3. (b) Pair of forces of PZT.

4. Curvature of the surface

The base of the surface curvature belongs to the theory of the differential geometry
and its application to the plates may be found in [24]. For small deflections, the curva-
tures of the line, i.e. the cross section of the surface, in planes parallel to the planes πux
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Figure 3. (c) Idea of the acting of PZTs on the plate.

and πuy are given respectively by the formulas

κx =−D2
xu (10)

κy =−D2
yu. (11)

In any direction, described by vector nnn, the curvature is

κnnn = κxcos2γ−κxy sin(2γ)+κysin2γ (12)

where γ – see Fig. 4.

Figure 4. Definition of the angle γ.

The expression κxy = D2
xyu means twisting of the surface relatively to the x- and y-

axis. The maximal curvature of the cross section line in any direction (main one) is the
curvature of the surface at the point.

As mentioned above, in the case of C-F-F boundary conditions, the dominant cur-
vature is given by Eq. (10), i.e. the curvature of the line perpendicular to the clamped
edge. In the case of P-F-F boundary conditions, the curvature in all directions is similar.
Hence, the surface curvature should be analyzed from Eq. (12) instead of line one. In the
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following analysis, the surface extreme curvatures, in the direction γ play a major part,
i.e. κext(κmax,κmin),

κmax

κmin

}
=

1
2

(
κx + κy ±

(
(κx − κy)

2 + κ2
xy

)1/2
)

. (13)

The curvatures κmax and κmin are placed in the planes which are perpendicular each
other. In numerical calculations, one has to disposal the sets of discrete values {xi,yi}
and {u(xi,yi}) rather than the function u = u(x,y); xi, yi – nodes, i = 1,2, . . . . So, instead
of (13) its discrete form is used as follows:

κi max

κi min

}
=

1
2

(
κxi + κyi ±

(
(κxi − κyi)

2 + κ2
xiyi

)1/2
)

. (14)

The derivatives are replaced by appropriate finite differences (hereafter central ones)

κxi = −uxi−1,y j − 2uxi,y j + uxi+1,y j

h2
x

(15)

κyi = −uxi,yi−1 − 2uxi,yi + uxi,yi+1

h2
y

(16)

κxiyi =
uxi+1y j+1 − uxi−1y j+1 − uxi+1y j−1 + uxi−1y j−1

4hx hy
(17)

where hx, hy – distance between nodes in x-direction and in y-direction respectively.

5. Quasi-optimal places

As depicted in Fig. 3(b), two sets of line forces are in the disposal, i.e. {Fx,Fy},
{2Fx,2Fy}. The idea of MC distribution of the PZT is as follow. Put the forces {2Fx,2Fy}
on the line parallel to the x-, y-axis respectively. The intersection of these lines lies at the
point of the plate surface with maximum curvature Fig. 3(c). This point is so-called MC
one and consequently the PZT is MC distributed. Strictly speaking, PZT covers some
surface of the plate. This sub-area is called MC one. The forces {Fx,Fy} of each pair
have to be distributed symmetrically to the appropriate line. In these circumstances, the
plate is maximum "unbended".

The above explanation of MC distribution concerns only one PZT. However, it is
valid in more general case. If the surface has two or more points with maximum locally
curvatures, more PZTs should be bonded at these points in the similar manner.
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6. The reduction and effectiveness coefficients

Let be the difference between some physical values at the point of the suitable area

∆ψ = ψ−ψP (18)

where ψ and ψP – values of quantities calculated without and with PZT respectively,
ψ = {A,M,Q} – {vibration amplitude, bending moment, shearing force}. The difference
∆ψ is interpreted as the quantity of the vibration reduction and it is the first measure of
this reduction, i.e. the quantity reduction coefficient.

The second measurement of the vibration reduction is defined as

Rψ =
∆ψ
ψ

=
ψ−ψP

ψ
. (19)

Rψ is called the reduction coefficient and may be expressed in percent. Note, that if the
reduction coefficient is equal to one, the vibrations are entirely reduced.

