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Control of a planar robot in the flight phase

using transverse function approach
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Abstract. This paper deals with stabilization and tracking control problems defined with respect to a planar mechanical structure similar to

Raibert’s robot. The proposed control solution is based on formal analysis of the control system on a Lie group. In order to take advantage of

Lie group theory a dynamic extension of the robot kinematics is introduced. To cope with non-zero angular momentum the controller based

on transverse functions is employed. Properties of the closed-loop control system are investigated based on simulations including practical

stabilization at neighborhood of a constant point or a reference trajectory.
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1. Introduction

Control of nonholonomic systems has been an important re-

search issue in robotics for a few decades. This is due to the

fact that nonintegrable phase constraints can be observed for

various robotic structures. Basically, one can distinguish two

main sources of these constraints. The first one, common-

ly met in practice for a wide class of kinematic models of

wheeled vehicles, arises due to interaction between the bod-

ies during ideal rolling. The second one is a consequence of

the fundamental laws of physics, which manifest themselves in

the form of the conservation principle of angular momentum

in the absence of external torques. An example of kinematic

description of such systems can be found in [1].

In this paper we deal with a class of planar multi-body

systems subject to phase constraints as a result of angular mo-

mentum conservation. These constraints reduce the degree of

freedom of such mechanical systems that can hinder recon-

figuration of their links. This issue can be observed for space

robots in the permanent free flight. A more typical example

of constrained systems are walking and hopping robots mov-

ing in the presence of gravity. These robots are governed by

a hybrid dynamics which is defined at stance and flight phases

as well it describes transitions stages between these phases,

cf. [2, 3]. For these mechanisms the duration of flight phase

is limited by assumption.

The control problem dedicated to robots with kinemat-

ic constraints coming from the angular momentum princi-

ple has been investigated in the robotics literature. Typical-

ly, the authors take advantage of open-loop motion planning

supported by nonlinear optimization. Some propositions have

been formulated for space manipulators [4]. By contrast, not

many papers are devoted to analytical methods based on the

closed-loop control. Worth particular mention are works by

Xin et al. [5], Grizzle and others [6] and Rehman and Michal-

ska [7].

This paper refers to the second group of the specified

control methods. It proposes an alternative control solution

based on the transverse function approach for a two-link fly-

ing mechanical structure similar to the Raibert’s robot [8].

The main purpose of this works is to design the algorithm for

the specific nonholonomic kinematics with a drift introduced

by non-zero angular momentum.

The theory of transverse functions introduced by Morin

and Samson [9] so far has been applied to various nonhoholo-

nomic systems including simple wheeled robots [10], wheeled

robots with trailers [11, 12], nonholonomic ball [13], trident-

snake robot and others [14]. The crucial property of the con-

troller based on transverse functions is its possibility to recov-

er approximately non-feasible directions in the phase space of

the given constrained system. To be more clear, the nonholo-

nomic system can behave similarly to the holonomic one. As

a result, it becomes possible to stabilize the system configura-

tion in some vicinity of desired point or trajectory, even when

a permanent disturbance occurs. Simultaneously, smoothness

of the control law gives possibility to increase robustness of

the closed-loop system to some class of disturbances (the ro-

bustness issue concerning control of nonholonomic systems

have been reported in some papers [15–18]).

The proposed control design takes advantage of a Lie

group theory which is obtained by a dynamical extension and

integration of nilpotent control Lie algebra specified for the

extended kinematics. Using Lie group allows proposing an

almost globally defined control solution. Here we base on

quite well established foundations of differential geometry,

Lie algebras and Lie groups and their application in control

theory. Basically, control methods taking advantage of differ-

ential geometry have been originated more than 30 years ago

– cf. [19–22]. One of the first monograph publication that

shows how to apply theses mathematical tools to robotic ma-

nipulators were written by Murray et al. [23]. In addition one
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can cite works done by Tchoń [24], Selig [25], Canudas de

Wit et al. [26] and Bloch [27].

The main aim of this paper is to demonstrate possibil-

ity of using these techniques to cope with non-classic con-

trol problem defined in the precedence of any bounded and

non-admissible drift which cannot be trivially compensated.

According to the best authors’ knowledge the control solution

presented in this paper is the first proposal of control para-

digm taking advantage of transverse functions addressed for

nonholonomic systems in the flight phase.

The paper is organized as follows. In Sec. 2 the robot

kinematics is considered and its fundamental properties are

described using a Lie algebra. In order to make this work

more clear selected issues concerning Lie groups and alge-

bras are presented. The theory allows showing how the con-

sidered system can be described on a Lie group. Section 3

presents the following stages of the controller design. Firstly,

a transverse function for the given control system is defined.

Secondly, the tracking error is considered and the control law

taking advantage of optimization of control signal effort is

discussed. The results of extensive simulations for selected

cases are presented in Sec. 4. The concluding remarks are

given in Sec. 5.

2. Model

2.1. Kinematics. Consider a planar robot presented in Fig. 1

which is composed of two links connected by a revolute joint

with rotation axis passing through point O. To simplify de-

scription, we refer to a structure of so-called Raibert’s robot

and make the following assumptions:

• position of point O corresponds to position of center of

mass (COM) of link 1,

• link 2 is a translation joint equipped with point mass m
moving along the line passing through point O,

• the robot in the flight phase is isolated, namely there is no

interaction between the links and the environment.

The latter assumption is well satisfied in the space. However,

it can be also justified for a hopping robot when it moves in

the air – then the interaction forces and torques can be usually

neglected for some short period of time.

