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Positive time-varying continuous-time linear systems

and electrical circuits
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Abstract. The positivity of time-varying continuous-time linear systems and electrical circuits are addressed. Necessary and sufficient

conditions for the positivity of the systems and electrical circuits are established. It is shown that there exists a large class of positive

electrical circuits with time-varying parameters. Examples of positive electrical circuits are presented.

Key words: positive, linear, time-varying, system, electrical circuit, stability, test.

1. Introduction

A dynamical system is called positive if its trajectory starting

from any nonnegative initial state remains forever in the pos-

itive orthant for all nonnegative inputs. An overview of state

of the art in positive theory is given in the monographs [1,

2]. Variety of models having positive behavior can be found

in engineering, economics, social sciences, biology and medi-

cine, etc..

The Lyapunov, Bohl and Perron exponents and stability

of time-varying discrete-time linear systems have been inves-

tigated in [3–8]. The positivity and stability of fractional time

varying discrete-time linear systems have been addressed in

[9–13] and the stability of continuous-time linear systems with

delays in [14]. The fractional positive linear systems have been

analyzed in [15–20]. The positive electrical circuits and their

reachability have been considered in [21] and the controlla-

bility and observability in [22]. The stability and stabilization

of positive fractional linear systems by state-feedbacks have

been analyzed in [19]. The normal positive electrical circuits

has been introduced in [23].

In this paper positivity of time-varying continuous-time

linear systems and electrical systems is addressed.

The paper is organized as follows. In Sec. 2 the solution

to the time-varying linear systems and their properties are re-

called. Necessary and sufficient conditions for the positivity of

time-varying continuous-time linear systems are established in

Sec. 3. The positive electrical circuits with time-varying para-

meter are addressed in Sec. 4. Concluding remarks are given

in Sec. 5.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n×m real matrices, ℜn×m
+ – the set

of n×m matrices with nonnegative entries and ℜn
+ = ℜn×1

+ ,

Mn – the set of n × n Metzler matrices (real matrices with

nonnegative off-diagonal entries), In – the n×n identity ma-

trix, T – denotes the transposition of matrix (vector).

2. Preliminaries

Consider the matrix linear differential equation with time-

varying coefficients [24, 25]

dX

dt
= A(t)X, (1)

where X = X(t) ∈ ℜn×n and A(t) ∈ ℜn×n with entries aij

being continuous-time functions of time t ∈ [0, +∞).
To solve Eq. (1) the Picard method is used

dXk

dt
= A(t)Xk−1 for k = 1, 2, ... (2)

and Xk is the k-th iteration of solution for differential Eq. (2).

From (2) we obtain

Xk = In +

t
∫

t0

A(τ)Xk−1(τ)dτ, (3)

where X(t0) = In.

Using (3) for k = 1, 2, ... and

Ωt
t0

(A) = In +

t
∫

t0

A(τ)dτ +

t
∫

t0

A(τ)

τ
∫

t0

A(τ1)dτ1(τ)dτ + ...

(4)

we can write the solution of (1) in the form

X(t) = Ωt
t0

(A)X0 (5)

and X0 = X(t0) is the initial condition.

It is easy to show [24] that

Ωt
t0

(A) = Ωt1
t0

(A)Ωt
t1

(A)

for t0 < t1 < t ∈ [0, +∞).
(6)

Lemma 1. If the matrix A(t) ∈ ℜn×n satisfy the condition

A(t1)A(t2) = A(t2)A(t1)

for t1, t2 ∈ [t0, t] ∈ [0, +∞)
(7)
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then

Ωt
t0

(A) = e

tR
t0

A(τ)dτ

. (8)

Proof is given in [24].

Lemma 2. If A1 = A1(t) ∈ ℜn×n and A2 = A2(t) ∈ ℜn×n,

t ∈ [0, +∞), then

Ωt
t0

(A1 + A2) = Ωt
t0

(A1)Ω
t
t0

(A), (9)

where

A = A(t) = [Ωt
t0

(A1)]
−1A2Ω

t
t0

(A1). (10)

Proof. Let

X = X(t) = Ωt
t0

(A1), Y = Y (t) = Ωt
t0

(A1 + A2). (11)

Differentiating Y = XZ we obtain

dY

dt
=

dX

dt
Z + X

dZ

dt

and taking into account that

dY

dt
= (A1 + A2)Y and

dX

dt
= A1X

we have

(A1 + A2)XZ = A1XZ + X
dZ

dt

or

A2XZ = X
dZ

dt
. (12)

Solving (12) we obtain

dZ

dt
= X−1A2XZ (13)

and

Z = Ωt
t0

(X−1A2X). (14)

This completes the proof.