An effectiveness of the vibration reduction is defined as a quotient of some vibra-
tion reduction measure by an amount of an energy provided to the system in order to
excite PZT. Hence, thirst measurement of the vibration reduction may be defined by the
following formula

RE;ψ =
Rψ

W
(20)

where W – amount of the energy provided to the system in order to excite PZT.
The RE;ψ is called an effectiveness coefficient. Energy provided to the system is

translated into couples of forces, Fig. 3(b). Therefore, the energy W in (20) may be
replaced with forces FP, hence

RE;ψ =
Rψ

fΣ
(21)

where fΣ = ∑P FP, P = 1,2, . . . ,nP, nP – number of actuators PZT in the system.
Hereafter for each PZT only one value of FP in denominator of (21) is taken into

account. The results will be similar, if this rule is retained for each case.
Eqs. (18)-(21) define the appropriate factors of the vibration reduction at the point of

the given area. In many cases, it is convenient to calculate mean values of these factors
at all area or at sub-areas. First of them is the mean value of quantity of the vibration
reduction or briefly the mean quantity reduction coefficient. It is defined by the following
formula

∆ψm =
1
ni

∑ i (ψi − ψP;i), i = 1,2, . . . ,ni (22)

where ψi and ψP;i – values of quantities calculated without and with PZT respectively at
i-points of the area, ni – number of points. Consequently, the mean reduction coefficient
and the mean effectiveness coefficient are defined respectively

Rψm =
∆ψm

ψm
(23)
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RE;ψm =
Rψm

W
(24)

or
RE;ψm =

Rψm

fΣ
(25)

where ψm = 1
/

ni ∑ i ψi. Hereafter, it is used only these factors which are appropriate to
the considered problem.

7. Numerical calculations and results

As mentioned in the introduction, for the MC distribution of PZT and C-F-F boun-
dary conditions the numerical results and conclusions are presented in [1, 2] and will
not be repeated here. Hereafter, to emphasize the validation and effectiveness of MC
distribution of PZTs on the triangular plate with P-F-F boundary conditions, the sets of
numerical experiments are performed. So, MC sub-areas is searched via the local maxi-
mal curvature of the plate surface, but not through the appropriate line curvature as in
[1, 2].

As a research object the plate made from aluminium with thickness h = 0.0625 in
(1.59 [mm]) is taken into account [1, 2, 20]. The length b, without the crack c is taken as
b = 10 [in] (254 [mm]) and the free edge a = 15 [in] (381 [mm]). The material constants
used for calculations are assumed as follows: density ρ = 0.259 [lb/in3] (7169 [kg/m3]),
Young’s modulus Y = 10.4× 106 [psi] (71.7 [GPa]), Poisson’s ratio v = 0.32. For the
PZTs: the piezoelectric strain constant d31 = d32 = −190× 10−12 [m/V] and thickness
ha = 0.019 [in] (0.48 [mm]), density ρa = 0.282 [lb/in3] (7800 [kg/m3]), Young’s mo-
dulus Y = 9.57×106 [psi] (66 [GPa]) and Poisson’s ratio va = 0.34.

The vibrations are forced with the loudspeaker in form of plane acoustic wave, har-
monic in time and second frequency. Such external loading is uniformly distributed on
the plate, Fig. 1. The second frequency is only chosen, because the first mode (for the first
frequency) has one global point with maximum curvature, hence this case is less interes-
ting. In turn, the third and next modes, are more complicated and the proof of the idea of
MC distribution of PZTs should have been somewhat technical difficult. Furthermore,
the higher frequencies play a minor part in the vibration. The numerical simulations are
carried out for the set of the crack length viz. c = {0.4, 0.6, 0.8} ·b. It is obvious, that
for three examined examples (three length of the clamped edge) the second frequency is
the set f = {67.8, 50.0, 29.9} [Hz].

The surface curvature is determined on the base of (14). For this purpose, the net
of points is covered of the plate surface: 481 points in the x-direction and 321 points in
y-direction. At each point of the net, 64 directions described by angle gamma are chosen,
γ = [0, . . . ,1800), Fig. 4. Next, at each point and at each direction the curvature of the
cross section lines is calculated. The maximal curvature of the line out of the set line
curvatures makes up the curvature of the surface at the net point. Surrounding of this
point is called MC sub-area.
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For the second mode there is one MC sub-area with dominating curvature. At this
sub-area, one square PZT is placed. Its dimensions are `x× `y = 0.0254× 0.0254 [m].
To compare the results, the calculations for shifted PZT about `x long are performed. It
is worth to stress, that the numerical calculations are performed for number of different
distributions of PZT obtained by shifting it in different directions and the different dis-
tance in relation to the MC distribution. In the paper the results for one shift of PZT are
presented since the other ones are the same in terms of the quality.

