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An iterative method for time optimal control of
dynamic systems

NAVVAB KASHIRI, MOHAMMAD HASSAN GHASEMI and MORTEZA DARDEL

An iterative method for time optimal control of a general type of dynamic systems is pro-
posed, subject to limited control inputs. This method uses the indirect solution of open-loop
optimal control problem. The necessary conditions for optimality are derived from Pontrya-
gin’s minimum principle and the obtained equations lead to a nonlinear two point boundary
value problem (TPBVP). Since there are many difficulties in finding the switching points and
in solving the resulted TPBVP, a simple iterative method based on solving the minimum energy
solution is proposed. The method does not need finding the switching point so that the resulted
TPBVP can be solved by usual algorithms such as shooting and collocation. Also, since the
solution of TPBVPs is sensitive to initial guess, a short procedure for making the proper initial
guess is introduced. To this end, the accuracy and efficiency of the proposed method is demon-
strated using time optimal solution of some systems: harmonic oscillator, robotic arm, double
spring-mass problem with coulomb friction and F-8 aircraft.

Key words: dynamic systems, optimal control, time optimal control, Pontryagin’s mini-
mum principle, bounded control inputs

1. Introduction

Due to the fact that there are many practical applications where the task of finding
the control objective in the shortest possible time is desired, the time optimal control of
systems has been of great interest for decades. So, besides researches using the direct
method [1]-[4] and other methods [5], many researchers studied the applications of Pon-
tryagin’s minimum principle to the time optimal control of linear and nonlinear systems.
As regards solving the TPBVP the results from Pontryagin’s minimum principle (PMP)
are hard. Many numerical methods have been developed to solve time optimal control
problems.

Ito and Kunisch [6] regularized the time optimal control problems for a class of linear
multi input systems. Time optimal rest-to-rest maneuver of flexible structures, as linear
systems, has been investigated by several authors [7]-[10]. The time optimal control of
robots is investigated in many researches [11]-[14]. Also, based on the results of applying
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PMP on moon landing system, the problem of time optimal control of manipulators
which move on a given manifold, e.g. a prescribed path, has been investigated by many
researchers [15]-[17]. Meier and Bryson modified the steepest descent method of optimal
programming to find time optimal switch times for bang-bang control systems and the
switch time optimization (STO) program has been applied to a two-link manipulator with
two control inputs [18]. Kaya and Noakes [19] proposed an efficient algorithm, called
the time optimal switching (TOS) algorithm, for the time optimal switching control of
nonlinear systems with a single control input. They found a feasible switching control
using the switching time computation (STC) method to get from an initial point to a
target point with a given number of switchings which was developed in their previous
work [20].

Although numerous methods for determining switching times of time optimal prob-
lem have been investigated, the number of switching times must be specified at first
while the number of switching is usually unknown before the problem is solved. Lee
et al. [21] developed a novel problem transformation called the control parameterization
enhancing transform (CPET) to address these difficulties in the case of time optimal con-
trol problems. Huang and Tseng [22] introduced a numerical two-phase scheme, which
combines admissible optimal control problem formulation with enhanced branch-and-
bound algorithms, to solve bang-bang control problems in the field of engineering. Xie
and Kunisch [23] proposed a procedure to solve time optimal control problems based on
Newton’s method in combination with a continuous approximation to the discontinuous
bang-bang control.

In this paper, the time optimal control of a general type of dynamic systems subject
to control inputs limits is investigated. The problem is solved using a simple iterative
method based on the indirect optimal control without necessity of finding the switch-
ing point, similar to what is proposed in [24] for determining the maximum payload.
The necessary conditions for optimality are derived from Pontryagin’s minimum princi-
ple which is studied in [25]-[27]. The obtained equations lead to a nonlinear two point
boundary value problem (TPBVP) which can be solved by usual algorithm of solving
TPBVPs such as shooting or collocation method. A residual control based collocation
method [28], resulting in a piece of Matlab software called bvp6c, is applied to solve
the TPBVP in this work. The TPBVPs are very sensitive to initial guess and choosing
the different initial guesses may lead to a different solution which is not a desired one.
So, in order to make the proper initial guess, an approximate linear system is considered
and the corresponding optimal solution of this system is obtained using the analytical
method which is probed in [27]. The proposed method is able to solve the time optimal
control of nonlinear systems if its dynamic equations are in desired form or they can be
approximated by a linear system. Principal computations are performed, however, using
the original system.