Fig. 1. Raibert’s robot in the flight phase

Basically, the planar motion is a superposition of transla-

tion and rotation. In this paper we omit description of linear

motion concerning translation of center of mass of the robot

which is governed by Newton’s laws and the gravity. Instead,

we focus on rotation of the flying structure and its internal

configuration.

Inertia of the first and second links is denoted by I1 and

I2, respectively. The angles θ1 and θ2 describe orientation of

the first and second link with respect to the inertial frame.

It is assumed that values of these angles are positive for an-

ticlockwise rotation (for the robot configuration presented in

Fig. 1 θ1 > 0 while θ2 < 0). Notice that length d > 0 of link

2 can be adjusted that modifies inertia I2. Applying Steiner’s

theorem one can easily conclude that

I2 := md2, (1)

where m > 0.

Now, assume that angles θ1 and θ2 and distance d are

configuration variables for the considered mechanical system.

Then define configuration

q := [q1 q2 q3]
⊤

:= [θ1 θ2 d]
⊤
∈ Q ⊂ T

2 × R+. (2)

Since the considered system is isolated one can refer to the

angular momentum conservation principle. Calculating angu-

lar momentum of the considered mechanical structure with

respect to its center of mass gives

σ = I1θ̇1 + I2θ̇2, (3)

while σ = const. Then based on (2) and (1) the following

Phaffian constraint can be defined

A(q)q̇ = σ, (4)

where A(q) :=
[
I1 mq2

3 0
]
∈ R

1×3. Analyzing the phase

constraint (4) one can prove that there is no function γ(q) ∈ R,

such that
∂γ(q)

∂q
= A(q). Hence, it can be concluded that the

constraint (4) is nonintegrable, which implies that the consid-

ered mechanism is a nonholonomic system.

Consequently, based on (4) one can consider the following

kinematics

q̇ =



0

0

1


u1 +




q2
3

−a

0


u2 +




η1

η2

0


σ, (5)

where a :=
I1

m
, u1 and u2 denote input signals, while η1 and

η2 are real functions satisfying

I1η1 + mq2
3η2 − 1 = 0. (6)

In the general case, when the angular momentum σ is non-

zero, Eq. (5) describes the nonholonomic kinematics with the

drift.

Interpreting the kinematic control inputs u1 and u2 one

can conclude that u2 is rather a theoretical signal not well

suited to control the robot at kinematic level. Namely, u2 is

directly related to velocity θ̇2, which is expressed in the in-

ertial frame. Typically, the considered structure is equipped
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with an actuator responsible for moving the first link with re-

spect to the second. Hence, the more obvious kinematic input

is angular velocity ω := q̇2 − q̇1. Taking advantage of (5) one

can find the following globally-defined transformation

ω = −(a + q2
3)u2 + (η2 − η1)σ, (7)

describing the relationship between the relative angular ve-

locity and the terms present in (5).

2.2. Lie algebra and Lie group. In this paper the concept of

Lie group and Lie algebra is used extensively, [28]. This sec-

tion gives selected details concerning description of control

systems on Lie groups.

Firstly, we recall definition of distribution following

Isidori [29]. Let ∆ be a smooth distribution and p a regu-

lar point of ∆. Suppose that dim(∆(p)) = k. Then, there

exists an open neighborhood U of p and a set {V1, . . . , Vk}
of smooth vector fields defined on U with the property that

• the vectors V1(x), . . . , Vk(x) are linearly independent at

each x in U
• ∆(x) = span {V1(x), . . . , Vk(x)} at each x in U

Moreover, every smooth vector field Z belonging to ∆ can

be expressed, on U , as

Z(x) =

k∑

i=1

ci(x)Vi(x), (8)

where c1(x), . . . , ck(x) are smooth real-valued functions of

x, defined on U .

Next, we consider the Lie bracket [Yi, Yj ] of a pair

of smooth vector fields. The Lie bracket satisfies antisym-

metry and Jacobi identity, [30]. A Lie algebra of vec-

tor fields, Lie {Y1, Y2, . . . , Ym}, over R is a vector space

spanned by generators Y1, . . . , Ym and all Lie brackets

derived from the generators and their descendants. Let

DimRLie{Y1, Y2, . . . , Ym} denote dimension of the Lie al-

gebra determined over R. We can say that DimRLie = k,

if k denotes maximum number of independent vector fields,

V1, V2, . . . , Vk ∈ Lie, belonging to this Lie algebra. These

vector fields must satisfy the following implication

∀x ∈ U,
k∑

i=1

ciVi(x) = 0 ⇒ c1 = c2 = . . . = ck = 0, (9)

where ci’s are constant scalars (cf. (8) where smooth functions

are taken into account). It is worth emphasizing that number

of independent vector fields can be the same or higher than

dimension of distribution spanned by these vector fields. Fol-

lowing this statement, the dimension of Lie algebra can be

higher (even infinite) than dimension of space in which vec-

tor fields live.

Remark 1. To illustrate dependence of vector fields consider

the following simple example. Let

V1(x) =

[
cosx1

x2 cosx1

]
, V2(x) =

[
1

x2

]
, (10)

be vector fields in R
2, while x = [x1 x2]

⊤ ∈ R
2 de-

notes some point on U . Then easy calculation shows that

V1(x) = cos(x1)V2(x), which indicates that vector fields V1

and V2 are locally linearly dependent ∀x ∈ U . In spite of that

they are independent vector fields over R, since there is no

coefficient c (constant) such that V1 = cV2.

