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Design of inverse kinematics algorithms: extended
Jacobian approximation of the dynamically consistent

Jacobian inverse

JOANNA RATAJCZAK

The paper presents the approximation problem of the inverse kinematics algorithms for
the redundant manipulators. We introduce the approximation of the dynamically consistent Ja-
cobian by the extended Jacobian. In order to do that, we formulate the approximation problem
and suitably defined approximation error. By the minimization of this error over a certain region
we can design an extended Jacobian inverse which will be close to the dynamically consistent
Jacobian inverse. To solve the approximation problem we use the Cholesky decomposition and
the Ritz method. The computational example illustrates the theory.
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1. Introduction

The inverse kinematics problem consists in finding a manipulator’s configuration
corresponding to a prescribed location (position and orientation) in task space of the
end–effector. For the redundant manipulator, whose the number of Degrees of Freedom
is grater than the task space dimension, there is an infinite number of inverse kinematics
problem solutions. In order to find a unique solution, we shall define some additional
constraints, e.g. minimization of the joints velocities during the motion, obstacle avoid-
ance, etc. The state of the art in the resolving of the inverse kinematics problem for the
redundant manipulators has been reviewed in [4] and references therein.

Typically, the inverse kinematic problem is solved numerically, using the Jacobian
inverse kinematics algorithms, e.g. the extended Jacobian algorithm. The extended Jaco-
bian is constructed by extension with the derivative of an augmenting kinematics func-
tion [2] and as a result the Jacobian is a square matrix. By an appropriate choice of the
augmenting kinematics functions, we may form the algorithm dynamic. For that reason,

J. Ratajczak is with Electronics Faculty, Wroclaw University of Technology, ul. Janiszewskiego 11/17,
50–372 Wroclaw, Poland, email: joanna.ratajczak@pwr.edu.pl

The work of the author was supported by a statutory grant No. S40142W4/K7 provided by the Wroclaw
University of Technology.

Received 17.10.2014. Revised 26.02.2015.



36 J. RATAJCZAK

this algorithm can solve the inverse kinematics problem and simultaneously keep an ob-
jective function at its minimum [12]. By design, the extended Jacobian algorithm has the
property of repeatability [16], which guarantees that the closed paths in the task space
are converted into the closed paths in the joint space. This property is significant for
planning the cyclic tasks in the industry applications.

The idea of shaping the algorithm performance by combining the advantages of two
algorithms has been introduced by Roberts and Maciejewski in [13, 14, 15]. Also, in a
series of papers [7, 8, 9] the authors showed that based on the properties of the extended
Jacobian algorithm, one can design the repeatable inverse kinematics algorithm which
approximates the Jacobian pseudo inverse algorithm.

Another important task for the redundant manipulators is force control. This task
consists in imposing the predetermined force by the end–effector. In this case, the ma-
nipulator’s redundancy can be used to fulfill some additional tasks. As an example, be-
yond exerting a constant force by the effector, the end–effector will be moving along
a prescribed curve. In order to solve that kind of problem, we enroll the dynamically
consistent Jacobian inverse [10], which does not guarantee the repeatability. In this pa-
per, our aim will be to define the extended Jacobian inverse which will behave similar
to the dynamically consistent Jacobian inverse in its behavior as well as preserving the
property of repeatability.

Summarizing, the main contribution of this article is the new definition of the approx-
imation problem of which solution allows us to obtain new Jacobian algorithm which has
a repeatability property and is similar to the dynamically consistent Jacobian algorithm.
Namely, the new algorithm combines the advantages of its two constituent algorithms.
Additionally, in order to solve the approximation problem we enroll the Cholesky de-
composition and the Ritz method.

This paper is organized in the following way. Section 2 introduces the basic concepts.
The dynamically consistent Jacobian inverse idea is presented in section 3. Main results
concerned with the approximation problem and its solution are provided in section 4.
Section 5 is devoted to computational example. Section 6 concludes the paper.

2. Preliminaries

We shall study a coordinate representation kinematics of a stationary redundant ma-
nipulator

k : Rn → Rm, y = k(q) (1)

with n degrees of freedom and m–dimensional task space. For the redundant manipula-
tors n > m and the number s = n−m stands for the degree of redundancy of the kinemat-
ics. Let J(q) = ∂k(q)

∂q denote the manipulator’s analytic Jacobian. Given the kinematics
(1) and desirable point yd in task space we shall define the inverse kinematic problem as:
find the joint position qd such that k(qd) = yd . The solution of inverse kinematic prob-
lem is usually delivered by a Jacobian inverse kinematics algorithm. A derivation of the
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Jacobian algorithms is based on the continuation method [5]. For an initial configuration
q0, we define a curve q(t) in joint space which passes through q0 such that the corre-
sponding task space error along this curve e(t) = k(q(t))− yd decreases exponentially
with decay rate γ > 0, so that

de(t)
dt

=−γe(t).