To this end, some numerical simulations are studied. At first, the time optimal prob-
lem of well-known harmonic oscillator is solved and accuracy of the solution is com-
pared with the analytical one. Then, time optimal control of a robot arm, as a multi-input
system in desired form, is investigated. Finally, in order to show the ability of proposed
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algorithm for solving nonlinear systems which are not in desired form, the time optimal
control of double mass-spring system in presence of coulomb friction and F-8 aircraft
are studied.

2. Problem formulations

2.1. Problem statement

A dynamic system whose governing equations are the set of 2n-first order equations,
in the following form, is considered

(
X = [xT

1 , xT
2 ]

T = [x11, . . . ,x1n,x21, . . . ,x2n]
T ∈ ℜ2n

)
Ẋ = A(x1 (t))X(t)+B(x1 (t))u(t) (1)

where A ∈ ℜ2n×2n and AB ∈ ℜ2n×m are the coefficient matrices of states and control
inputs, respectively. Control inputs belong to the feasible set as follows

U =
{

u ∈ ℜm : U−
i ¬ ui ¬U+

i , i = 1, ...,n
}
. (2)

The problem specifies the admissible control inputs so as the system is changed from
the initial states to the final states in minimum time. It should be noted that, although the
systems in mentioned form (eqn. (1)) are desired and formulations for such systems are
developed, the proposed method is able to find time optimal control of fully nonlinear
system if it can be approximated by a linear system.

2.2. Optimal control

The optimal control problem determines the admissible control inputs u ∈ U, where
U is the set of the admissible control inputs (2), such that the dynamic system described
by the differential equation

Ẋ = f (X(t) ,u(t) , t) (3)

is transferred from the initial state at the initial time (t0) as follows

X(t0) = X0 ∈ ℜ2n (4)

to the admissible final state at the final time (t f ) as follows

X(t f ) = X f ∈ ℜ2n (5)

so that the following performance index be minimized

J =

t f∫
t0

L(X(t) ,u(t) , t)dt (6)

with respect to state vector functions X(t) and control input functions u(t).
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The indirect method which is based on a generalization of the calculus of varia-
tions has been applied here to solve the optimal control problem (PMP). With con-
sidering the first variation of the cost function J with dynamic constraints adjoined in
the manner of performance index (L(X(t),u(t), t)), the necessary conditions for op-
timality are derived. In this method, by introducing the vector of adjoint variables as
P = [pT

1 , pT
2 ]

T = [p11, . . . , p1n, p21, . . . , p2n]
T ∈ ℜ2n, the Hamiltonian function of the sys-

tem can be presented as follows

H (X(t) ,P(t) ,u(t) , t) = L(X(t) ,u(t) , t)+P(t)T f (X(t) ,u(t) , t) . (7)

According to Pontryagin’s minimum principle (PMP), the necessary conditions for opti-
mality are as follows [25]-[27]

Ẋ∗ (t) =
∂H (X∗ (t) ,P∗ (t) ,u∗ (t) , t)

∂P
(8)

Ṗ∗ (t) =−∂H (X∗ (t) ,P∗ (t) ,u∗ (t) , t)
∂X

(9)

u∗ = arg min
u∈U

H (X∗ (t) ,P∗ (t) , t) . (10)

The problem given by equations (8) and (9) is a set of 4n-first order ordinary dif-
ferential equations, with considering m input control equations (10), which needs 4n
conditions to be solved. With considering the 2n known initial states X0 equation (4)
and 2n final states X f equation (5) the required conditions are supplied.

In order to solve the time optimal problem using traditional methods, because of
unknown final time, an extra boundary condition, i.e. H(t f ) = 0, is required. This condi-
tion is usually more complex than the usual conditions and its application to complicated
systems make the TPBVP too difficult to solve. Here, similar to what is proposed in [24]
for determining the maximum payload, the minimum energy cost function is chosen as
the desired fixed final time performance index

L(X(t) ,u(t) , t) = uT Ru (11)

where R ∈ ℜm×m is symmetric, positive semi-definite weighting matrix which expresses
the weight of input controls in cost function. In this work, energy weighting matrix is
considered as a diagonal matrix R = diag(ε1, . . . ,εn). So the minimum time solution
is obtained by reducing the terminal time to possible extend. The exact algorithm is
elaborated in more.