Now, assume that V ∈ Lie{Y1, Y2, . . . , Ym} is a vec-

tor field obtained as a (repeated) Lie bracket of genera-

tors Y1, . . . , Ym, and denote by bi(V ) the number of oc-

currences of Yi in V . Then we define degree of vector

field V as deg (V ) :=
∑m

i=1
bi(V ). A set of indepen-

dent vector fields1 of bth degree constitutes layer Lb :=
{V ∈ Lie : deg(V ) = b}.

Remark 2. To illustrate this point let us consider Lie algebra

Lie = {Y1, Y2}. In such a case the following layers can be

distinguished:

• layer L1: Y1 and Y2

• layer L2: [Y1, Y2]
• layer L3: [Y1, [Y1, Y2]], [Y2, [Y1, Y2]]
• layer L4: [Y1, [Y1, [Y1, Y2]]], [Y2, [Y2, [Y1, Y2]]],

[Y2, [Y1, [Y1, Y2]]]
• etc.

Next, assume that there is some positive integer b such

that for b ≥ b layer Lb contains only zero vector fields, name-

ly vector fields of order greater than b − 1 vanish. Then one

can say that Lie algebra is nilpotent.

Consider a Lie group G which carries the structure of a

smooth manifold, such that the group operation G×G → G,

(g, h) → g ◦ h, as well as the inversion G → G, g → g−1,

are differentiable maps. Assume that e is neutral element of

the group G such that2 ∀g ∈ G, ge = eg = g.

For any g ∈ G the following diffeomorphisms can be defined:

• left translation: lg : G → G, h → gh;

• right translation: rg : G → G, h → hg; and

• conjugation: φg : G → G, h → lg−1(rg(h)) =
rg−1 (lg(h)) = ghg−1.

Assume that V (h) ∈ ThG denotes vector field in the tan-

gent space of G determined at h. Using the defined maps

one can pushforward V (h) to other points on G. Hence,

the corresponding differential operators can be taken in-

to account: dlg(h) :=
d

dh
lg(h), drg(h) :=

d

dh
rg(h) and

dφg(h) :=
d

dh
ghg−1, respectively.

For any Lie group G an associated Lie algebra g can be

considered. In this case, the algebra g is the vector space of

all left invariant3 vector fields on G satisfying

dlg(h)Vi(h) = Vi(gh). (11)

1Dependent vector fields can be excluded taking into account Lie bracket antisymmetry and Jacobi identity.
2Typically the symbol ’◦’ is omitted to shorten the notation – for example g ◦ h is commonly replaced by gh.
3Alternatively, right invariant vector fields can be also taken into account.
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From relationship (11) it follows that pushing forward any

left-invariant vector field Vi at h ∈ G to dlg(h)Vi(h) at gh
can be replaced by evaluating it directly at gh. Since each

left invariant vector field on G is uniquely associated with a

vector tangent to H at e, we can identify the Lie algebra g

of G with the tangent space to G at e, g ≈ TeG, [31]. This

implies that g is a vector space of the same dimension as the

underlying group. Moreover, as is convenient, we can view

the Lie algebra of a Lie group either as the space of left in-

variant vector fields or as the tangent space to the group at

the identity element.

Define the Lie algebra g basis consisting of indepen-

dent vector fields X1, X2, . . . , Xn. In the given coordi-

nates it can be described using matrix notation by X =
[X1 X2 . . . Xn] ∈ R

n×n, where n = dimG is dimension

of G. Taking advantage of this notation one can express any

vector fields V ∈ g evaluated at g ∈ G in the Lie algebra

basis as: V = X(g)w, where w ∈ R
n.

The Lie algebra g of the group G is related with this group

via exponential map: g → G, denoted by

g = exp(X(g)w), (12)

where g ∈ G and X(g)w ∈ g. This map is understood as the

solution of differential equation
d

dτ
g = X(g)w with g(0) = e

evaluated at τ = 1.

The other important differential operator is the adjoint

operator Ad : G × g → g which is given by Ad(g)V :=
dφg(e)V , where V ∈ g.

Now let us recall a few basic definitions and properties

concerning homogeneity [22, 32, 33]. Assume that element g
of Lie group G is defined in Euclidean space, namely g =
x = [x1 x2 . . . xn] ∈ R

n, while xi (i = 1, . . . , n) denotes a

coordinate. Then one can define the dilation δr
ǫ : G → G,

where ǫ > 0 is positive parameter, r = (r1, r2, . . . , rn) denote

the weight vector with positive integers. To be more specific,

the dilation is given by:

δr
ǫ (x) = [ǫr1x1 ǫr2x2 . . . ǫrnxn]

⊤
. (13)

Next, assume that V (x) =
n∑

j=1

vj(x)
∂

∂xj

∈ g is a vector field,

where vj(x) is a real function. This vector field is homoge-

neous with degree s with respect to dilation δr
ǫ if the following

relationship is satisfied:

V (δr
ǫ (x)) = ǫs

n∑

j=1

ǫrjvj(x)
∂

∂xj

. (14)

Remark 3. To exemplify this definition we consider two vec-

tor fields in R
3:

V1(x) = x1

∂

∂x1

+ x2

∂

∂x2

+ (x2(x1 + x2) + x3)
∂

∂x3

and

V2(x) =
∂

∂x1

+ x2

∂

∂x3

and weight vector r = (1, 1, 2). From (13) we have δr
ǫ (x) =[

ǫx1 ǫx2 ǫ2x3

]⊤
. Next, evaluating both vector fields at δr

ǫ (x)

we have

V1(δ
r
ǫ (x)) = ǫx1

∂

∂x1

+ǫx2

∂

∂x2

+ǫ2 (x2(x1 + x2) + x3)
∂

∂x3

and

V2(δ
r
ǫ (x)) = ǫ

∂

∂x1

+ ǫ2x2

∂

∂x3

.