By substitution of the error in the above formula we obtain the Wazewski–Davidenko
equation

J(q(t))
dq(t)

dt
=−γ(k(q(t))− yd).

If J#(q) is a right inverse of the Jacobian (J(q)J#(q) = Im) we get a dynamic system

q̇(t) =−γJ#(q)e(t),

whose trajectory approaches to a solution of the inverse kinematic problem with a limit
qd = limt→+∞ q(t).

Usually, the Jacobian inverse kinematics algorithms employ the Jacobian pseudo
inverse at regular joint positions of the manipulator

JP#(q) = JT(q)(J(q)JT(q))−1

or the extended Jacobian inverse. The extended Jacobian inverse can be introduced in
following way. Given the kinematics (1) we choose an augmenting kinematics map

h : Rn → Rs, ỹ = h(q), s = n−m. (2)

Then using the map (2) we define the extended kinematics

l = (k,h) : Rn → Rn, ȳ = l(q)

which transforms the joint space into itself, and the extended Jacobian J̄(q) = ∂l(q)
∂q .

Finally, the extended Jacobian inverse takes form

JE#(q) = J̄−1(q)
∣∣∣
m first columns

. (3)

By design, the extended Jacobian inverse is a right inverse of the Jacobian

J(q)JE#(q) = Im

and has the annihilation property

∂h(q)
∂q

JE#(q) = 0.

It is well known that the extended Jacobian inverse kinematics algorithm is repeatable.
An alternative to both Jacobian inverses can be dynamically consistent Jacobian in-

verse derived by Oussama Khatib in [11].
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3. Dynamically consistent Jacobian inverse

The joint space equation of motion can be written

M(q)q̈+C(q, q̇)q̇+D(q) = Γ, (4)

where M(q) = MT(q) is an inertia matrix, vector C(q, q̇)q̇ describes influence of the
centrifugal and Coriolis forces, D(q) is the gravity force vector and Γ is the vector of
generalized joint forces. For non–redundant manipulators the basic relationship between
end–effector forces F and joint torques Γ is as follows

Γ = JT(q)F.

This relationship is obtained using the identity between the virtual works associated with
joint space and task space. However, this equality becomes incomplete for the redundant
manipulators that are in motion. It is known that when the redundant manipulator is not
at static equilibrium, there exist an infinity of joint torques vectors that could be applied
without producing the resulting forces at the end–effector [10]. Those joint torques are
acting within the null space. Taking into consideration the above reasoning, the relation-
ship between end–effector forces and joint torques takes the form

Γ = JT(q)F +
(
In − JT(q)JT#(q)

)
Γ0, (5)

where Γ0 is an arbitrary generalized joint torque vector and JT# is a generalized inverse
of JT. As it can be seen, the equation (5) depends on JT#. Further we will see that only
one of generalized inverses is consistent with the system dynamics [11]. Let us begin
with applying a joint torque vector in the general form (5) to the manipulator’s dynamics
(4)

M(q)q̈+C(q, q̇)q̇+D(q) = JT(q)F +
(
In − JT(q)JT#(q)

)
Γ0. (6)

To determine the relation between operational acceleration and the operational force
we shall multiply equation (6) by the matrix J(q)M−1(q). Next, using the differential
ÿ = J̇(q)q̇+ J(q)q̈ and some simple computations the resulting equation can be written
as

ÿ+
(
J(q)M−1(q)C(q, q̇)q̇− J̇(q)q̇

)
+ J(q)M−1(q)D(q) =(

J(q)M−1(q)JT(q)
)

F + J(q)M−1(q)
(
I − JT(q)JT#(q)

)
Γ0. (7)

Equation (7) expresses the relationship between the operational accelerations
ÿ and the operational force F . It can be noticed that as long as the term
J(q)M−1(q)

(
I − JT(q)JT#(q)

)
Γ0 is non–zero the operational point is affected by Γ0.

