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Stability of continuous-discrete linear systems
with delays in state vector

TADEUSZ KACZOREK and ŁUKASZ SAJEWSKI

A new class of positive continuous-discrete linear systems with delays in state vector de-
scribed by the model based on 2D general model is addressed. Necessary and sufficient condi-
tions for the positivity and asymptotic stability of this class of linear systems are established. A
procedure for checking the asymptotic stability is proposed. The effectiveness of the procedure
is demonstrated on a numerical example.
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1. Introduction

In positive systems inputs, state variables and outputs take only nonnegative val-
ues. Examples of positive systems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems, compartmental systems, wa-
ter and atmospheric pollution models. A variety of models having positive linear systems
behavior can be found in engineering, management science, economics, social sciences,
biology and medicine, etc. Positive linear systems are defined on cones and not on linear
spaces. Therefore, the theory of positive systems is more complicated and less advanced.
An overview of state of the art in positive systems is given in the monographs [6, 9].

2D hybrid system is dynamic systems that incorporate both continuous-time and
discrete-time dynamics. It means that state vector, input and output vectors of 2D hybrid
system depend on the continuous time t and the discrete variable i. Examples of hybrid
systems include systems with relays, switches and hysteresis, transmissions, and other
motion controllers, constrained robotic systems, automated highway systems, flight con-
trol, management systems and analog/digital circuit. The positive continuous-discrete
2D linear systems have been introduced in [8], positive hybrid linear systems in [10]
and the positive fractional 2D hybrid systems in [11]. Different methods of solvability
of 2D hybrid linear systems have been discussed in [14] and the solution to singular 2D
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hybrids linear systems has been derived in [16]. The realization problem for positive 2D
hybrid systems has been addressed in [12]. Some problems of dynamics and control of
2D hybrid systems have been considered in [5, 7]. The problems of stability and robust
stability of 2D continuous-discrete linear systems have been investigated in [1-4, 17-19].
The stability of positive continuous-time linear systems with delays has been addressed
in [13]. Recently the stability and robust stability of Fornasini-Marchesini type model
and of Roesser type model of scalar continuous-discrete linear systems have been ana-
lyzed by Buslowicz in [2-4].

The main goal of this paper is to present a new class of positive continuous-discrete
linear systems with delays in state vector. Necessary and sufficient conditions for pos-
itivity and asymptotic stability of this class of continuous-discrete linear systems with
delays will be established and a procedure for checking the stability will be proposed.

The paper is organized as follows. In section 2 the conditions for the positivity of
continuous-discrete time systems with delays are established. Some preliminaries on
asymptotic stability of positive linear systems are also recalled in section 2. The main
result is presented in section 3 where the necessary and sufficient conditions for the
asymptotic stability are formulated and proved. A procedure for the checking the asymp-
totic stability and illustrating example are also given. Concluding remarks are given in
section 4.

The following notation will be used: ℜ – the set of real numbers, Z+ – the set of
nonnegative integers, ℜn×m – the set of n×m real matrices, ℜn×m

+ – the set of n×m ma-
trices with nonnegative entries and ℜn

+ = ℜn×1
+ . Mn is the set of n×n Metzler matrices

(real matrices with nonnegative off-diagonal entries) and In is the n×n identity matrix.
A strictly positive vector λ ∈ ℜn

+ will be denoted by λ > 0 and strictly negative λ < 0.

2. Positivity of continuous-discrete time systems with delays

Positivity of continuous-discrete time systems with delays

ẋ(t, i+1) =
q

∑
k=0

Ak
0x(t − kd, i− k)+

q

∑
k=0

Ak
1ẋ(t, i− k)+

q

∑
k=0

Ak
2x(t − kd, i+1)

(1a)
+B0u(t, i)+B1u̇(t, i)+B2u(t, i+1)

y(t, i) =Cx(t, i)+Du(t, i) t ∈ ℜ+ = [0,+∞] i ∈ Z+ = {0,1, . . .} (1b)

where ẋ(t, i) =
∂x(t, i)