Then, it is straightforward to show that V1(δ
r
ǫ (x)) and

V2(δ
r
ǫ (x)) satisfy (14) for s = 0 and s = −1, respective-

ly. Hence, one can conclude that V1 and V2 are homogenous

vector fields with degree 0 and −1, respectively, for the given

dilation.

Next, consider m input control affine driftless system

ẋ =

m∑

i=1

Xi(x)ui, (15)

with x belonging to a n-dimensional smooth manifold M ,

while X1, . . . , Xm being smooth control vector fields and

u1, . . . , um denoting bounded inputs. It is important to no-

tice that the satisfaction of the group property may be local

only i.e. in a neighborhood U ⊂ M of a given point x ∈ U .

In the special case when the Lie algebra is nilpotent, there

is an equivalence between the local and global satisfaction of

this property.

Claim 1. Assume that dimension of the control Lie algebra

k = DimRLie{X1, . . . , Xm} of system (15). Then the fol-

lowing cases can be considered:

1. k = n – the system (15) can be defined on a Lie group;

2. k = n > n – the system (15) cannot be defined on a Lie

group explicitly but it is possible to do extension of the

state space such that the extended system is defined on a

Lie group;

3. k = ∞ – the system (15) cannot be defined globally on

any Lie group.

Next, we consider the first case for which dimension of the

control Lie algebra is finite and equals n. Then it is possible

to find a Lie group – for example using algorithm outlined

in [34]. Motivated by this idea we introduce the following

lemma.

Lemma 1 (Determination of a Lie group structure for the

particular control Lie algebra). Let g and h ∈ R
n be de-

fined in n-dimensional Euclidean space. Simultaneously, it is

assumed that g and h are elements of some Lie group G with

unknown operation ′◦′ and neutral element e = 0 ∈ R
n. Next,

consider a n-dimensional nilpotent Lie algebra g of group G.

Let X ∈ R
n×n denote basis of this algebra in the matrix

form, which is composed of n linearly left-invariant indepen-

dent vector fields. Then the group operation ′◦′ can be found

by solving the following integral equation:

g ◦ h = g +

1∫

0

X (g ◦ (sh))X−1 (sh)hds, (16)

where s ∈ R.
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Proof 1. Since vector fields in X ∈ R
n×n are left-invariant

the following relationship is satisfied

X (g ◦ h) = dlg(h)X(h). (17)

Next, introduce an independent variable s ∈ [0, 1] and con-

sider the following left translation

g ◦ sh = lg(sh). (18)

Taking derivative of Eq. (18) with respect to variable s one

has:
d

ds
lg(sh) = dlg(sh)h or equivalently

dlg(sh) = dlg(sh)hds. (19)

Then, integrating both sides of (19) one has

lg(h) − lg(0) =

1∫

0

dlg(sh)hds. (20)

Since, from definition lg(0) = g, one can write that

lg(h) = g +

1∫

0

dlg(sh)hds. (21)

From (17) one has dlg(h) = X (lg(h)) X−1(h). Using this

result in (19) and noticing that h is substituted by sh we

obtain:

gh = g +

1∫

0

X (g ◦ (sh)) X−1(sh)hds. (22)

From (22) the group operation ′◦′ can be calculated.

2.3. Dynamic extension and description of system kine-

matics on a Lie group. It is assumed that the control law

discussed in this paper should be applied to kinematics (5)

with zero or non-zero angular momentum σ. Basically, it

means that the drift term in (5) is not necessary for prop-

er operation of the controller. Hence, the design methodology

of the control algorithm is based on vector fields associated

to control inputs u1 and u2. Simultaneously, the drift in (5)

can be considered as a disturbance which can be partly com-

pensated by the controller taking advantage of a feed-forward

loop.

Following this assumption, we deal with system (5) for

the driftless case when σ = 0. Consequently, the kinematics

is simplified as follows

q̇ = X1u1 + X2(q)u2, (23)

where X1 :=
∂

∂q3

and X2 := q2
3

∂

∂q1

− a
∂

∂q2

denote vector

fields generators. To investigate properties of system (23) we

refer to its Lie algebra Lie
{
X1, X2

}
generated by X1, X2

and the corresponding Lie brackets. Noticing that coordinates

of vector fields X1 and X2 are given by polynomials functions

it can be concluded that the Lie algebra is nilpotent. Indeed,

considering layers of the Lie algebra (cf. Subsec. 2.2) it can

be found that
[
X2,

[
X1, X2

]]
= 0 and ∀V ∈ Lie

{
X1, X2

}

such that deg(V ) ≥ 4, V ≡ 0. Correspondingly, non-zero

vector fields in this algebra span the following distribution:

∆(q) = span
{
X1, X2,

[
X1, X2

]
,
[
X1,

[
X1, X2

]]}
.

It can be shown that the dimension of the distribution of

∀q ∈ Q, dim∆(q) = dimQ = 3, which implies that the

driftless system (23) is small time locally controllable.

Referring to conditions of existence of a Lie group for the

given control system, outlined in Subsec. 2.2, we can con-

clude that in the considered case they are satisfied. Namely,

Lie algebra Lie
{
X1, X2

}
is nilpotent that implies a finite

exponential representation of vector fields (cf. (12)), defining

a manifold M . This, in turn, allows finding some symmetry

and a Lie group G, on which the dynamics of the system (23)

can be described.