As mentioned before, in order to provide the proper initial guess, the optimal solution
of a linear system (approximated system) is required. If the system is considered as a
linear, time-varying plant as

Ẋ(t) = ĀX(t)+ B̄u(t) . (12)
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With mentioned cost function (11) and boundary conditions given by equation (4) and
(5), the optimal states and controls are obtained using the analytical method presented in
[27]. This method is based on assuming the vector of adjoint variables as follows

P(t) = Y(t)X(t)−Z(t) (13)

where Y ∈ ℜ2n×2n and Z ∈ ℜ2n. Here, this analytical method is summarized to a three-
step numerical method as follows

1. Solving the following ordinary differential equations (ODEs)

Ẏ(t) =−Y(t) Ā− ĀT Y(t)+Y(t) B̄R−1B̄T Y(t) ∈ ℜ2n×2n

(14)
Ż(t) =

(
Y(t) B̄R−1B̄T − ĀT )Z(t) ∈ ℜ2n

with considering the following initial values

Y(t f ) = I ∈ ℜ2n×2n

(15)
Z(t f ) = X f ∈ ℜ2n

where I is the identical matrix of 2n-dimensional space. Since Y(t f ) is symmetric,
the mentioned equations are the set of n(2n+1) first-order equations which could
be solved using Euler method or Runge-Kutta method, easily.

2. Computing the optimal states by solving the following ODEs with considering
initial states (4) and the solution of Y(t) and Z(t) from the previous step.

Ẋ =
(
Ā− B̄R−1B̄T Y(t)

)
X(t)+ B̄R−1B̄T Z(t) . (16)

3. Calculating the optimal adjoint variables using P(t) = Y(t)X(t)−Z(t).

2.3. Dynamic system formulations

With considering the governing equation of system as equation (1) and performance
index of system as equation (11), by substituting equation (1) and (11) into equation (7),
(9) and (10), the adjoint differential equation and unlimited control inputs’ equations
(u∞ ∈ ℜm) are rewritten in following form

ṗ1i =−PT
(

Aei +
∂A
∂x1i

X+
∂B
∂x1i

u
)

i = 1, ...,n

(17)
ṗ2i =−PT Aei+n i = 1, ...,n

u∞ =−1
2

R−T BT P (18)
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where ei is the ith column (or row) of the identical matrix of 2n-dimensional space.
Also, it is fully clear that equation (1) is the same as equation (8). Since control inputs
are usually bounded (u ∈ U), control inputs’ equations should be modified as follows

ui =


U+

i

u∞
i

U−
i

U+
i < u∞

i

U−
i ¬ u∞

i ¬U+
i

u∞
i <U−

i .

(19)

It should be noticed that, these formulation is not valid for systems where the gov-
erning equations are not in desired form (equation (1)). For such fully nonlinear systems
the adjoint differential equations are obtained by applying the main equations (7) and
(9). If the governing equations of these systems do not include nonlinear terms in u,
the control inputs’ equations are obtained by applying the main equations (7) and (10),
similarly to computing the adjoint differential equations. Otherwise, if the governing
equations of these systems include nonlinear terms in u, the control inputs’ equations
are obtained using equation (18) with considering the control inputs’ coefficient matrix
of linear model of system instead of matrix B.

It must be noted that, these assumption impress the minimum energy solution while
it does not affect the minimum time solution. In the other words, the results obtained
with this assumption (using the control inputs’ coefficient matrix of linear model of
system for specifying the optimal control inputs) may not be the most minimum energy
solution. Since however the consumed energy is unimportant in time optimal solution,
this assumption does not affect the time optimal solution.

3. Algorithm of minimum time calculation

As mentioned, the presented formulation including 4n first-order ordinary differen-
tial equation (1) and (17) with considering control inputs’ equations (19) and boundary
conditions equations (4) and (5) leads to the two point boundary value problem (TP-
BVP). In order to find the minimum time used by the system to transfer it from initial
state to the final one, the following algorithm should be executed.

• Generating the required equations and boundary conditions.

• Making the proper initial guess by solving the linear system of Ā = A(x̄1) and
B̄ = B(x̄1) using the three-step method without considering bounded controls,
where x̄1 = (x1 (t0)+x1 (t f ))/2. If the governing equations of the system are not
in the desired form, the linear model of the system is used to make the initial guess.
It should be noted, that the terminal time should be chosen long enough so that the
control inputs do not exceed their bounds, but not too long.