∂t
, x(t, i) ∈ ℜn, u(t, i) ∈ ℜm, y(t, i) ∈ ℜp and Ak

l ∈ ℜn×n, l = 0,1,2,

k = 0,1, . . . ,q, B ∈ ℜn×m, C ∈ ℜp×n, D ∈ ℜp×m are the real matrices, d > 0 is a delay.
Boundary conditions for (1a) have the form

x0i(t, i), t ∈ [−qd,0], i ∈ Z+, xt0(t, i), ẋt0(t, i), i ∈ [−q,0], t ∈ ℜ+ (2a)

x0i(t,0), t ∈ [−qd,0], xt0(0, i) = ẋt0(0, i) = 0, i ∈ [−q,0]. (2b)
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Definition 1 The hybrid system with delays (1) is called (internally) positive if
x(t, i) ∈ ℜn

+ and y(t, i) ∈ ℜp
+, t ∈ ℜ+, i ∈ Z+ for arbitrary boundary conditions

x0i(t, i) ∈ ℜn
+, t ∈ [−qd,0], and xt0(t, i) ∈ ℜn

+, ẋt0(t, i) ∈ ℜn
+, i ∈ [−q,0], t ∈ ℜ+ and all

inputs u(t, i) ∈ ℜm
+, t ∈ ℜ+, i ∈ Z+.

Theorem 1 The hybrid system with delays (1) is internally positive if and only if

A0
2 ∈ Mn, Ak

0,A
k
1,∈ ℜn×n

+ , k = 0,1, ...,q; Ak
2,∈ ℜn×n

+ , k = 1,2, ...,q;
(3)

A0 +A1A2 ∈ ℜn×n
+ , B ∈ ℜn×m

+ , C ∈ ℜp×n
+ , D ∈ ℜp×m

+ .

Proof
Necessity. Let q= 1 and ei be the i-th (i= 1, . . . ,n) column of the identity matrix In. From
(1) for t ∈ ℜ+, i = 0 and x(t,1) = ei, x(t,0) = 0, ẋ(t,0) = 0, x(t−d,1) = 0, ẋ(t,−1) = 0,
x(t − d,−1) = 0 and inputs u(t,0) = u̇(t,0) = u(t,1) = 0 we have ẋ(t,1) = A0

2ei.
The trajectory does not live the orthant ℜn

+ only if A0
2ei  0, what implies ai j  0,

i ̸= j. Therefore, the matrix A2 has to be the Metzler matrix. For the same reasons
for x(0,1) = 0, x(0,0) = 0, ẋ(0,0) = 0, x(−d,1) = 0, ẋ(0,−1) = 0, x(t − d,−1) = 0,
ẋ(0,1) = B0u(0,0) ∈ ℜn

+, what implies B0 ∈ ℜn×m
+ since u(0,0) ∈ ℜm

+ may be arbi-
trary and u̇(0,0) = u(0,1) = 0. Similarly, for t ∈ ℜ+, i = 0 and x(t,1) = 0, x(t,0) = 0,
x(t −d,1) = 0, ẋ(t,−1) = 0, x(t −d,−1) = 0 we have ẋ(t,1) = A0

1ẋ(t,0) ∈ ℜn
+ what im-

plies A0
1 ∈ℜn×n

+ since ẋ(t,0)∈ℜn
+ may be arbitrary. For the same reasons for x(0,1) = 0,

ẋ(0,0) = 0, x(−d,1) = 0, ẋ(0,1) = 0, x(t −d,−1) = 0, ẋ(0,1) = A0
0x(0,0) ∈ ℜn

+, what
implies A0

0 ∈ ℜn×n
+ since x(0,0) ∈ ℜn

+ may be arbitrary. Continuing this procedure for
A1

0, A1
1, A1

2 and B1, B2 we may show that the hybrid system with delays (1) is inter-
nally positive only if the conditions (3) are satisfied. From (1b) for u(0,0) = 0 we have
y(0,0) = Cx(0,0) ∈ ℜp

+ , what implies C ∈ ℜp×n
+ , since may be arbitrary. For the same

reasons for we have , what implies C ∈ℜp×n
+ , since x(0,0)∈ℜn

+ may be arbitrary. For the
same reasons for x(0,0) = 0 we have y(0,0) = Du(0,0) ∈ ℜp

+, what implies D ∈ ℜp×m
+ ,

since u(0,0) ∈ ℜm
+ may be arbitrary.

Sufficiency. From (1) for q = 1, i = 0 and t ∈ [0,d] we have

ẋ(t,1) = A0
2x(t,1)+A1

2x(t −d,1)+F(t,0) (4a)

where

F(t,0) = A0
0x(t,0)+A1

0x(t −d,−1)+A0
1ẋ(t,0)+A1

1ẋ(t,−1)+B0u(t,0)
(4b)

+B1u̇(t,0)+B2u(t,1).

