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Quantum simulation of the tunnel effect
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Abstract. In this paper, we examine whether a quantum computer can efficiently simulate quantum processes such as the tunnel effect. We

examine a quantum algorithm that calculates the value of transition and reflection coefficients for the Gaussian wave packet scattered on

a rectangular potential. We compare the results obtained in this way with the results of classical simulations and analytical calculations.
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1. Introduction

In the near future, quantum calculations can make a major

contribution to the development of informatics [1]. Although

practical implementations of quantum computer have not been

built yet, its existence seems to be possible [2]. Therefore, it

is worth examining the properties of such machines.

Today we know the Shor [3] and Grower [4] algorithms

which are faster than their best classical counterparts. Another

promising application of the quantum computer is quantum

simulations, i.e. computer modelling of the behaviour of phys-

ical quantum systems.

As it is well known, simulations of quantum systems per-

formed using conventional computers are not effective. This

means that for a classical computer, the memory resources

and time required to simulate grow exponentially with the

size of the quantum system. In the case of a quantum com-

puter, a situation is different. The relationship between the

size of the quantum computer (register) and the size of the

simulated quantum system is linear. Also the number of ele-

mentary operations (quantum gates) to be performed on the

register usually does not grow exponentially.

Among many scientists (not professionally involved in

quantum computing) there is a belief that a quantum com-

puter will have a limited application. Indeed, despite the fact

that there is a lot of papers on quantum computing, only a

few quantum algorithms have proved to produce satisfactory

results.

Our main goal is to investigate this problem. In this paper,

we examine whether the quantum computer can calculate the

probability of reflection R and the probability of transition T
for a particle scattered on the rectangular barrier of the po-

tential. We have chosen this task because it has an analytical

solution which gives the opportunity to examine the accuracy

of the obtained results.

Recall that quantum tunnelling refers to the quantum me-

chanical phenomenon where a particle tunnels through a barri-

er that it could not surmount classically (i.e. where the energy

of the particle E is lower than the height V0 of the barrier).

This plays an essential role in the physical phenomena occur-

ring in the nucleus (synthesis and decomposition reactions),

in semiconductors (negative dynamic resistance of the tunnel

diode) or in superconducting structures (Josephson junction).

The effect was predicted in the early 20th century, and was

accepted as a general physical phenomenon in the middle of

the 20th century.

Although the tunnel effect has been known for over a cen-

tury, it still raises interest among researchers. This is reflect-

ed both in the scientific literature [5] and popular science

books [6].

In this paper, we examine the process of tunnelling for

the Schrödinger particle. The quantum algorithm simulating

the Schrödinger particle has been exhaustively described in

our earlier work [7]. Its modification for the case of the parti-

cle with spin (Pauli particle) has been successfully examined

in [8]. It is based on the Quantum Fourier Transform and the

procedure of diagonalisation of a time evolution operator. In

the next section, we briefly recall its essential elements.

It is worth mentioning that the possibility of using a quan-

tum register to simulate the Schrödinger particle has already

been discussed in the literature. For example, papers [9, 10]

have examined the quantum lattice-gas model. An algorithm

similar to the one proposed in this paper has been tested in

papers [11–14] for free particle and for a harmonic oscillator.

The possibility of using the parallel computation methods for

simulation of a quantum computer was shown in [15]. An in-

troduction to the basic computational models used in quantum

information theory can be found in [16].

2. Quantum simulations

of the Schrödinger particle

The time evolution of the Schrödinger particle in one-

dimensional case takes the form:

i~
d

dt
Ψ(x, t) = (H0 + V (x))Ψ(x, t), (1)

where H0 = p2/(2m) is free Hamiltonian and V (x) is the

potential describing interactions with an external force. In

our considerations it is the stationary rectangular potential

(Fig. 1).
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Fig. 1. Rectangular potential with an amplitude V0 and width d used

to examine the tunnel effect

The formal solution of Eq. (1) can be expressed in the

following form:

Ψ(x, t1) = exp(−i(H0 + V (x))∆t/~)Ψ(x, t0), (2)

which describes the evolution of the system from the initial

state at time t0 to the state at time t1 = t0 + ∆t.

In our method, the wave function is sampled Ψ(x) →
Ψn = Ψ(∆xn) and encoded in the state of the quantum reg-

ister. Time evolution operator from Eq. (2) is approximated

as follows:

exp(−i(H0 + V (x))∆t/~)Ψn(t)

= exp(−i V (x)∆t/~)

· F−1{exp(−i p2/(2m~))F{Ψn(t)}},
(3)

where F is Quantum Fourier Transform.

The process of simulation is shown in Fig. 2. In the first

block (initial state preparation) Gaussian state (4) is entered to

the register (black curve on Fig. 3). Blocks QFT, FE, RQFT

and POT implement one time step of simulation (evolution op-

erator from Eq. (3)). Blocks POT and FE implement operators

exp(−iV (x)∆t/~ and exp(−ip2/2m~)) respectively. Block

QFT and RQFT implement Quantum Fourier Transform and

its inverse1. In the measurement block state of the oldest qubit

is measured. The reflection coefficient Rq is identified with

the probability of finding the particle in the left half of the

simulated area (corresponding to state |0〉 of the oldest qubit).