However, in the present case this issue is more complex

since assumptions for Lemma 1 are not satisfied. One can

notice that four vector fields in distribution ∆(q) are lin-

early independent over R in spite of the fact, that ∀q ∈
Q, dim∆(q) = 3. Hence, the dimension of Lie algebra

Lie
{
X1, X2

}
is r = 4. Then assuming that G is a Lie group

with the given Lie algebra Lie, the dimension of G would

also be r. In such a case exponential map (12) would be a

diffeomorphism. However, when Lie algebra basis is consti-

tuted by more independent vector fields than the dimension of

space in which these vector fields live (notice that X ∈ R
n,

where n < r), exponential map becomes surjection and the

group G cannot be defined globally. In this case we have to

consider the case 2 outlined in Claim 1.

This issue can be solved referring to Rothschild-Stein lift-

ing theorem [35]. Noticing that n < r one can propose a dy-

namic extension of system (23). In order to do this, we define

a new configuration g = [g1 g2 g3 g4]
⊤ ∈ Q × R, where

g1 := q3, g2 := q2, g4 := q1, (24)

while g3 is an additional variable that does not correspond

to any original coordinate in q ∈ Q. The selection of the

additional dynamics governing evolution of g3 is not unique.

Motivated by similarity of kinematics (23) to a chained system

(cf. [9]) one can propose the following relationship

ġ3 = g1u2. (25)

Next, complementing the system (23) with auxiliary dynamics

(25) one has

ġ = X1u1 + X2(g)u2, (26)

where

X1 :=
∂

∂g1

, X2 := −a
∂

∂g2

+ g1

∂

∂g3

+ g2
1

∂

∂g4

are fundamental vector fields. As in the previous case, we

consider non-trivial vector fields of nilpotent Lie algebra

Lie{X1, X2}. These vector fields span the following dis-

tribution: ∆(q) = span {X1, X2, X3, X4}, where X3 :=
[X1, X2] and X4 := [X1, [X1, X2]]. Then, ∀q ∈ Q, g3 ∈
R, dim∆(g) = 4, namely the dimension of the distribution

∆ is the same as the dimension of the algebra Lie {X1, X2}.

Hence, the vector fields in distribution ∆ can be seen as the
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basis of the Lie algebra Lie{X1, X2}. Using the matrix no-

tation and calculating Lie brackets we define this basis as

follows
X(g) := [X1 X2 X3 X4] (g)

=




1 0 0 0

0 −a 0 0

0 g1 1 0

0 g2
1 2g1 2


 ∈ R

4×4.
(27)

Consequently, one can find a group G such that ∀g ∈ G,

dimG = 4 referring to Lemma 1. After some calculations

(the details of which can be found in Appendix) the follow-

ing group operation can be specified

gh =




g1 + h1

g2 + h2

g3 + h3 −
1

a
g1h2

g4 + h4 −
1

a
g2
1h2 + 2g1h3



, (28)

where g, h ∈ G. From now one can say that system (26) is

defined on Lie group G. Obviously, this is the system with a

deficit of control – assuming that m = dimu for the consid-

ered case one has n − m = 2.

Another important property of system (26) can be found,

namely it can be proved that its fundamental vector fields are

homogeneous of degree p = −1. Consequently, one can con-

sider a dilation δr
ǫ defined on any g ∈ G, where r = (1, 1, 2, 3)

determines the weight vector.

Finally, we return to a more general case concerning de-

scription of the robot kinematics with non-zero angular mo-

mentum σ. Recalling the original kinematics with drift (5)

and the new set of coordinates given by (24), kinematics (26)

can be rewritten as follows

ġ = X0 + X1u1 + X2(g)u2, (29)

where

X0 := ση2

∂

∂g2

+ ση1

∂

∂g4

. (30)

Alternatively, vector fields in (29) can be expressed in the

Lie algebra basis X(g). Then the considered kinematics takes

the following form

ġ = X(g) (Cu + ν) , (31)

where

C :=

[
1 0 0 0

0 1 0 0

]⊤

∈ R
4×2 (32)

and ν := X(g)−1X0.

3. Control algorithm

Let us formally define the control problem.

Problem 1 (Control problem). Let gr(t) ∈ G define desired

bounded configuration and satisfy the following differential

equation

ġr = X(gr)vr, (33)

where X is defined by (27) and vr ∈ R
4 denotes a bounded

reference input.

Find bounded input u of kinematics (31), such that for any

bounded angular momentum σ configuration error becomes

bounded as: limt→∞ ‖g(t) − gr(t)‖ ≤ ǫ, where ǫ > 0 is an

arbitrarily small radius of neighborhood of zero.

3.1. Transverse function. The control method proposed in

this paper is based on transverse functions whose derivative

virtually adds new directions in the tangent space not cov-

ered directly by the fundamental vector fields of the control

process. It gives possibility to recover approximately motion

in directions directly inaccessible due to nonholonomic con-

straints.

In this section we give a brief description of the synthesis

of transverse functions for the system (26). More details and

examples can be found in [9, 12, 32].