For given nonnegative initial conditions x(t,0), ẋ(t,0), ẋ(t,−1), x(t − d,−1),
x(t −d,1)≈ x0i(0,1) and u(t,0), u̇(t,0), u(t,1) ∈ ℜm

+, t ∈ [0,d] we obtain F(t,0) ∈ ℜn
+,

t ∈ [0,d] if A0
0, A1

0, A0
1, A1

1 ∈ ℜn×n
+ , B0, B1, B2 ∈ ℜn×m

+ .
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The solution of the equation (4a) has the form

x(t,1) = eA0
2tx(0,1)+

t∫
0

eA0
2(t−τ) (A1

2x(τ−d,1)+F(τ,0)
)
dτ (5)

and is nonnegative since eA0
2t ∈ ℜn×n

+ for t ∈ [0,d] if and only if A0
2 is the Metzler matrix

and A1
2 ∈ ℜn×n

+ . Knowing x(t,1) for t ∈ [0,d] in a similar way we can find x(t,1) for
t ∈ [d,2d], t ∈ [2d,3d] . . . .

From (1a) for q = 1, i = 1 we have

ẋ(t,2) = A0
2x(t,2)+A1

2x(t −d,2)+F(t,1) (6a)

where

F(t,1) = A0
0x(t,1)+A1

0x(t −d,0)+A0
1ẋ(t,1)+A1

1ẋ(t,0)+B0u(t,1)
(6b)

+B1u̇(t,1)+B2u(t,2).

Substituting (5) into (6b) we obtain

F(t,1) = A0
0eA0

2tx(0,1)+A0
0

t∫
0

eA0
2(t−τ)A1

2x(τ−d,1)dτ+A0
0

t∫
0

eA0
2(t−τ)F(τ,0)dτ

+A0
1

d
dt

eA0
2tx(0,1)+

t∫
0

eA0
2(t−τ)A1

2x(τ−d,1)dτ+
t∫

0

eA0
2(t−τ)F(τ,0)dτ


+A1

1ẋ(t,0)+A1
0(t −d,0)+B0u(t,1)+B1u̇(t,1)+B2u(t,2) (6c)

= eA2t(A0
0 +A0

1A0
2)(x(0,1)−F(0,0)−A3x(−d,1))

+A0
0
(
A1

2x(t −d,1)+F(t,0)
)
+A0

1
(
A1

2ẋ(t −d,1)+ Ḟ(t,0)
)
+A1

1ẋ(t,0)

+A1
0(t −d,0)+B0u(t,1)+B1u̇(t,1)+B2u(t,2).

For given nonnegative initial conditions (2), nonnegative inputs we obtain F(t,1) ∈ ℜn
+,

if and only if A0
0, A1

0, A0
1, A1

1 ∈ ℜn×n
+ , A0

0+A0
1A0

2 ∈ ℜn×n
+ , B0, B1, B2 ∈ ℜn×m

+ . The solution
of the equation (6a) has the form

x(t,2) = eA0
2tx(0,2)+

t∫
0

eA0
2(t−τ) (A1

2x(τ−d,2)+F(τ,1)
)
dτ ∈ ℜn

+ (7)

if the conditions (3) are met.
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Continuing the procedure for q = 1, i > 0 with nonnegative initial conditions (2),
non-negative inputs and conditions (3) we may show that

F(t, i) = A0
0x(t, i)+A1

0x(t −d, i−1)+A0
1ẋ(t, i)+A1

1ẋ(t, i−1)+B0u(t, i)
(8a)

+B1u̇(t, i)+B2u(t, i+1) ∈ ℜn
+

and

x(t, i+1) = eA0
2tx(0, i+1)+

t∫
0

eA0
2(t−τ) (A1

2x(τ−d, i+1)+F(τ, i)
)
dτ ∈ ℜn

+ (8b)

for t ∈ ℜ+ and i ∈ Z+. In a similar way, for q > 1 we may show that the hybrid system
with delays (1) is internally positive if the conditions (3) are satisfied.

3. Stability of positive continuous-discrete time systems with delays

Definition 2 The continuous-discrete linear system with delays (1) is called asymptoti-
cally stable if

lim
t,i→∞

x(t, i) = 0 (9)

for bounded initial conditions and for u(t, i) = 0, t  0, i ∈ Z+.