Lemma 3. Let A ∈ ℜn×n be a matrix with constant entries

independent of time t. If A(t) = A then

Ωt
t0

(A) = eA(t−t0). (15)

Now let us consider the time-varying system described by the

equation

ẋ(t) = A(t)x + B(t)u, (16)

where x = x(t) ∈ ℜn, u = u(t) ∈ ℜm are the state and input

vectors and A(t) ∈ ℜn×n, B(t) ∈ ℜn×m are matrices with

entries depending continuously on time t ∈ [0, +∞).

Lemma 4. The solution of Eq. (16) with given initial condi-

tion x0 = x(t0) ∈ ℜn and input u(t) ∈ ℜm has the form

x = Ωt
t0

(A)x(t0) +

t
∫

t0

K(t, τ)B(τ)u(τ)dτ (17a)

where

K(t, τ) = Ωt
t0

(A)[Ωτ
t0

(A)]−1. (17b)

Proof is given in [25].

3. Positive time-varying continuous-time

linear systems

Consider the time-varying linear system

ẋ(t) = A(t)x(t) + B(t)u(t), (18a)

y(t) = C(t)x(t) + D(t)u(t), (18b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, in-

put and output vectors and A(t) ∈ ℜn×n, B(t) ∈ ℜn×m,

C(t) ∈ ℜp×n, D(t) ∈ ℜp×m are real matrices with en-

tries depending continuously on time and detA(t) 6= 0 for

t ∈ [0, +∞).

Definition 1. The system (18) is called positive if x(t) ∈ ℜn
+,

y(t) ∈ ℜp
+, t ∈ [0, +∞) for any initial conditions x0 ∈ ℜn

+

and all inputs u(t) ∈ ℜm
+ , t ∈ [0, +∞).

Theorem 1. Let A(t) ∈ ℜn×n, t ∈ [0, +∞). Then

Ωt
t0

(A) = In +

t
∫

t0

A(τ)dτ

+

t
∫

t0

A(τ)

τ
∫

t0

A(τ1)dτ1(τ)dτ + ... ∈ ℜn×n
+

for t ≥ t0

(19)

if and only if A(t) ∈ Mn, t ∈ [0, +∞).

Proof. Necessity. From (19) it follows that Ωt
t0

(A) ∈ ℜn×n
+

for small value of t > t0 only if A(t) ∈ Mn.

Sufficiency. Let choose constant λ > 0 such that

λ ≥ max
1≤i≤n

|aii(t)| , (20)

where aii(t) is the i-th i = 1, 2, ..., n diagonal entry of A(t).
In this case if A(t) ∈ Mn then A(t) + Inλ ∈ ℜn×n

+ for t ∈
[0, +∞). Taking into account that A(t) = [A(t)+ Inλ]− Inλ

and Lemmas 2, 3 for A1(t) = −Inλ and A2(t) = A(t)+ Inλ

we obtain

Ωt
t0

(A) = Ωt
t0

(−Inλ)Ωt
t0

(A)

= e−Inλ(t−t0)Ωt
t0

(A2) ∈ ℜn×n
+

for t ∈ [0, +∞)

(21)

since

Ωt
t0

(−Inλ) = e−Inλ(t−t0)

and A = [Ωt
t0

(−Inλ)]−1A2(t)Ω
t
t0

(−Inλ)

= A2(t) ∈ ℜn×n
+

for t ∈ [0, +∞)

(22)

if A(t) ∈ Mn. This completes the proof.

Theorem 2. The time-varying linear system (18) is positive

if and only if

A(t) ∈ Mn, B(t) ∈ ℜn×m
+ ,

C(t) ∈ ℜp×n
+ , D(t) ∈ ℜp×m

+ ,

t ∈ [0, +∞).

(23)
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Proof. Sufficiency. By Lemma 4 the solution of Eq. (18a) is

given by (17a) and if x(t) ∈ ℜn
+, t ∈ [0, +∞) if A(t) ∈ Mn

and B(t) ∈ ℜn×m
+ for t ∈ [0, +∞) since form Theorem 1 we

have Ωt
t0

(A) ∈ ℜn×n
+ , K(t, τ) ∈ ℜn×n

+ and by assumption

x(t0) ∈ ℜn
+, u(t) ∈ ℜm

+ , t ∈ [0, +∞).