Consider that the small-time controllable system (26) is

described on Lie group G and the deficit of control inputs

equals n−m. A nominal transverse function f(α) can be de-

fined on the torus T
n−m, namely α = [α1 α2]

⊤ ∈ T
2. Taking

advantage of the group operation the transverse function can

be calculated as follows

f(α) := fII(α2)fI(α1), (34)

where

fI(α1) = exp (X1β1,1 sin α1 + X2β1,2 cosα1),

fII(α1) = exp (X1β2,1 sin α2 + X3β2,2 cosα2)

denotes exponential maps of the selected vector fields, βi,j ∈
R, i, j = 1, 2 are parameters – cf. [32, 36]. Basically, the

components fI and fII are related to directions determined

by higher order Lie brackets X3 and X4, respectively. Making

the detailed calculations one can obtain the following result:

f(α)=




β1,1 sin α1 + β2,1 sinα2

−aβ1,2 cosα1

1

4
β1,1β1,2 sin 2α1+β2,2 cosα2+β2,1 sin α2 cosα1

f4


,

(35)

where

f4 :=
1

6
β2

1,1β1,2 sinα1 sin 2α1

+
1

2
β2,1β2,2 sin 2α2 + β2

2,1β1,2 sin2 α2 cosα1

+
1

2
β1,1β1,2β2,1 sin α1 sin 2α1.

(36)

The parameters βi,j should be selected in order to satisfy the

transversality condition, which in the considered case can be

represented as

∀α ∈ T
2, det A2(f(α))) 6= 0, (37)

where

A(f) :=
[
A⊤

1 A⊤

2

]⊤
(f) = X−1(f)

∂f

∂α
∈ R

4×2, (38)

while A1, A2 ∈ R
2×2.
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In order to simplify selection of parameters βi,j we con-

sider a scaled transverse function fǫ using dilation operator δr
ǫ :

fǫ := δr
ǫ (f). (39)

Thanks to the homogeneity of the vector fields (23) the dila-

tion preserves transversality of function f [35,36]. To be more

specific, if f is a function of transverse, then the property is

transferred to the function fǫ. Additionally, one can assume

that parameter ǫ in dilation δr
ǫ (f(α)) is time varying. Then

time derivative of fǫ can be presented as follows

ḟǫ = X (fǫ) (A (fǫ) α̇ + Aǫ (fǫ) ǫ̇) , (40)

where Aǫ (fǫ) := X−1(f)∂fǫ

∂ǫ
∈ R

4.

3.2. Control law synthesis. In order to design the controller

we use the symmetry of the control system (31). Consequent-

ly, the configuration error is defined on Lie group G as fol-

lows: g̃ := g−1
r g. Taking time derivative of g̃, using (31), the

reference model (33), and referring to calculations presented

in [12] one can obtain the following error dynamics

˙̃g = X (g̃)
(
C(g)u + ν − AdX

(
g̃−1

)
νr

)
, (41)

where AdX(g) := X(e)−1Ad(g)X(e) is the adjoint operator

expressed in the Lie algebra basis X .

Next, to quantify a tracking of transverse function an aux-

iliary error is introduced: z := g̃f−1
ǫ . This error is governed

by the following dynamics (cf. [11, 12]):

ż = X(z)AdX(fǫ)
(
Cu + ν − AdX

(
g̃−1

)
νr − Aǫ ǫ̇

)
, (42)

where C := [C − A(fǫ)] ∈ R
4×4 and u :=

[
u⊤ α̇⊤

]⊤
∈ R

4

is an extended input consisting of real input u and the aux-

iliary input α̇ governing time evolution of transverse func-

tions fǫ.

To stabilize the open-loop system (42) we refer to the

results presented in [12, 36]. Basically, we use a suboptimal

controller which makes it possible to optimize control effort

based on designed quadratic term. In this case, we consider

the optimization of control, taking the u1 and ω into account.

This is motivated by practical meaning of ω, which has been

discussed in Subsec. 2.1.

Proposition 1 (Suboptimal controller). Let J(v) =
1

2
v⊤W2v, be the performance measure, where v :=

[
u1 ω α̇⊤

]⊤
∈ R

4 is the extended input (cf. definition of

u), W2 ∈ R
4×4 is a positive definite matrix. Let us define

H := X(z)AdX(fǫ), Q := HCT, (43)

where T := diag

{
1 −

1

a + g2
1

, 1, 1

}
∈ R

4×4 and as-

sume that νc
s := −Q−1W1z, νc

d := −T−1C
−1

p, νo
s :=

−z⊤W1zW2
−1Q⊤z and νo

d := −z⊤HpW2
−1Q⊤z, with

p := ν − AdX
(
g̃−1

)
νr − Aǫǫ̇, where the indices ’s’ and ’d’

describe the static and dynamic terms, while W1 ∈ R
4×4 is a

positively defined gain matrix. The control algorithm defined

as follows

v =
λs

y + λs

νc
s +

1

y + λs

νo
s +

λd

y + λd

νc
d +

1

y + λd

νo
d , (44)

where λs and λd > 0 are positive coefficients, and y :=
z⊤QW2

−1Q⊤z, applied to (29) considering the transforma-

tion input (7), provides exponential stability of the equilibrium

point z = e and optimizes instantaneous control input, thus

minimizing of the functional J(v) when λs and λd → 0.

Remark 4. It can be noted that when λs and λd → ∞ the

algorithm given by (44) becomes a classic controller based

on decoupling of nonlinear system (42). In such a case the

closed-loop system is given by ż = −W1z and the optimiza-

tion problem is not taken into account. In contrast, when λs

and λd → 0 the optimization goal is considered more thor-

oughly but the controller is more sensitive to unmodeled dy-

namics, [36]. Hence, one can select coefficients λs and λd in

order to adjust optimization level and the controller robust-

ness.