The interaction between PZT and plate is modeled with the forces put to PZT edges.
Values of these forces, the same at the opposite edges, are different on the perpendicular
edges. Their values focused on the PZT edges parallel to the x- and y-axis are different for
separate cracks and they are as follows: [ fx, fy] = [2,0.5] [N], [1,1] [N] and [1,2.5] [N].

Hereafter, the comments to the calculated results are given only to the first block
(i.e. for the crack c = 0.4b) pointing out appropriate rest results (for c = {0.5,0.8}b).
The second mode of the plate with the crack c = 0.4b is depicted in Fig. 5(a) (Figs. 6(a)
and 7(a)). The curvatures of the plate surface are shown in Fig. 5(b) (Figs. 6(b) and 7(b)).
There are two clear sub-areas with locally maximal curvatures of the plate surface. But
at the sub-area, in the vicinity of the crack, the curvature achieves definitely dominant
value. At this place, exactly in which the curvature achieves the global maximum, one
PZT is bonded. It is marked by the black square and MC label in Fig. 5(c) (Figs. 6(c) and
7(c)). In this sub-area the maximal curvature is exactly on the clamped line. Therefore,
from a technical point of view, PZT is shifted about necessary distance `x/2. To compare
the vibration reduction, the PZT is shifted about distance `x relatively to MC distribution.
It is shown in Fig. 5(c) (Figs. 6(c) and 7(c)) with grey square and SF label.

Because of the special object of research, the vibration reduction is measured in
two ways. First, it is measured through an analysis of the vibration amplitude A(x,y)
of the plate surface. Second, it is measured through an analysis of the bending moment
Mxx(x = 0,y) and the shearing force Qx(x = 0,y) at the clamped edge. From technical
point of view, the aim of the vibration reduction is mainly the reduction of Mxx(x = 0,y)
and Qx(x = 0,y) . But the amplitude reduction is also analyzed because its reduction is
translated into the reduction of two rest quantities.

The reduction magnitude of the vibration amplitude ∆A for MC distribution is pre-
sented in Fig. 5(d) (Figs. 6(d) and 7(d)). However, ∆A for SF distribution is depicted
in Fig. 5(e) (Figs. 6(e) and 7(e)). First set of results (concern to ∆A) is pointed out: the
reduction for MC distribution of PZT is much bigger (hot colors) than the reduction for
SF distribution. For both distributions of PZT, but particular for MC one, the sub-area of
reduction amplitude is moved, together with the increase of the crack length, towards the
free plate vertex of the crack edge. Note, that there are also little strengthening sub-areas
of the vibration amplitude (inside black line), mainly in neighborhood of the clamped
edge. But for the plate with P-F-F boundary conditions the strengthening sub-areas are
considerably smaller than for the plate with C-F-F [1, 2]. These remarks are confirmed
also by the reduction coefficient RA. It is shown in Fig. 5(f) (Figs. 6(f) and 7(f)).

The bending moment Mxx and shearing force Qx at the clamped edge are depicted
in Figs. 5(h), 5(i) (Figs. 6(h), 6(i) and 7(h), 7(i)). For both distributions of PZT, the
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reduction of Mxx and Qx is observed almost along all length of clamped edge. It should
be emphasized that the reduction of both quantities is much greater for MC distribution
in comparison with SF distribution.

The mean reduction coefficients are gathered in Tab. 1. If the geometric-physical
parameters of the PZT are the same for MC and SF distributions then the reduction
and effectiveness coefficients are also the same and the latter are omitted. One can con-
clude form tab. 1 that the obtained results confirm greater vibration reduction, and conse-
quently greater vibration effectiveness for the MC distribution of the PZT in comparison
with SF distribution.

7.1. Vibration reduction for c = 0.4b

Figure 5. (a) Second mode, c = 0.4b.

Figure 5. (b) Surface curvatures. Figure 5. (c) Distribution of PZTs.
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Figure 5. (d) Reduction magnitude ∆A for MC. Figure 5. (e) Reduction magnitude ∆A for SF.

Figure 5. (f) Reduction coefficient RA for MC. Figure 5. (g) Reduction coefficient RA for SF.

Figure 5. (h) Bending moment at the clamped
edge, line: solid – without reduction, dashed – MC,
dotted – SF.

Figure 5. (i) Shearing force at the clamped edge,
line: solid – without reduction, dashed – MC, dot-
ted – SF.



220 A. BRAŃSKI, S. SZELA

7.2. Vibration reduction for c = 0.6b

Figure 6. (a) Second mode, c = 0.6b.

