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Adaptive output-feedback following control
for time-delay systems

MARIÁN TÁRNÍK, JÁN MURGAŠ and EVA MIKLOVIČOVÁ

Adaptive control of the time-delay systems is presented in the paper. Despite the use of
MRAC based design, only the model following (not perfect model following) is considered. The
methods of a classical MRAC design are preserved to the maximum extent which allows further
extensions of the algorithm such as the robust adaptive control modifications. The adaptive
algorithm effectiveness is presented by means of illustrative examples.
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1. Introduction

The time-delay is ubiquitous to some extent in the control systems. It is caused, for
example, by the processor computing time, sensor delay and obviously by the conveyor
belt, etc. In general, there are many causes of the time-delay in the control systems.

Moreover, the high-order systems can be often modeled as a lower-order system with
time-delay. There can be various reasons for such an approximation. In the papers [13, 5]
the glucose dynamics is modeled using the second order system with the relative degree
two and with the input time-delay. The second order system itself corresponds to the
idealized glucose-insulin subsystem which represents the plasma glucose kinetics. The
time-delay in this model is present due to the subcutaneous insulin administration and
also due to the subcutaneous glucose concentration measurement.

Adaptive control is an effective control approach for uncertain or unknown systems
and many applications can be found, e.g. [12, 1, 4, 3]. Numerous algorithms have been
proposed for the state-delayed systems. This paper is focused on the systems with the
input time-delay as discussed below. Moreover, the direct adaptive control algorithms,
or the Model Reference Adaptive Control (MRAC) based algorithms, are considered in
this paper.
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The adaptive control algorithm presented in this paper falls within the class of algo-
rithms which is characterized by the assumption that the controlled system time-delay
is known. In this class of algorithms the two main approaches can be found. On the first
approach the perfect model following is considered as a control design objective. In the
other hand, the second approach considers only the adaptive model following (not the
perfect model following) with a bounded error.

The first approach includes the adaptive controller proposed in [10, 2, 14]. It is a
MRAC based algorithm for linear time-delayed SISO systems with relative degree n⋆ ¬
2. In this algorithm the perfect model following in the sense of the classical MRAC is
theoretically achieved. The controlled system time delay is assumed to be known and the
Smith-predictor-like solution allows to adaptively predict the controlled system output.
The predicted signal, among the other signals, is used as a feedback signal in the control
law.

Mentioned algorithm components allow the perfect model matching in the classi-
cal sense. The controlled system output is predicted using a so-called distributed-delay
block. Mathematically, it is a finite-time integral of the delayed controlled system in-
put. In order to implement the control law, this integral has to be discretized. Such an
approximation leads to many difficulties, see [11]. Due to the approximation only the
model following can be practically achieved. Moreover, the obtained result has no the-
oretical background, since the approximation is not considered in the control algorithm
design.

In [6] the adaptive following algorithm for plants with input and state delays is pro-
posed. The algorithm utilizes the Smith predictor, which is based on the reference model
transfer function rather than on the controlled system transfer function. Similarly as in
the case of the classical Smith predictor use, this principle allows to pull the time-delay
out of the control algorithm design procedure. As a consequence there is no need to use
the distributed time delay block to establish a stability of the overall closed-loop sys-
tem. The price for this advantage is that only the model following can be theoretically
achieved. However, the obtained results have complete theoretical background and no
uncommon approximations have to be considered for the algorithm implementation.

Nevertheless, the original authors consider mainly the state-feedback control laws
[7], extends the basic idea for MIMO (multi input, multi output) systems [9], and propose
the modifications for the robustness [8]. The control laws used in these algorithms are
more or less modified in comparison with the classical MRAC based control law.

In this article we are interested in the output-feedback adaptive controller for SISO
systems with input time-delay and with the relative degree n⋆  2. The algorithms pre-
sented in the mentioned papers can not be directly extended for plants with higher rela-
tive degree due to the modified control law. Therefore the algorithm described in the next
sections maintains the standard properties of the classical MRAC, mainly the structure
of the control law, while the reference model based Smith predictor is used to cope with
the time-delay.
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2. Main Results

2.1. Preliminaries

Consider the controlled system in the form

y(s) = kp
Zp(s)
Rp(s)

e−τsu(s) (1)

where y(s) and u(s) are the output and input respectively. Further, Zp(s) is monic, Hur-
witz polynomial of order m, Rp(s) is monic and also Hurwitz polynomial of order n and
kp is so called high-frequency gain with known sign. It is assumed that the relative de-
gree n⋆ = n−m  2 and the time-delay τ is known. The rest of the system parameters
are unknown.