Analogously, the transmission coefficient Tq is identified with

the probability of finding particle in the right half of the area

(corresponding to state |1〉 of the oldest qubit).

Fig. 2. Scheme of the quantum algorithm

Fig. 3. Sample output of the algorithm. Black line (no. 1) is the initial

state of quantum register (Eq. (4)). Blue line (no. 2) is the final state

of register after the quantum simulation (before measurement). Red

line (no. 3) is a result of the Cayley’s simulation. (no. 3, Table 2)

3. The simulation results

The main result of our work is the calculation of the prob-

ability of reflection Rq and transmission Tq of the Gaussian

packet whose initial state has the form:

Ψ(x) = Cn exp

(

− (x − 〈x〉)2
4dx2

+
i〈p〉x

~

)

, (4)

where 〈x〉 is the expected value of the position, 〈p〉 is the

expected value of the momentum, dx is standard deviation of

the position while Cn is a normalization constant.

We have analyzed the Gaussian particle with parameters:

m = 9.1∗10−31 kg (mass of the electron), kinetic energy (the

most probable value): Emp = 1.0 eV, standard deviation of

the position of the packet: ∆x = 1.0 nm. The size of the sim-

ulation area was xmax = 50.0 nm and initial position of the

maximum of the packet (against the left edge of investigated

area) 〈x〉 = 5.0 nm. The obtained results for different values

of d and V0 are presented in the Tables 1–3 and Figs. 4, 5.

Table 1

Comparison of the results of quantum simulations (Rq , Tq) with the results

of classical simulations (Rk , Tk) and analytical results (Ra, Ta) for

d = xmax/16. In both cases we took dt = 10−16 s and n = 540 time

steps. The register of size nq = 9 qubits has been used, which gives

nb = 512 spatial samples

No. V0 [eV] Ra Ta Rk Tk Rq Tq

1 0.8 0.3717 0.6283 0.4566 0.5434 0.4186 0.5814

2 1.0 0.6964 0.3036 0.7851 0.2149 0.7441 0.2559

3 1.2 0.9158 0.0841 0.9540 0.0460 0.9331 0.0669

4 1.4 0.9875 0.0125 0.9947 0.0053 0.9854 0.0146

5 1.6 0.9983 0.0017 0.9996 0.0004 0.9906 0.0094

Table 2

Comparison of the results of quantum simulations (Rq , Tq) with the results

of classical simulations (Rk , Tk) and analytical results (Ra, Ta) for

d = xmax/128. In both cases, we took dt = 10−16 s and n = 540 time

steps. The register of size nq = 9 qubits has been used

No. V0 [eV] Ra Ta Rk Tk Rq Tq

1 0.8 0.3340 0.6660 0.3612 0.6388 0.3455 0.6545

2 1.0 0.4996 0.5004 0.5268 0.4732 0.5119 0.4881

3 1.2 0.6452 0.3547 0.6669 0.3331 0.6560 0.3440

4 1.4 0.7572 0.2428 0.7717 0.2283 0.7654 0.2346

5 1.6 0.8360 0.1634 0.8448 0.1553 0.8420 0.1580

6 1.8 0.8899 0.1101 0.8940 0.1060 0.8934 0.1066

1Implementation of QFT, FE, RQFT and POT block on a two-qubit logical gates are presented in [7].
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Table 3

Comparison of the results of quantum simulations (Rq , Tq) with the

analytical results (Ra, Ta) for d = xmax/16. Two times smaller time step

(dt = 5 ∗ 10−17 s and n=1080 time steps) and two times greater spatial

sampling density (size of register: nq = 10 and nb = 1024 spatial

samples) than in the case of Table 1 has been used

No. V0 [eV] Ra Ta Rq Tq

1 0.8 0.3717 0.6283 0.4135 0.5865

2 1.0 0.6964 0.3036 0.7395 0.2605

3 1.2 0.9158 0.0841 0.9302 0.0698

4 1.4 0.9875 0.0125 0.9829 0.0171

5 1.6 0.9983 0.0017 0.9879 0.0121

For comparison, the transition and reflection coefficients

calculated by other methods have also been included in the

tables. These are: the analytical method (described in Appen-

dix A) and the method based on classical simulations (de-

scribed in Appendix B). Values calculated analytically (using

the Eqs. (16)–(17)) have been named Ra and Ta while the

values calculated using the classical simulation are denoted

by Rk, Tk.

Fig. 4. Absolute error for the transition coefficient T as a function

of V0. Top plot for results from Table 1, bottom plot for results from

Table 2. Red line: for quantum simulation, blue line: for classical

simulation

Fig. 5. Absolute error for the transition coefficients T as a function

of V0. Red line for simulation with nq = 9 (Table 1), blue line for

simulation with nq = 10 (Table 3)

4. Conclusions

• After comparing the results from Table 1 and Table 2, we

can conclude that at the same spatial resolution the ac-

curacy of quantum and classical algorithms is similar. In

addition, we noticed (based on the results which are not

presented in this paper) that the quantum algorithm is more

stable.