Figure 6. (b) Surface curvatures. Figure 6. (c) Distribution of PZTs.

Figure 6. (d) Reduction magnitude ∆A for MC. Figure 6. (e) Reduction magnitude ∆A for SF.
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Figure 6. (f) Reduction coefficient RA for MC. Figure 6. (g) Reduction coefficient RA for SF.

Figure 6. (h) Bending moment at the clamped
edge, line: solid – without reduction, dashed – MC,
dotted – SF.

Figure 6. (i) Shearing force at the clamped edge,
line: solid – without reduction, dashed – MC, dot-
ted – SF.

7.3. Vibration reduction for c = 0.8b

Figure 7. (a) Second mode, c = 0.8b.



222 A. BRAŃSKI, S. SZELA

Figure 7. (b) Surface curvatures. Figure 7. (c) Distribution of PZTs.

Figure 7. (d) Reduction magnitude ∆A for MC. Figure 7. (e) Reduction magnitude ∆A for SF.

Figure 7. (f) Reduction coefficient RA for MC. Figure 7. (g) Reduction coefficient RA for SF.
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Figure 7. (h) Bending moment at the clamped
edge, line: solid – without reduction, dashed – MC,
dotted – SF.

Figure 7. (i) Shearing force at the clamped edge,
line: solid – without reduction, dashed – MC, dot-
ted – SF.

7.4. Mean coefficients of the vibration reduction

Table 3. Mean coefficients of the vibration reduction

c Coefficients MC SF

RAm 31.3 % 14.2 %
0.4b RMxx;m 36.1 % 16.1 %

RQx;m 28.2 % 11.1 %

RAm 21.3 % 9.4 %
0.6b RMxx;m 27.8 % 12.7 %

RQx;m 38.0 % 16.5 %

RAm 23.9 % 12.3 %
0.8b RMxx;m 31.0 % 17.1 %

RQx;m 43.1 % 20.9 %

8. Conclusions

Theory and numerical calculations lead to the following conclusions:

1. The PZTs, in active vibration reduction of triangular plates, should be bonded
in the special sub-areas, so called quasi-optimal ones. The quasi-optimal places
pointed out the local or global maximum curvatures of the surface.
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2. The quasi-optimal distribution of PZTs gives better effect than the other one. The
effect is measured, via appropriate coefficients, by the reduction of the vibration
amplitude on whole plate surface, the bending moment and the shearing force at
the clamped edge. This and the first conclusion confirm the results published in
[1] and [2].

3. In the vicinity of the crack, the curvature achieves maximal value. At this place,
i.e. quasi-optimal sub-area, one PZT should be attached.

4. If the crack is increased, the sub-area of maximal reduction amplitude is moved
towards the free plate vertex of the crack edge. This conclusion is obvious because
for the plate with C-F-F boundary conditions, the maximal vibration amplitude is
at the free plate vertex. For the plate with crack the maximal vibration amplitude
is at free plate vertex but of the crack edge. Therefore in active vibration reduction
in these (different) places, the greatest amplitude vibration reduction appears.

5. The strengthening sub-areas of the vibration amplitude are mainly in neighbor-
hood of the clamped edge and they are smaller than for the plate with C-F-F
boundary conditions.

6. The significant increase of the bending moment and shearing force in the clamped
edge is noted at the vicinity of the point junction clamping-crack. The phe-
nomenon is caused by the notch and it is increased together with the increase of
the crack length. Application of the active vibration reduction causes significant
decreasing of these quantities.

7. Mean reduction coefficients for the plate with P-F-F boundary conditions are
greater than with C-F-F ones. It means that the vibration reduction and the ef-
fectiveness reduction at the first case are greater too.

The conclusions entirely confirm the value of the idea of quasi-optimal distribution
of PZTs on triangular plates with P-F-F boundary conditions in the vibration reduction
problem.
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[14] M.S. KOZIEŃ and J. WICIAK: Impact analysis of piezoelectric elements distribu-
tion on the acoustic radiation of the plate. Open Seminar on Acoustics, Gliwice-
Szczyrk, Poland, (2003), 245-248, ISSN 0137-5075, (in Polish).

[15] A.W. LEISSA: Vibration of plates. Washington, NASA SP-160, D.C.: Office of
Technology Utilization, 1969, Document ID 19700009156.

[16] S. MIRZA and Y. ALIZADEH: Free vibration of partially supported triangular
plates. Computers & Structures, 51(2), (1994), 143-150, ISSN 0045-7949.
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