• Assuming that a proper initial guess is provided, the optimal time is calculated
by applying the algorithm presented in Fig. 1 with considering the limited control
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inputs (eqn. (19)). Before that, since the terminal time is unknown and according
to following algorithm the final time is varied, it is recommended to transform the
time interval into a normalized one. Transformation t = η(t f − t0)+ t0 changes
t0 ¬ t ¬ t f to 0¬ η¬ 1. Applying this transformation, the set of state space equa-
tions are obtained as follows

d
dη

[
X
P

]
= t f

[
Ẋ
Ṗ

]
. (20)

Figure 1. Flowchart of minimum time calculation (last phase).

In presented flowchart, α, δ and β are the accuracies of the minimum time calculation,
decrement of the time on each step and the reducing rate of decrement of time, respec-
tively. S is the initial guess for solving the TPBVP. S is obtained from the solution of
the previous iteration. Λ is the vector of absolute maximum rate of control inputs. The
vector of control input rates at any instant is computed using the numeric variation of the
vector of control inputs as follows

u̇(t) = lim
∆t→0

u(t +∆t)−u(t)
∆t

. (21)

Therefore, Λ is defined in following form

Λ = [max(|u̇1 (t)|) , . . . ,max(|u̇n (t)|)]T ∈ ℜn for t ∈ [t0 t f ] . (22)
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As shown in Fig. 1, this step includes two loops. The loop index (n) decreases the ter-
minal time at each iteration and the other one (i) decreases the decrement of time in
previous loop. The loop index (n) is iterated till any solution with desired accuracy ex-
ists. After that, using the loop index (i) decreases the decrement of time. Then, the loop
index (n) is started again with new decrement of time. These iterations are continued till
the decrement of time in loop index (n) is greater than the accuracy of the minimum time
calculation.

Also, since the control inputs do not have the same efficiency, the energy weighting
matrix should be modified in succeeding iterations. In other words, control inputs have
different influence and different ability. Thus, the influence of control inputs on perfor-
mance index should be specified so as their full ability can be used. As regards weight
of control inputs and control input rates are in reverse relation, the weighting matrix of
energy should be modified in succeeding iterations using the following equation

R(n) =
R(n−1)·diag

(
Λ(n−1)

)
max

(
Λ(n−1)

) . (23)

It should be pointed out, that in order to decrease computations, there is no need to use
modification of weighting matrix of energy at the first loop index (i), i = 0. Also, it is
fully clear that application of this modification (eqn. (23)) has no merit for single input
systems.

4. Numerical simulations

In this part, in order to show the accuracy and efficiency of the proposed method,
results of simulations are presented. Firstly, the time optimal problem of harmonic os-
cillator as a single input linear system is studied. Then, the time optimal control of robot
arm as a multi input system in desired form is investigated. Also, the time optimal con-
trol of two fully nonlinear systems, which are not in desired form, is probed. The first
one is a double mass-spring system in presence of coulomb friction and the other one is
the F-8 aircraft.

For all simulations, the accuracy of minimum time calculation, initial decrement of
time on each step and reducing rate of decrement of time are chosen, respectively, as
α = 10−5, δ(0)(0) = 66 ·10−5 and β = 6.

4.1. Harmonic oscillator

The time optimal control of harmonic oscillator is considered as the first case of
investigation to compare the solution of proposed method with analytical one. The gov-
erning equation of system is as follows

Ẋ =

[
0 1
−1 0

]
X+

[
0
1

]
u. (24)
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The control input is bounded (u ∈ [−1, 1]). The initial point and target point are

X0 =
[
−5 5

]T
and X f =

[
0 0

]T
. (25)

By applying the proposed algorithm for t(0)f = 20s, after 41 iterations, the minimum
time is calculated. The computed optimal time is t f = 10.58715s which is in a good
agreement with the exact solution, t f = 10.5871s, and the solution presented in [6], t f =

10.588s. As shown in Fig. 2 (the error is defined by
(

t i−th iteration
f − texact

f

)
/texact

f , after
21 iterations no effective change is happened while the computational time is increased
(the computations are done using an entertainment PC of Pentium 3, CPU 2.26GHz and
RAM 1.5GB).

Figure 2. Pecentage of error and computational time versus iterations.

The optimal input control and phase plane, respectively, have been shown in Fig. 3
and Fig. 4 for t(0)f = 20s, t(21)

f = 10.6688s and t(41)
f = 10.58715s.