From Eq. (18a) we have y(t) ∈ ℜp
+, t ∈ [0, +∞) since

C(t) ∈ ℜp×n
+ , D(t) ∈ ℜp×m

+ and x(t) ∈ ℜn
+, u(t) ∈ ℜm

+ ,

t ∈ [0, +∞).

Necessity. Let u(t) = 0 for t ∈ [0, +∞) and x(t0) = ei (i-

th column of In). The trajectory does not leave the orthant

ℜn
+ only if ẋ(t) = A(t)ei ∈ ℜn

+ what implies aij ≥ 0 for

i 6= j and A(t) ∈ Mn, t ∈ [0, +∞). From the same reason

for x(t0) = 0 we have ẋ(t) = B(t)u(t) ∈ ℜn
+ what im-

plies B(t) ∈ ℜn×m
+ for t ∈ [0, +∞) since u(t) ∈ ℜm

+ can

be arbitrary. From (18b) for u(t) = 0, t ∈ [0, +∞) we have

y(t0) = C(t)x(t0) ∈ ℜp
+ and C(t) ∈ ℜp×n

+ , t ∈ [0, +∞)
since x(t0) ∈ ℜn

+ can be arbitrary. In a similar way as-

suming x(t0) = 0 we obtain y(t0) = D(t)u(t0) ∈ ℜp
+ and

D(t) ∈ ℜp×m
+ since u(t0) ∈ ℜm

+ is arbitrary.

Example 1. Consider the positive time-varying continuous-

time linear system (18a) with the matrices

A(t) =







−1 2 0

0 −e−t 0

1 e−t −e−t






,

B(t) =







1.1 + sin t

e−t

1.2 + cos t






.

(24)

The system described by (18a) with the matrices (21) is pos-

itive since A(t) ∈ M3 and B(t) ∈ ℜ3
+ for t ∈ [0, +∞).

4. Positive time-varying linear electrical

circuits

Example 2. Consider the time-varying electrical circuit shown

in Fig. 1 with given nonzero resistances R1(t), R2(t), R3(t)
inductances L1(t), L2(t) depending on time t, and source

voltages e1(t), e2(t).

Fig. 1. Electrical circuit

Using Kirchhoff’s laws, we can write the equation

e1(t) =

[

R1(t) +
dL1(t)

dt

]

i1(t) + L1(t)
di1(t)

dt

+R3(t)[i1(t) − i2(t)],

e2(t) =

[

R2(t) +
dL2(t)

dt

]

i2(t) + L2(t)
di2(t)

dt

+R3(t)[i2(t) − i1(t)],

(25)

which can be written in the form

d

dt

[

i1(t)

i2(t)

]

= A(t)

[

i1(t)

i2(t)

]

+ B(t)

[

e1(t)

e2(t)

]

, (26a)

where

A(t)=











−
R1(t)+R3(t)+a∗

L1(t)

R3(t)

L1(t)

R3(t)

L2(t)
−

R2(t)+R3(t)+b∗

L2(t)











,

B(t) =







1

L1(t)
0

0
1

L2(t)






,

(26b)

where

a∗ =
dL1(t)

dt
and b∗ =

dL2(t)

dt
.

From (26b) it follows that for R1(t) > 0, R2(t) > 0,

R3(t) > 0, L1(t) > 0, L2(t) > 0 and e1(t) ≥ 0, e2(t) ≥ 0
for t ∈ [0, +∞) the matrix A(t) ∈ M2 and B(t) ∈ ℜ2×2

+

for t ∈ [0, +∞). Therefore, the electrical circuit is a positive

time-varying system.

Example 3. Consider the time-varying electrical circuit shown

in Fig. 2 with given nonzero resistances R1(t), R2(t), R3(t),
inductance L(t) > 0, capacitance C(t) > 0 and source volt-

age e(t) ≥ 0 for t ∈ [0, +∞).