The matrix A ∈ ℜn×n is called asymptotically stable (Hurwitz) if all its eigenvalues lie
in the open left half of the complex plane.

Definition 3 . The point xe is called equilibrium point of the asymptotically stable system
(1) for Bu = 1n = [1 . . . 1]T ∈ ℜn

+ if the equation is satisfied

0 = Ā0xe + Ā2xe +1n (10)

where Ā0 =
q
∑

k=0
Ak

0, Ā2 =
q
∑

k=0
Ak

2. Asymptotic stability implies det[Ā0 + Ā2] ̸= 0 and from

(10) we have
xe =−[Ā0 + Ā2]

−11n. (11)

Theorem 2 [9] The linear continuous-discrete time system (1) for q= 0 is asymptotically
stable if and only if the zeros of the polynomial

det[Insz−A0 −A1s−A2z] = snzn +an,n−1snzn−1 +an−1,nsn−1zn + · · ·+a10s+a01z+a00
(12)

are located in the left half of the complex plane s and in the unit circle of the complex
plane z.
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Theorem 3 [9] The positive linear system

ẋ = Ax, A ∈ Mn (13)

is asymptotically stable if and only if the characteristic polynomial

det[Ins−A] = sn +an−1sn−1 + · · ·+a1s+a0 (14)

has positive coefficients, i.e. ak > 0 for k = 0,1, . . . ,n−1.

Lemma 1 [9] A nonnegative matrix A ∈ ℜn×n
+ is asymptotically stable (nonnegative

Shur matrix) if and only if the Metzler matrix A− In is asymptotically stable (Metzler
Hurwitz matrix).

Theorem 4 The linear continuous-discrete positive system with delays (1) is asymptoti-
cally stable if and only if all coefficients of the polynomial

det[Ins(z+1)− Ā0 − Ā1s− Ā2(z+1)]
(15)

= snzn + ān,n−1snzn−1 + ān−1,nsn−1zn + ...+ ā10s+ ā01z+ ā00

are positive, i.e. āk,l > 0 for k, l = 0,1, . . . ,n (ān,n = 1).

Proof From (9) follows that: 1) lim
i→∞

x(∞, i) = 0 and 2) lim
t→∞

x(t,∞) = 0. The conditions

1) implies that the coefficient of the polynomial (15) by Theorem 3 should be positive
for s = 0. Condition 2) implies that the coefficient of the polynomial (15) by Theorem
3 should be positive for z = −1. Substitution z = z+ 1 in (12) is equivalent to shifting
the position of the zeros located in the unit circle located in the left half of the complex
plane to the unit circle located in the center of the complex plane. Therefore, if the
coefficients of the polynomial (15) are positive then the zeros of the polynomial (15) are
located in the left half of the complex plane s and in the unit circle of the complex plane
z and the positive continuous-discrete time system with delays (1) is asymptotically
stable.

Theorem 5 Let the matrix Ā1− In be a Hurwitz Metzler matrix. The positive continuous-
discrete linear system with delays (1) is asymptotically stable if and only if there exists
a strictly positive vector λ ∈ ℜn

+ (all components of the vectors are positive) such that

(Ā0 + Ā2)λ < 0 (16)

where Ā0 =
q
∑

k=0
Ak

0, Ā1 =
q
∑

k=0
Ak

1, Ā2 =
q
∑

k=0
Ak

2.

Proof Integrating the equation (1a) with B0,B1,B2 = 0 in the interval (0,+∞) for i→+∞
we obtain

x(+∞,+∞)− x(0,+∞) =
q

∑
k=0

Ak
0

+∞∫
0

x(t − kd,+∞)+
q

∑
k=0

Ak
1x(+∞,+∞)
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−
q

∑
k=0

Ak
1x(0,+∞)+

q

∑
k=0

Ak
2

+∞∫
0

x(t − kd,+∞)

(17)

= A0
0

+∞∫
0

x(τ,+∞)dτ+
q

∑
k=1

Ak
0

+∞∫
0

x(t − kd,+∞)+
q

∑
k=0

Ak
1x(+∞,+∞)−

q

∑
k=0

Ak
1x(0,+∞)

+A0
2

+∞∫
0

x(τ,+∞)dτ+
q

∑
k=1

Ak
2

+∞∫
0

x(t − kd,+∞).