The classical MRAC based control law is considered in the form

u(t) = ΘT
1 (t)ν1(t)+ΘT

2 (t)ν2(t)+Θ3(t)y(t)+Θ4(t)r(t) (2)

where ΘT
c (t) =

[
Θ3(t) ΘT

1 (t) ΘT
2 (t)

]
and Θ4(t) are the adapted parameters and the

signals ν1(t), ν2(t) are the outputs of auxiliary filters introduced below. The reference
signal r(t) is the input to the reference model in the form

ym(s) =Wm(s)r(s) = km
Zm(s)
Rm(s)

r(s) (3)

where ym(s) is the reference model output, km is the reference model high-frequency
gain, Zm(s) is monic, Hurwitz polynomial of degree mm, Rm is monic, Hurwitz polyno-
mial of degree nm, while the relative degree n⋆m = nm −mm = n⋆. Further the reference
model based Smith predictor is considered in the form

ya(t) = [Wm(s)]ρ(t)(u(t)−u(t − τ)) (4)

where ya(t) is the output of the Smith predictor and ρ(t) is the adapted parameter.

2.2. Quasi-controlled system

In order to formulate the control objective the quasi-controlled system is introduced.
The output of the quasi-controlled system is the sum of the two signals: the controlled
system output y(t) and the Smith predictor output ya(t). The control objective is satisfied
when the error

ea1(t) = (y(t)+ ya(t))− ym(t) (5)

is zero.
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The controlled system (1) can be written in the form

ẋ(t) = Ax(t)+bu(t − τ) (6a)
ν̇1(t) = Λν1(t)+qu(t − τ) (6b)

ν̇2(t) = Λν2(t)+qcTx(t) (6c)

y(t) = cTx(t) (6d)

where (6b) and (6c) are the auxiliary filters with state vectors ν1, ν2 ∈ Rn−1, further
q ∈ Rn−1, qT =

[
0 · · · 0 1

]
and Λ ∈ Rn−1×n−1 is an arbitrary stable matrix. The

matrices A ∈ Rn×n, b ∈ Rn and c ∈ Rn are unknown.
Equations (6) can be written in the compact form

Ẋ(t) = AoX(t)+Bcu(t − τ) (7a)

y(t) =CT
c X(t) (7b)

where XT(t) =
[
xT(t) νT

1 (t) νT
2 (t)

]
and matrices Ao, Bc and Cc have an appropriate

form.
Similarly, the reference model can be represented in the form

Ẋm(t) = AcXm(t)+Bcr(t) (8a)

ym(t) =CT
c Xm(t) (8b)

where Xm(t) is the non-minimal state vector, and the matrices Ac, Bc and Cc are specified
below. This implies that the Smith predictor (4) can be written in the form

Ẋa(t) = AcXa(t)+Bcρ⋆ (u(t)−u(t − τ)) (9a)

ya(t) =CT
c Xa(t) (9b)

Consequently the quasi-controlled system can be written in the form

Ẋ(t)+ Ẋa(t) = AoX(t)+Bcu(t − τ)
+AcXa(t)+Bcρ⋆ (u(t)−u(t − τ))

(10a)

y(t)+ ya(t) =CT
c (X(t)+Xa(t)) (10b)

The quasi-controlled system allows to formulate the standard MRAC control objec-
tive as follows. The control objective is to choose an adaptive law to adapt the parameters
of the control law (2) so that all signals in the overall closed-loop system are bounded
and the quasi-controlled system output y(t) + ya(t) tracks the reference model output
ym(t). Particularly the perfect model matching is considered in the ideal case.
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2.3. Ideal control law parameters

With regard to the equation (7) the control law (2) can be written in the form

u(t) = ΘT
c (t)DX(t)+Θ4(t)r(t) (11)

where the matrix D is in the form

D =

cT 0 0
0 I 0
0 0 I


In the ideal case the quasi-controlled system output equals the reference model out-

put. In the view of equations (8) and (10), this implies that the matching conditions have
the form

Ao +BcΘ⋆
c
TD = Ac BcΘ⋆

4 = Bc and Bcρ⋆ = Bc (12)

where the symbol ⋆ denotes the ideal parameters of the control law and Smith predictor.