Fig. 2. Electrical circuit

It is shown that the electrical circuit is a positive time-

varying linear system if and only if R1(t) = 0 for t ∈
[0, +∞).
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Using Kirchhoff’s laws, we can write the equation

e(t) = R1(t)

[

i(t) + C(t)
du(t)

dt
+

dC(t)

dt
u(t)

]

+R3(t)

[

C(t)
du(t)

dt
+

dC(t)

dt
u(t)

]

+ u(t),

e(t) = R1(t)

[

i(t) + C(t)
du(t)

dt
+

dC(t)

dt
u(t)

]

+L(t)
di(t)

dt
+

dL(t)

dt
i(t) + R2(t)i(t),

(27)

which can be written in the form

d

dt

[

i(t)

u(t)

]

= A(t)

[

i(t)

u(t)

]

+ B(t)e(t), (28a)

where

A(t) =

[

0 c∗C(t)

L(t) R1(t)C(t)

]−1

·









−R1(t) −c∗
dC(t)

dt
− 1

−R1(t) − R2(t) −
dL(t)

dt
−R1(t)

dC(t)

dt









=



















R2
1(t)

c∗L(t)
−

R1(t) + R2(t) +
dL(t)

dt
L(t)

−
R1(t)

c∗L(t)

−
R1(t)

c∗C(t)
−

c∗
dC(t)

dt
+ 1

c∗C(t)



















,

B(t) =





0 c∗C(t)

L(t) R1(t)C(t)





−1 



1

1



 =









R3(t)

c∗L(t)
1

c∗C(t)









,

(28b)

where

c∗ = [R1(t) + R3(t)].

From (28b) it follows that A(t) ∈ M2 if and only if

R1(t) = 0 for t ∈ [0, +∞). Therefore, the electrical circuit is

a positive time-varying system if and only if R1(t) = 0 for

t ∈ [0, +∞).
Now let us consider the electrical circuit shown in

Fig. 3 with given positive resistances Rk(t), k = 0, 1, ..., n,

inductances Li(t), i = 2, 4, ..., n2, capacitances Cj(t),
j = 1, 3, ..., n1 depending on time t and source voltages

e1(t), e2(t), ..., en(t). We shall show that this electrical cir-

cuit is a positive and asymptotically stable time-varying linear

system.

Using Kirchhoff’s law we can write the equations

e1(t) = Rk(t)Ck(t)
duk(t)

dt

+

[

Rk(t)
dCk(t)

dt
+ 1

]

uk(t)

for k = 1, 3, . . ., n1,

(29a)

e1(t) + ek(t) = Lk(t)
dik(t)

dt

+

[

Rk(t) +
dLk(t)

dt

]

ik(t) + uk(t)

for k = 2, 4, . . ., n2,

(29b)

which can be written in the form

d

dt

[

u(t)

i(t)

]

= A(t)

[

u(t)

i(t)

]

+ B(t)e(t), (30a)

where

u(t) =













u1(t)

u3(t)
...

un1
(t)













, i(t) =













i2(t)

i4(t)
...

in2
(t)













,

e(t) =













e1(t)

e3(t)
...

en(t)













, (n = n1 + n2)

(30b)

Fig. 3. Positive and stable electrical circuit
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and

A(t) = diag[−a1(t),−a3(t), ...,−an1
(t),

−a2(t),−a4(t), ...,−an2
(t)],

ak(t) =
Rk(t)

dCk(t)

dt
+ 1

Rk(t)Ck(t)
for k = 1, 3, ..., n1,

ak(t) =
Rk(t) +

dLk(t)

dt
Lk(t)

for k = 2, 4, ..., n2,

B(t) =

[

B1(t)

B2(t)

]

,

B1(t) =



































1

R1(t)C1(t)
0 0 ... 0

1

R3(t)C3(t)
0 0 ... 0

...
...

... ...
...

1

Rn1
(t)Cn1

(t)
0 0 ... 0



































,

B2(t) =



































1

L2(t)

1

L2(t)
0 ... 0

1

L4(t)
0

1

L4(t)
... 0

...
...

...
. . .

...

1

Ln2
(t)

0 0 ...
1

Ln2
(t)



































.

(30c)

The electrical circuit is positive time-varying linear system

since all diagonal entries of the matrix A(t) are negative func-

tions of t ∈ [0, +∞) and the matrix B(t) has nonnegative

entries for t ∈ [0, +∞) if
dLk(t)

dt
≥ 0 and

dCk(t)

dt
≥ 0. The

solution of Eq. (29a) can be found using Lemma 1.

5. Concluding remarks

The positivity of time-varying continuous-time linear systems

and electrical circuits have been addressed. Necessary and

sufficient conditions for the positivity of the system and elec-

trical circuits have been established. It has been shown that

there exists a large class of positive electrical circuits with

time-varying parameters. The considerations have been illus-

trated by positive electrical circuits. The consideration can be

extended to fractional time-varying electrical circuits.
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