If the system is asymptotically stable then x(+∞,+∞) = 0 and from (17) we obtain(
q

∑
k=0

Ak
1 − In

)
x(0,+∞)−

q

∑
k=1

(
Ak

0 +Ak
2

) 0∫
−kd

x(τ,+∞)dτ=
q

∑
k=0

(
Ak

0 +Ak
2

) +∞∫
0

x(τ,+∞)dτ.

(18)
If the matrix Ā1 − In is Hurwitz Metzler matrix then for every x(0,+∞) ∈ ℜn

+ such that

(Ā1 − In)x(0,+∞) is a strictly negative vector (and
q
∑

k=1

(
Ak

0 +Ak
2

) 0∫
−kd

x(τ,+∞)dτ > 0),

λ =
+∞∫
0

x(τ,+∞)dτ is a strictly positive vector and (16). holds.

Now we shall show that if there exists a strictly positive vector λ such that (16) holds
then the positive system with delays (1) is asymptotically stable. It is well-known that
the positive system (1) with B0,B1,B2 = 0 is asymptotically stable if and only if the
correspond-ing transpose positive system

ẋ(t, i+1) = ĀT
0 x(t, i)+ ĀT

1 ẋ(t, i)+ ĀT
2 x(t, i+1), t ∈ ℜ+, i ∈ Z+ (19)

is asymptotically stable. As a candidate for a Lyapunov function for the positive system
(19) we choose

V (t,x(i)) = xT (t, i)λ (20)

which is positive for every nonzero x(t, i) ∈ ℜn
+ and strictly positive vector λ > 0. Using

(20) and (19) we obtain

∆V̇ (t,x(i)) = V̇ (t,x(i+1))−V̇ (t,x(i)) = ẋT (t, i+1)λ− ẋT (t, i)λ
= ẋT (t, i)[Ā1 − In]λ+ xT (t, i)Ā0λ+ xT (t, i+1)Ā2λ

(21)

¬

{
xT (t, i)(Ā0 + Ā2)λ

xT (t, i+1)(Ā0 + Ā2)λ
for
for

x(t, i) x(t, i+1)
x(t, i)< x(t, i+1)

since by assumption [Ā1 − In]λ < 0. If (16) holds then from (21) we have ∆V̇ (t,x(i))< 0
and the positive system is asymptotically stable.
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Remark 1 As the strictly positive vector λ we may choose the equilibrium point (6)
since for λ = xe we have

(Ā0 + Ā2)λ =−(Ā0 + Ā2)(Ā0 + Ā2)
−11n =−1n. (22)

Theorem 6 The positive system (1) is asymptotically stable if and only if both matrices

Ā1 − In, Ā0 + Ā2 (23)

are Hurwitz Metzler matrices, where Ā0 =
q
∑

k=0
Ak

0, Ā1 =
q
∑

k=0
Ak

1, Ā2 =
q
∑

k=0
Ak

2.

Proof From Remark 1 it follows that the positive system (1) is asymptotically stable
only if the matrix Ā1 − In is Hurwitz Metzler matrix. By Theorem 5 the positive system
is asymptotically stable if and only if there exists a strictly positive vector λ such that
(16) holds but this is equivalent that the matrix Ā0 + Ā2 is Hurwitz Metzler matrix.

To test if the matrices (23) are Hurwitz Metzler matrices the following theorem is
recommended [9, 15].

Theorem 7 The matrix A ∈ ℜn×n is a Hurwitz Metzler matrix if and only if one of the
following equivalent conditions is satisfied:

i) all coefficients a0, . . . ,an−1 of the characteristic polynomial

det[Ins−A] = sn +an−1sn−1 + ...+a1s+a0 (24)

are positive, i.e. ai  0, i = 0,1, . . . ,n−1,

ii) the diagonal entries of the matrices

A(k)
n−k for k = 1, . . . ,n−1 (25)

are negative, where

A(0)
n = A =


a(0)11 ... a(0)1,n

... ...
...

a(0)n,1 ... a(0)n,n

=

[
A(0)

n−1 b(0)n−1

c(0)n−1 a(0)n,n

]
,

A(0)
n−1 =


a(0)11 ... a(0)1,n−1

... ...
...

a(0)n−1,1 ... a(0)n−1,n−1



b(0)n−1 =


a(0)1,n

...