• Even a small quantum register (nq = 9) has proved to give

reliable results.

• The main advantage of the quantum algorithm is that it

requires a smaller amount of logic gates at each step. For

one time step in the register of nq qubits length (N = 2nq

spatial samples) we need only 3/2n2
q+5/2nq+19 quantum

logic gates. It gives time complexity equal to O(log2 N ).

In comparison, the classical (Cayley’s) algorithm provide

time complexity no better than O(N log N ). This is due to

the fact that system of N linear equations must be solved

at each time step of simulation.

• The main (well known) disadvantage of a quantum algo-

rithm is the problem with reading the results. Recall that

quantum algorithm, by its very nature, is a probabilistic al-

gorithm. We cannot read the results Rq and Tq in terms of

symbolically encoded numbers but in terms of probabili-

ties that the register reaches a certain state. In order to read

these probabilities, the algorithm and the act of measure-

ment must be repeated many times as a random process.

This results from the fact that it is impossible to clone the

quantum state.

• In our work, we did not analyse of the process of initial

data entry in the register (“initial state preparation” block

from Fig. 2). This issue is examined in next work [17].

• We do not review here the factors affecting the accuracy of

the results such as accuracy of quantum gates realization

or noise in the register (decoherence). The analysis of these

problems is left for future research.
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Appendix A. Analytical formulas

for the reflection and transition coefficients

The problem of calculation of the transition and reflection

coefficients for particles in plane wave state can be found in

many textbooks on quantum mechanics (e.g. [18]). Here, we

present only a sketch of that derivation.

In order to find R(k) and T (k) coefficients for particle

with momentum k, time-independent Schrödinger equation

HΨ(x) = EΨ(x) should be solved. In the case of the rectan-

gular potential, for E < V0, specific solution takes the form:

Ψ(x, k) = θ(−x − a)(exp(ikx) + R(k) exp(−ikx))

+ θ(x + a)θ(−x + a)(A(k) exp(−βx)

+ B(k) exp(βx))+

+θ(x − a)T (k) exp(ikx),

(5)

where k =
√

2Em~
−1 and β =

√

2(V0 − E)m ~
−1. For

E > V0 Eq. (5) remains valid if we make the substitution

β → ik′ where k′ =
√

2(E − V0)m ~
−1.

Coefficients R(k) and T (k) are calculated from the con-

tinuity conditions:

Ψ(x, k)|x→−a− = Ψ(x, k)|x→−a+ , (6)

∂xΨ(x, k)|x→−a− = ∂xΨ(x, k)|x→−a+ , (7)

Ψ(x, k)|x→+a− = Ψ(x, k)|x→+a+ , (8)

∂xΨ(x, k)|x→+a− = ∂xΨ(x, k)|x→+a+ , (9)

where +a and −a are the position of the left and right edge

of the barrier potential respectively.

For E < V0 we obtain:

|T (k)|2 =
1

1 +
V 2

0

4E(V0 − E)
sinh2(βd)

, (10)

|R(k)|2 =

V 2
0

4E(V0 − E)
sinh2(βd)

1 +
V 2

0

4E(V0 − E)
sinh2(βd)

, (11)

while for E > V0:

|T (k)|2 =
1

1 +
V 2

0

4E(E − V0)
sin2(k′d)

, (12)

|R(k)|2 =

V 2
0

4E(E − V0)
sin2(k′d)

1 +
V 2

0

4E(E − V0)
sin2(k′d)

. (13)

These formulas can be written together:

|T (k)|2 = θ(k0 − k) |T−|2 + θ(k − k0) |T+|2, (14)

|R(k)|2 = θ(k0 − k) |R−|2 + θ(k − k0) |R+|2, (15)

where |T−|2 is given by Eq. (10), |R−|2 is given by Eq. (11),

|T+|2 is given by Eq. (12), |R+|2 is given by Eq. (13) and

k0 =
√

2V0m~
−1.

The probability of transition Ta of Gaussian wave packet

is given by:

Ta =

∞
∫

−∞

dk |a(k)|2 |T (k)|2 (16)

while the probability of reflection Ra is equal to:

Ra =

∞
∫

−∞

dk |a(k)|2 |R(k)|2 (17)

where a(k) is a Fourier transform of initial state (4) of the

particle.

Appendix B. Brief description of the classical

algorithm used for comparison

As a comparative method, we used the classical Cayley’s

method [19]. It is based on the Schrödinger equation of mo-

tion written in the following form:

(1 + 1/2i H dt/~)Ψ(t + dt) = (1− 1/2i H dt/~)Ψ(t), (18)

where H = p2/2m + V is the Hamiltonian of the particle

with p = −i~∂x and the second derivative is carried out by

a three-point approximation. In such a situation, the equation

for one time step of simulation takes the following form:

−iAΨn+1(t2) + CnΨn(t2) − iAΨn−1(t2)

= iAΨn+1(t1) + C∗

nΨn(t1) + iAΨn−1(t1),
(19)

where

t2 = t1 + dt,

A = ~dt/(4m∆x2),

Cn = 1 + i(2A + Vndt/(2~))

while Vn are sampled values of the potential.
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