2.4. Error equation

By adding and subtracting the terms

±
(
Bcρ⋆ (u(t)−u(t − τ))

)
and

±
(

BcΘ⋆
c
TDX(t)+BcΘ⋆

4r(t)
)

in the equation (10), further by defining the parameter errors Θ̃c(t) = Θc(t)− Θ⋆
c ,

Θ̃4(t)−Θ⋆
4 and ρ̃(t) = ρ(t)−ρ⋆, by considering the error equation (5) and the matching

conditions (12), the dynamics of the error equation can be written in the form

ėa(t) =Acea(t)+Bc

(
Θ̃T

c (t)DX(t)+ Θ̃4(t)r(t)
)

+Bcρ̃(t)(u(t)−u(t − τ))
(13a)

ea1(t) =CT
c ea(t) (13b)

To simplify the notation, Θ̃T(t) =
[
Θ̃T

c (t) Θ̃4

]
, ωT(t) =

[
(DX(t))T r(t)

]
and uτ(t) =

u(t)− u(t − τ) are introduced which implies that the control law can be written in the
form u(t) = ΘT(t)ω(t) and the equations (13) can be written in the form

ėa(t) =Acea(t)+Bc

(
1

Θ⋆
4

Θ̃T(t)ω(t)+ ρ̃(t)uτ(t)
)

(14a)

ea1(t) =CT
c ea(t) (14b)
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Equations (14) relate the adapted parameter errors and the adaptation error ea1(t)
through the transfer function Wm(s). However Wm(s) is not strictly positive real (SPR)
transfer function since the relative degree n⋆m  2. In order to use a Lyapunov-based
adaptive law design, the error dynamics has to be given by the SPR dynamical system.
Therefore, well known augmented error method is used as follows.

For convenience the equation (14) can be rewritten by defining ΘT
n (t) =[

1
Θ⋆

4
ΘT(t) ρ(t)

]
, Θ⋆

n
T =

[
Θ⋆T ρ⋆

]
and ωT

n (t) =
[
ωT(t) uτ(t)

]
, to the form

ea1(t) = [Wm(s)]
(

un(t)−Θ⋆
n
Tωn(t)

)
(15)

where un(t) = ΘT
n (t)ωn(t). Further, the dynamical system (15) with transfer function

Wm(s) is assumed to have the relative degree n⋆m = 2. However, the following procedure
can be easily extended for higher relative degrees. Using the identity (s+ρ)(s+ρ)−1 =
1, where ρ > 0 is an arbitrary constant, the equation (15) can be written in the form

ea1(t) =
[
Wm(s)(s+ρ)(s+ρ)−1](un(t)−Θ⋆

n
Tωn(t)

)
(16)

and consequently

ea1(t) = [Wm(s)(s+ρ)]
(

u f (t)−Θ⋆
n
Tωn f (t)

)
(17)

where u f (t) =
[
(s+ρ)−1

]
un(t) and ωn f =

[
(s+ρ)−1

]
ωn(t).

Let the transfer function Wm(s)(s+ρ) be chosen so that it is a strictly positive real
transfer function. Further it is assumed that the signal un(t) can be realized so that the
signal u f (t) is in the form

u f (t) = ΘT
n (t)ωn f (t) (18)

Substituting the equation (18) to the equation (17) leads to

ea1(t) = [Wm(s)(s+ρ)]
(

θT
n (t)ωn f (t)

)
(19)

where θn(t) = Θn(t)−Θ⋆
n. The system (19) can be written in the state space form

ėa(t) =Acea(t)+Bc [(s+ρ)]θT
n (t)ωn f (t) (20a)

ea1(t) =CT
c ea(t) (20b)