Remark 5. The controller (44) is defined globally for the ex-

tended system (31). However, this property is not fully trans-

ferred to kinematics (5). Recalling configuration space of this

kinematics one has d > 0, which is well motivated geomet-

rically and physically, namely distance d should be positive

and minimum inertia of the second of the robot cannot be

reduced to zero. However, this configuration constraint is not

ensured by the proposed controller. This constraint can be vi-

olated especially during transient stage when auxiliary error

z is significant. In order to cope with this issue ǫ should be

made relatively small and initial configuration error should

be reduced. It can be quite easily met by designing an appro-

priate reference trajectory such that gr(0) is close enough to

g(0).

4. Simulation results

In order to verify properties of the algorithm, numerical simu-

lations were performed in Matlab/Simulink environment. The

parameters of the kinematics (5) were selected as follows:

I1 = 1 kg · m2, a = 0.5 m2 with the drift model for which

η1 =
1

I1

and η2 = 0. The nominal parameters of the controller

were chosen as: ǫ = 0.4, β1,1 = 0.67, β1,2 = 0.45, β2,1 =
1.33, β2,2 = 0.2, α(0) = 0, W1 = diag {4, 4, 2, 2} ∈ R

4×4,

W2 = diag
{
0.1, 1, 10−5, 10−6

}
∈ R

4×4. Simulations were

performed for the following initial conditions: θ1(0) =
π

2
rad,

θ2(0) = 0 rad, d(0) = 1 m, g3(0) = 0, θr1 = 0 rad,

θr2 =
π

2
rad, dr = 2 m and gr3 = 0.

The following simulation scenarios were considered:

• S1: Stabilization without optimization for zero angular mo-

mentum σ = 0: λs and λd → ∞.

• S2: Stabilization without optimization for zero angular mo-

mentum σ = 0 assuming scaling of transverse function: λs

and λd → ∞, ǫ(t) = e−0.5t + 0.3.

• S3: Stabilization with optimization for zero angular mo-

mentum σ = 0: λs = λd = 1.

• S4: Stabilization with increased gains to W1 =
diag {20, 20, 10, 10}, other conditions as in S3.
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• S5: Stabilization with optimization for non-zero angu-

lar momentum σ = 0.2 kg · m2/s for t ∈ [0, 5)s and

σ = −0.2 kg · m2/s for t ∈ (5, 10]s, other conditions as

in S3.

• S6: Tracking of non-feasible reference trajectory for ze-

ro angular momentum σ = 0: θ̇r1(t) = θ̇r2(t) =
0.5 cos (0.2πt) rad/s, ḋ = ġr3 = 0, other conditions as

in S3.

• S7: Tracking of non-feasible reference trajectory for non-

zero angular momentum σ = 0.2 kg · m2/s: other condi-

tions as in S6.

Considering the results of simulation S1 presented in

Fig. 2 one can see that for the basic version of the controller,

a)

b)

c)

d)

Fig. 2. Simulation S1: a) configuration: θ1 (�), θ2 (�), d (�), b) con-

figuration error q − qr: eθ1 := θ1 − θr1 (�), eθ2 := θ2 − θr2 (�),ed := d − dr (�), c) configuration error eg: eg1 (�), eg2 (�), eg3 (�),eg4 (�), d) control inputs: u1 (�), ω (�)

when no optimization is used, the transient stage is highly os-

cillatory. The configuration error tends to some neighborhood

of zero that can be adjusted by parameter ǫ > 0. In the con-

sidered case the assumed radius of the neighborhood is quite

large in order to limit magnitude of control inputs. Compar-

ing Figs. 2b and 2c one can observe that error g̃ defined on

Lie group is scaled significantly. In particular value of g̃4 is

increased (notice that coordinate g4 = θ1). Since changing of

coordinate g4 requires generation of higher order Lie bracket,

highly oscillatory signals observed in the considered case can

be easily understood.

In Fig. 3 the results of stabilization with time-varying ǫ
are presented. In this case oscillatory behavior is reduced by

using higher initial value of ǫ which enables limiting control

effort considerably. The disadvantage of this approach can be

observed as an rapid increase of some configuration variables

during regulation process. This is due to the fact that for

higher ǫ the auxiliary trajectory given by the transverse func-

tion is contained in the neighborhood of zero with a bigger

radius. As it can be noticed from Fig. 3a variable d becomes

negative in some period of time. Consequently, the coordinate

constraint is violated.

a)

b)

Fig. 3. Simulation S2: a) configuration, b) control inputs (detailed

description is given below Fig. 2)

The next simulation (cf. Fig. 4), S3, was obtained assum-

ing optimization of control effort. As in the previous case,

the oscillatory time response of the closed loop system is re-

duced. In particular, one can notice a significant change of

coordinate θ1. In comparison to simulation S2 one can see

that d does not go to zero at any time instant.

The regulation time can be adjusted by increasing the con-

troller gains (specified by W1). It can be observed from Fig. 5

that by increasing gains coefficients five times the duration of

transient stage has been reduced respectively. It turns out that

the time plots of configuration variables are scaled in time
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with respect to results obtained in S3. Similarly, instantaneous

values of inputs u1 and ω are increased.

a)

b)

Fig. 4. Simulation S3: a) configuration, b) control inputs (detailed

description is given below Fig. 2)

a)

b)

Fig. 5. Simulation S4: a) configuration, b) control inputs (detailed

description is given below Fig. 2)

In order to estimate control effort the following integral is

considered:

5∫

0

‖ [u1 ω]
⊤

(t)‖2dt. Values of this integral cal-

culated for simulation S1, S2 and S3 are: 2.04 · 105, 1.5 · 103

and 2.3 ·103, respectively. It confirms that for the similar reg-

ulation time the control magnitude can be decreased by using

tuning of parameter ǫ and taking advantage of gains optimiza-

tion. For simulation S4, when duration of transient stage is

reduced, the integral index achieves 1.16 · 104. It means that

energetic effort is still less than for simulation S1 with longer

regulation time but without optimization.