As illustrated in Fig. 3, the phase plane of t(41)
f and t(21)

f are nearly the same, while
their input controls, as shown in Fig. 4, is not exactly the same. With considering the
limitation of industrial actuators, which never can act like control of t(41)

f , and required
computation for such little improvement (-0.77%), it is not useful to perform more than
21 iterations.

4.2. Robot arm

This simulation case is a robot arm which has been investigated in [4]. The dynamic
equations of this system, as well as the robot parameters and boundary conditions, are
taken from this reference:

Lρ̈ = u1 Iθθ̈ = u2 Iφφ̈ = u3 (26)
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Figure 3. Optimal phase planes for different final times (solid line: t(41)
f , dashed line: t(21)

f , dotted line: t(0)f ).

Figure 4. Optimal input controls for different final times (solid line: t(41)
f , dashed line: t(21)

f , dotted line:

t(0)f ).

where L is the length of rigid robotic arm (L = 5), ρ is the length of the arm from
pivot point, θ and φ are the horizontal and vertical angles from the horizontal plane,
respectively. Iθ and Iφ show moment of inertia of the arm which are defined as follows

Iφ =
(
(L−ρ)3 +ρ3

)
/3 , Iθ = Iφsin2φ. (27)

The actuation constraints on control variables are

ui ∈
[
−1 1

]
i = 1,2,3. (28)
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Also, by defining the vector of state variables X =
[

ρ θ φ ρ̇ θ̇ φ̇
]T

, the initial
and terminal conditions are

X0 =
[

4.5 0 π/4 0 0 0
]T

(29)

X f =
[

4.5 2π/3 π/4 0 0 0
]T

. (30)

By applying the proposed algorithm, with considering t(0)f = 20s, the minimum time is
computed. The computed optimal time is t f = 9.14123s which is in good compatibility
with the solution presented in [4], t f = 9.14101s. The optimal states and input controls
are shown in Fig. 5 and Fig. 6, respectively.

Figure 5. Time optimal states versus non-dimensional time. (dashed line refers to the right y-axis, solid line
refers to the left y-axis.

Figure 6. Time optimal controls versus non-dimensional time.
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As shown in Fig. 7, the energy coefficient of the third actuator is decreased more
than the other ones. It means that, because of the situation of this actuator, its energy
coefficient should be less than the other ones to use its whole ability. Likewise, similar
situation is occurred for the first actuator while energy coefficient of the second actuator
has no change.

Figure 7. The coefficients of energy weighting matrix versus iterations.

4.3. Double spring-mass problem with coulomb friction

As mentioned above, the proposed method can solve the fully nonlinear system
which is not in desired form, if a proper linearized model exists. Here, a double spring-
mass system with coulomb friction, which was investigated in [3] using a linear pro-
gramming method, is considered. A schematic image of system is illustrated in Fig. 8.

Figure 8. Schematic image of double spring-mass system.

The governing equations of system with considering the coulomb friction are as
follows (sgn(·) shows the sign function of (·))

{
ẍ1

ẍ2

}
=


−k1 − k2

m1

k2

m1
k2

m2
− k2

m2


{

x1

x2

}
+

 1
m1

0

0
1

m2

{u1

u2

}
−µ


sgn(ẋ1)

m1

sgn(ẋ2)

m2

 . (31)
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The physical parameters, initial conditions and final conditions of system are taken from
[3] and are noted in Tab. 1. Without considering the last term, the term is caused by

Table 1. Physical parameters and boundary conditions of system.

i mi ki µ Control input bounds xi(t0) ẋi(t0) xi(t f ) ẋi(t f )

1 1.1 0.95 1.0 u1 ∈ [−4 4] 0 -1.0 1.0 0
2 1.2 0.85 1.0 u2 ∈ [−4 4] 0 -2.0 2.0 0

coulomb friction, the dynamic equations of system is a set of linear ones. So, the proper
initial guess is obtained by solving the optimal problem of this linear system. In order to
solve the TPBVP using usual algorithm, the sign function is approximated in following
form to provide smoother frictional force

sgn(ẋi)≈
2
π

arctan
(
100ẋ+i · ẋi

)
i = 1,2 (32)

where ẋ+i is the maximum absolute of ẋi (ẋ+i = max(|ẋi|)) obtained from the solution of
linear system (initial guess). For this case, with considering t(0)f = 5s, these values are
ẋ+1 = 1.11 and ẋ+2 = 2.97. By applying the proposed method, using the equations (7)-
(10), the time optimal trajectories are obtained. The minimum time is t f = 2.11394s and
optimal states are shown in Fig. 9.