Since s is the Laplace operator the transformation ea(t) = ea(t)−BcθT
n (t)ωn f (t) can be

introduced. Further, due to the fact that CT
c Bc = 0, denoting B1 = AcBc+ρBc, the system

(20) can be written in the form

ėa(t) =Acea(t)+B1θT
n (t)ωn f (t) (21a)

ea1(t) =CT
c ea(t) (21b)
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2.5. Adaptation law

In order to design the adaptive law for the parameters of control law (2) the adaptive
law structure is assumed in the form

θ̇n(t) = f (ea1(t),ωn f (t)) (22)

Since Wm(s)(s + ρ) = CT
c (sI −Ac)

−1 B1 is strictly positive real transfer function the
Meyer-Kalman-Yakubovich lemma implies that there exists a matrix P, such that

AT
c P+PAc =−Q (23a)

PB1 =Cc (23b)

where the matrix Q = QT > 0.
For the system consisting of equations (20a) and (22) the Lyapunov function candi-

date is considered in the form

V (t) = eTa (t)Pea(t)+θT
n (t)Γ

−1θn(t) (24)

where Γ = ΓT > 0 is an arbitrary matrix. The time-derivative of the function (24) can be
after substituting (20a) written in the form

V̇ (t) =eTa (t)
(

AT
c P+PAc

)
ea(t)

+2
(

eTa (t)PB1

)
θT

n (t)ωn f (t)+2θT
n (t)Γ

−1θ̇n(t)
(25)

The function (25) is negative semi-definite if θ̇n(t) is chosen in the form

θ̇n(t) =−Γ
(

eTa (t)PB1

)
ωn f (t) (26)

Then it follows that
V̇ (t)¬ eTa (t)(−Q)ea(t) (27)

Therefore the system (20a), (26) is neutrally stable relative to θn(t) and asymptotically
stable relative to ea(t).

The equations (23) imply that eTa (t)PB1 = eTa (t)Cc =CT
c ea(t) and further from (20b)

it follows that CT
c ea(t) = ea1(t). Moreover θ̇n(t) = Θ̇n(t) since Θ⋆

n is time-invariant.
Therefore the adaptive law (26) can be written in the form

Θ̇n(t) =−Γea1(t)ωn f (t) (28)

The adaptive law (28) ensures that the control law parameters are adapted so that the
quasi-controlled system output y(t)+ ya(t) tracks the reference model output ym(t). Si-
multaneously, all signals in the closed-loop system are bounded. From the previous re-
sult, i.e. (27) it directly follows that Θ̇n(t) is bounded. Therefore the signal vector ωn f (t)
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is also bounded. Vector ωn f (t) includes the signal uτ(t) which is obviously also bounded,
and it enters the stable Smith predictor (9). The signal ya(t) is therefore bounded. The
adaptation error ea1(t), which is bounded, is given by the signals ya(t), ym(t) and y(t).
Therefore the controlled system output y(t) is bounded. Since the controlled system is
assumed to be stable, the control signal u(t) is necessarily bounded. This concludes the
discussion on boundedness of all closed-loop system signals.

From the practical point of view the adaptive law (28) consists of two components
in the form

Θ̇(t) =−sign(Θ⋆
4)Γ1ea1(t)ω f (t) (29a)

ρ̇(t) =−γ2ea1(t)uτ f (t) (29b)

where the matrix Γ has been assumed in the form

Γ =

[
Γ1 0
0 γ2

]

and in the view of the signals in (17), ω f (t) =
[
(s+ρ)−1

]
ω(t) and uτ f (t) =[

(s+ρ)−1
]

uτ(t) have been used.

2.6. Adaptation error signal

The assumption on the signal un(t) in the section 2.4 is disadvantageous. This as-
sumption implies the need for the signal of adapted parameters time derivative. For
example the higher time derivatives are not directly available. Nevertheless, since the
equation (19) is the standard error equation used in the classical direct adaptive con-
trol, the well-known augmented error method can be used in this case. Therefore it can
be shown that the following equation can be used to obtain the adaptation error signal
while the results of the previous sections still hold.

ea1(t) =[Wm(s)]θT
n (t)ωn(t)

− [Wm(s)L(s)]
([

L−1(s)
]

ΘT
n (t)ωn(t)

−ΘT
n (t)

[
L−1(s)

]
ωn(t)

) (30)

where in general the polynomial L(s) is chosen so that the transfer function Wm(s)L(s)
is strictly positive real. In the particular case mentioned above L(s) = (s+ρ).