a(0)n−1,n

 , c(0)n−1 = [ a(0)n,1 ... a(0)n,n−1 ] (26)
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A(k)
n−k = A(n−1)

n−k −
b(k−1)

n−k c(k−1)
n−k

a(k−1)
n−k+1,n−k+1

=


a(k)11 ... a(k)1,n−k

... ...
...

a(k)n−k,1 ... a(k)n−k,n−k


=

[
A(k)

n−k−1 b(k)n−k−1

c(k)n−k−1 a(k)n−k,n−k

]
,

b(k)n−k−1 =


a(k)1,n−k

...

a(k)n−k−1,n−k

 , c(k)n−k−1 =
[

a(k)n−k,1 ... a(k)n−k,n−k−1

]
.

To check the stability of the positive system (1) the following procedure can be used.

Procedure 1

Step 1. Check if at least one diagonal entry of the matrix
q
∑

k=0
Ak

1 ∈ ℜn×n
+ is equal or

greater than 1. If this holds then the positive system with delays (1) is unstable
[9].

Step 2. Using Theorem 7 check if the matrix
q
∑

k=0
Ak

1 − In is Hurwitz Metzler matrix. If

not the positive system with delays (1) is unstable.

Step 3. Using Theorem 7 check if the matrix A0
2 +

q
∑

k=1
Ak

2 +
q
∑

k=0
Ak

0 is Hurwitz Metzler

matrix. If yes then the positive system with delays (1) is asymptotically stable.

Example 1 Consider the positive system (1) with the matrices

A0
0 =

[
0.3 0.2
0.1 0.4

]
, A0

1 =

[
0.4 0.2
0.1 0.3

]
, A0

2 =

[
−0.6 0
0.05 −0.95

]
,

(27)

A1
0 =

[
0.01 0.02
0.01 0.01

]
, A1

1 =

[
0.1 0.05

0.05 0.09

]
, A1

2 =

[
0.1 0.15

0.01 0.2

]
.

By Theorem 1 the system is positive since A0
2 ∈ Mn, A0

0,A
1
0,A

0
1,A

1
1,A

1
2 ∈ ℜ2×2

+ and

A0
0 +A0

1A0
2 =

[
0.07 0.01

0.055 0.115

]
∈ ℜ2×2

+ .

Using Procedure 1 we obtain the following:
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Step 1. All diagonal entries of the matrix A = A0
1 +A1

1 are less than 1.

Step 2. The matrix

A0
1 +A1

1 − I2 =

[
−0.5 0.25
0.15 −0.61

]
is Hurwitz Metzler matrix since the coefficients of the polynomial

det[I2s−A0
1 −A1

1 + I2] =

∣∣∣∣∣ s+0.5 −0.25
−0.15 s+0.61

∣∣∣∣∣= s2 +1.11s+0.27 (28)

are positive.

Step 3. The matrix

A0
0 +A1

0 +A0
2 +A1

2 =

[
−0.19 0.37
0.17 −0.34

]
is also Hurwitz since the coefficients of the polynomial

det[I2s−A0
0−A1

0−A0
2−A1

2] =

∣∣∣∣∣ s+0.19 −0.37
−0.17 s+0.34

∣∣∣∣∣= s2+0.53s+0.0017 (29)

are positive.

By Theorem 6 the positive system (1) with (27) is asymptotically stable. The polynomial
(15) for the positive system has the form

det[I2s(z+1)−A0
0 −A1

0 − (A0
1 +A1

1)s− (A0
2 +A1

2)(z+1)]
(30)

= s2z2 +1.11s2z+1.25sz2 +1.17sz+0.27s2 +0.37z2 +0.19s+0.26z+0.0017

and its coefficients are positive. Therefore, by Theorem 2 the positive system (1) with
(27) is asymptotically stable.

4. Concluding remarks

The new class of positive continuous-discrete linear systems with delays in state
vector described by the model, similar to the first Fornaisni-Marchesini model, has
been introduced. Necessary and sufficient conditions for the positivity of this class of
continuous-discrete linear systems with delays in state vector has been established. Nec-
essary and sufficient conditions for the asymptotic stability of this class of continuous-
discrete linear systems with delays have been also established (Theorem 5 and 6). A
procedure for checking the stability has been proposed and its effectiveness has been
demonstrated on numerical example. The considerations can be also extended for frac-
tional positive 2D continuous-discrete linear systems.
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