Figure 9. Time optimal states versus non-dimensional time.

The optimal input controls and frictional force with considering mentioned smooth

approximation ( fi = −2µ
π

· arctan
(
100ẋ+i · ẋi

)
) are illustrated in Fig. 10 to show the ac-

curacy of this approximation.
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Figure 10. Time optimal controls and frictional forces versus non-dimensional time.

4.4. F-8 aircraft

As the last case, the time optimal control of the F-8 aircraft is investigated. The F-8
aircraft has been considered in various control studies and the time optimal control of
this nonlinear model has been investigated in many works. The dynamic model of this
system is taken from [29] and it is formulated by the following nonlinear equations

ẋ1 = −0.877x1 + x3 −0.0088x1x3 +0.47x2
1 −0.019x2

2 − x2
1x3

(33)
+ 3.846x3

1 −0.215u+0.28x2
1u+0.47x1u2 +0.63u3

ẋ2 = x3 (34)

ẋ3 = −4.208x1 −0.396x3 −0.47x2
1 −3.564x3

1 −20.967u
(35)

+ 6.265x2
1u+46x1u2 +61.4u3

where x1 is the angle of attack in radians, x2 is the pitch angle, x3 is the pitch rate in
radians per second and the control input u represents the tail deflection angle in radians.
The tail deflection angle is bounded −0.05236¬ u¬ 0.05236 and should be found that
brings the system from the initial state to the final one in minimum time.

The boundary conditions, by defining the vector of state variables X = [x1, x2, x3]
T ,

are as follows

X0 =
[

0.4655 0 0
]T

andX f =
[

0 0 0
]T

. (36)

As mentioned above, a linearized model for such nonlinear systems is needed. The
algorithm presented in [30] is applied to provide the required linear system. The linear
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model of the desired system is taken from this reference in following form

Ẋ =

 −0.891 0 0.954
0 0 1

−4.230 0 −0.400

X+

 −0.424
0

−20.895

u. (37)

Using the linear system lead to a non-acceptable errors [30], but since the quality
of initial guess is valid (as mentioned in results of [30]), the final results are in proper
accuracy and non-acceptable errors are vanished by solving the TPBVP which is made
of original system. Thus, the proper initial guess is provided by applying the three-step
method for linear system with considering t(0)f = 10s. Then, similar to the last case, the
adjoint differential equations are obtained using equations (7) and (9). The control input
equation is computed from equation (18) by using the control input’s coefficient matrix
of linear model for B and, as mentioned before, this assumption does not impress the
time optimal solution. As justified in [29] and [30], neglecting the nonlinear terms in
u has no effective influence on the results. Nevertheless, in this work, these terms are
neglected only for computing the control input equations (not for dynamic equations of
system and adjoint differential equations).

The optimal states and control are shown in Fig. 11 and Fig. 12, respectively.

Figure 11. Time optimal states versus non-dimensional time.

Terminal time computed by various methods for this problem in comparison with
final time calculated by proposed method is cited in Table 2. Comparing the illustrated
results in Table 2 shows the ability of proposed method.
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Figure 12. Time optimal control versus non-dimensional time.

Table 2. Results of various methods for the time optimal problem of F-8 aircraft.

Method Terminal time (s)

STC (Kaya and Noakes, 1996, [20]) 6.3867
CPET (Lee et al., 1997, [21]) 6.0350

TOS (Kaya and Noakes, 2003, [19]) 5.74217
Combined method (Xie and Kunisch, 2005, [23]) 5.72994

Two-Phase Scheme (Huang and Tseng, 2006, [22]) 5.7422
Proposed method 5.71949

5. Conclusions

In this paper, an iterative method (based on PMP) for the time optimal open loop
control of a general type of dynamic systems subject to limited control inputs is pro-
posed. This method is free of necessity of finding the switching point and leads to a
TPBVP which can be solved by usual algorithm of solving TPBVPs. Due to the fact that
TPBVPs are very sensitive to initial guess, a simple procedure for generating the proper
initial guess, based on unique analytical solution of the optimal control of linear systems,
is proposed. Simulations including linear system, nonlinear system in desired form and
fully nonlinear systems are performed to demonstrate the accuracy and efficiency of the
proposed method in comparison with other methods.
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