In simulation S5 the stabilization in the presence of the

permanent non-zero drift was investigated. For comparison a

step change of the angular momentum was applied at 5th s.

From Fig. 6 it can be concluded that the configuration er-

rors are bounded in spite of the constant drift (for positive

or negative value of σ). Magnitude of this error can be made

lower, however, it would imply higher control effort. From

Fig. 6b it can be seen that frequency of control signals is rel-

atively high and does not converge to zero (the disturbance

is non vanishing). This phenomenon is necessary to maintain

the coordinate variables in the assumed range.

a)

b)

Fig. 6. Simulation S5: a) configuration, b) control inputs (detailed

description is given below Fig. 2)

a)

b)

Fig. 7. Simulation S6: a) configuration, b) control inputs (detailed

description is given below Fig. 2)
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Simulations S6 and S7 were performed assuming track-

ing of a non-feasible trajectory for zero or non-zero angular

momentum, respectively. It was assumed that reference mo-

tion describe change of orientation of link 1 and 2 in the same

manner. This kind of motion cannot be executed directly. As a

result the highly oscillatory input signals are generated. From

Fig. 7 and 8 it can be inferred that the considered control task

is properly realized independent on value of σ, namely the

reference trajectory is approximated with the given accuracy.

a)

b)

Fig. 8. Simulation S7: a) configuration, b) control inputs (detailed

description is given below Fig. 1)

5. Summary

This paper presents how a relatively new control methodology

can be addressed for stabilization of nonholonomic kinematics

with a permanent drift. It is shown that transverse functions

can be applied to such systems. The advantage of the given

algorithm is that it is possible to approximate of movements

which are non admissible directly. As a result the system can

be stabilized around any bounded reference trajectory. In the

same way any bounded drift (even an unmatched disturbance)

can be compensated approximately.

It is worth emphasizing that this control scheme typically

leads to highly oscillatory signals in the closed-loop system.

The presented simulations examples indicate that stabilization

of the considered kinematics around non-feasible reference

trajectory with non-zero momentum is a very difficult control

task. It is evident that when high tracking precision is as-

sumed an appearance of oscillatory behavior cannot be easily

avoided.

Other issues are related to practical aspects of control

goals considered in this paper. In fact they are non-trivial

and in some cases cannot be achieved as a result of limitation

introduced by a real physical robot. In particular highly oscil-

latory controls can be very difficult to apply because of torque

and force saturation. Then one can consider relaxation of the

desired tracking precision to guarantee proper realization of

the control task.

Still, important disadvantage of the proposed controller

is difficulty of its tuning in order to improve dynamic prop-

erties during transient stage. Basically, one can manipulate

gain values as well as parameters of the transverse functions.

However, it is hard to establish general and precise rules how

to guarantee the best control performance. This is a result of

complexity of the control law and many parameters available.

Moreover, the nonlinear scaling of errors on Lie group as well

as the transverse function make difficult to cope with the time

evolution of selected coordinates in the original space. Based

on simulations, it appears that the proposed algorithm can be

used rather as a local controller, when the initial configura-

tion error is not significant. Then one can takes advantage of

stability ensured by this control law, which is guaranteed even

for a bounded persistence disturbance.

We believe that the presented control method can be use-

ful for some classes of mechanical systems encountered in

robotics.

The future work can be concentrated on possibility of as-

ymptotic stabilization at least for the selected cases when the

perturbation is vanishing. In such a case one can combine a

trajectory planner with a closed-loop controller in order to

obtain acceptable control performance.

Appendix

Derivation of group operation. Here we take advantage of

Lemma 1 For control system (26) with Lie algebra basis de-

fined by (27) one has

X (g ◦ (sh))X−1(sh) =



1 0 0 0

0 1 0 0

0 − 1

a
((g ◦ (sh)−sh1)1) 1 0

0 − 1

a
((g ◦ (sh))1−sh1)

2
2 ((g ◦ (sh))1−sh1) 1


,

(45)

where (ξ)i denotes ith coordinate of vector ξ. From (16) and

(45) one can easily find that (g ◦ (sh))
1

= g1 + sh1 and

(g ◦ (sh))
2

= g2 + sh2. Then, coordinates (g ◦ (sg))
3

and

(g ◦ (sh))
4

can be directly calculated by solving the follow-

ing integrals:

(g ◦ (sh))
3
=g3+

1∫

0

(
−

1

a
(g1+sh1−sh1)h2+h3

)
ds

= g3 + h3 −
1

a
g1h2,

(46)

and

(g ◦ (sh))
4

= g4 +

1∫

0

(
−

1

a
((g1 + sh1) − sh1)

2
h2

(47)
+2 (g1 + sh1 − sh1)h3 + h4) ds

= g4 + h4 −
1

a
g2
1h2 + 2g1h3. (48)

Finally, relationship (28) can be obtained.
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Selected operators defined for the control system. Inverse

element of g := [g1 g2 g3 g4]
⊤

:

g−1 =




−g1

−g2

−g3 −
1

a
g1g2

−g4 +
1

a
g2
1g2 + 2g1g3




. (49)

Adjoint operator:

Ad(g) =




1 0 0 0

0 1 0 0

1

a
g2 −

1

a
g1 1 0

−2g3 −
1

a
g2
1 2g1 1




. (50)
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