The equation (30) allows that the signal un(t) preserves its form, i.e. un(t) =
ΘT

n ωn(t). Therefore, the standard control law (2) preserves its form and the adaptation
error is augmented as given by the equation (30).
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3. Illustrative example

The basic properties of the adaptive algorithm presented in the previous section are
shown by means of the illustrative example. The overall scheme of the algorithm is
shown in Fig. 3. As mentioned the control law is in the standard form u(t) = ΘT(t)ω(t),
where the signal vector ω(t) is in the form

ωT(t) =
[
νT

1 (t) νT
2 (t) y(t) r(t)

]
The Smith predictor, which can be seen as a part of the control law is also in the standard
form (4) as discussed above, i.e.

ya(t) = [Wm(s)]ρ(t)(u(t)−u(t − τ))

The use of augmented error method implies the equation (30), which allows to generate
the adaptation error for the adaptive laws as shown in the top of Fig. 3.

To illustrate the adaptive control algorithm, consider the controlled system in the
form (1), where the high-frequency gain kp = 3, the polynomial Zp(s) = 1, Rp(s) =
s2+4s+2 and the time-delay τ = 3,5 [sec]. The reference model is given by the transfer
function

ym(s) =Wm(s)r(s) =
1

s2 +2s+1
r(s)

where the reference signal r(t) = sign(sin(2π frt)), with fr =
1

25 [sec−1].
The adaptation gains Γ1 and γ2 are the main parameters of the adaptive control algo-

rithm which determine the transient adaptation process. However, the parameters such
as the matrix Λ and the constant ρ have also indirect influence on the adaptation process.
In this example the following parameter values have been chosen. Since n− 1 = 1 the
parameter Λ is scalar and Λ =−1. Further ρ = 1 which ensures that the transfer function
Wm(s)(s+ρ) is strictly positive real.

Two cases of the adaptation gain choice are considered to illustrate the difference. In
the first case the adaptation gains are chosen as

Γ1 =


0.5 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 0.5

 and γ2 = 10

The results of the simulation experiment are shown in Fig. 1.
In the second case following adaptation gain values are used

Γ1 =


0.3 0 0 0
0 0.6 0 0
0 0 0.6 0
0 0 0 0.3

 and γ2 = 35
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and the simulation experiment results are shown in Fig. 2.

(a) Quasi-controlled system output y(t)+ya(t) in comparison with the refer-
ence model output ym(t) (dashed line corresponds to the signal ym(t)).

(b) Controlled system output y(t) in comparison with the reference model
output ym(t).

(c) The adapted parameters.

Figure 1: Results of the simulation experiment — case No. 1.

4. Conclusion

The presented algorithm ensures the model reference adaptive following with
bounded error. For the quasi-controlled system the perfect model matching is achieved.
However, from the practical point of view, the output of the actual controlled system
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(a) Quasi-controlled system output y(t)+ya(t) in comparison with the refer-
ence model output ym(t) (dashed line corresponds to the signal ym(t)).

(b) Controlled system output y(t) in comparison with the reference model
output ym(t).

(c) The adapted parameters.

Figure 2: Results of the simulation experiment — case No. 2.

y(t) should satisfy certain quality requirements. Nevertheless, the control performance
requirements even for the signal y(t) are given by the reference model and by the refer-
ence signal. The choice of these two algorithm components determines the ideal behavior
of the signal y(t).

In the case of adaptive control, the transient adaptation process has to be also con-
sidered in the control performance evaluation. The choice of the adaptation gains deter-
mines the behavior of the signals in the transient process. As shown in the illustrative
example in the section 3 the adaptation process can be tuned with the focus on the actual
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Figure 3: Adaptive control algorithm overall scheme.

controlled system output behavior. This can obviously cause that the adaptation error
transient behavior is not satisfactory in terms of the standard MRAC. However, in the
non-perfect model following algorithm, the resultant control performance in terms of
the actual controlled system output is more important than the transient behavior of the
adaptation error.
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