In order for the joint torques associated with the null space in (5) to not produce any
acceleration at end-effector, it is necessary that

J(q)M−1(q)
(
I − JT(q)J#T(q)

)
Γ0 = 0. (8)
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So,

J(q)M−1(q) = J(q)M−1(q)T T(q)J#T(q),

M−1(q)JT(q) = J#(q)
(
J(q)M−1(q)JT(q)

)T
,

J#(q) = M−1(q)JT(q)
(
J(q)M−1(q)JT(q)

)−1
.

Equation (8) is satisfied by generalized inverse of Jacobian which is called dynamically
consistent Jacobian inverse

JDC#(q) = M−1(q)JT(q)
(
J(q)M−1(q)JT(q)

)−1
.

4. The approximation problem

In order to obtain the new extended Jacobian which will be similar to the dynamically
consistent Jacobian first we shall state and solve the following approximation problem:
find an extended Jacobian inverse JE#(q) that approximates in an optimal way the given
dynamically consistent inverse JDC#(q). Invoking the approach presented in [17], we
introduce a pair of the matrices

E1(q) =

[
J(q)

Dh(q)

]−1

=
[
JE#(q) Q(q)

]
(9)

and

E2(q) =

[
J(q)

KT(q)

]−1

=
[
JDC#(q) M−1(q)K(q)

]
, (10)

where h(q) is the augmenting kinematics map, Dh(q) = ∂h(q)
∂q and matrix K(q) has the

following properties
J(q)M−1(q)K(q) = 0 (11)

and
KT(q)M−1(q)K(q) = Is. (12)

Let Q ∈ Rn stand for a set of regular configurations, then using (9) i (10) we define
the approximation error as the Frobenius norm of a measure of the difference between
JDC#(q) and JE#(q)

E(h) =
∫
Q

∥E−1
1 (q)E2(q)− In∥2

Fm(q) dq, (13)

where m(q)dq denotes the volume form with m(q) = det
(
J(q))M−1(q)JT(q)

)
[17].
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After substituting (9) and (10) into (13) the approximation error functional takes
form

E(h)=
∫
Q

tr
(

Dh(q)PDC(q)(Dh(q))T−2Dh(q)M−1(q)K(q)+ Is

)
m(q)dq, (14)

where
PDC(q) = JDC#(q)

(
JDC#(q)

)T
+M−1(q)K(q)KT(q)M−1(q).

The augmenting kinematics function minimizing the functional error (14) allows us to
introduce the new extended Jacobian.

4.1. The Cholesky decomposition

To define the approximation error functional we need to find the matrix K(q) which
fulfills (11) and (12). In order to do that we enroll the Cholesky decomposition. This
being so, let us assume that W (q) = M(q)−1K(q) so K(q) = M(q)W (q). In that case, the
equations (11) and (12) take form

J(q)W (q) = 0 (15)

and
KT(q)W (q) =W T(q)M(q)W (q) = Is. (16)

It is known that the inertia matrix M(q) is symmetric and positively definite, M(q) =
MT(q)> 0. We apply the Cholesky decomposition [3]

M(q) = T T(q)T (q)

and based on that, from (16) we receive

W T(q)T T(q)T (q)W (q) = (T (q)W (q))T(T (q)W (q)) = Is. (17)

Let Z(q) = T (q)W (q), then the equation (15)

J(q)W (q) = J(q)T−1(q)Z(q) = 0 (18)

and from (17) we get
ZT(q)Z(q) = Is. (19)

Finally, after substituting J(q)T−1(q) = S(q) the constraints (11), (12) are as follows

S(q)Z(q) = 0

and
ZT(q)Z(q) = Is.

The matrix Z(q) is a matrix with orthonormal columns spanning the S(q) kernel. For
obtained T (q) and Z(q) we compute W (q) = T−1(q)Z(q) = M−1(q)K(q). Please notice
that to compute the approximation error we need only the W (q) matrix instead of the
term M−1(q)K(q).
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4.2. The Ritz method

The approximation problem becomes the calculus of variations problem because
the error functional (14) should be minimized with respect to augmenting kinematics
functions h(q). That is why the optimal augmenting maps can be found from Euler–
Lagrange equations that takes form of linear elliptic partial differential equations. For
realistic redundant manipulators to calculate the optimal maps h(q) we need to use direct
methods of calculus of variations, e.g. the Ritz method [6]. To do so, we assume that

h(q) = cTϕ(q), (20)

where ϕ(q) = (ϕ1(q),ϕ2(q), . . . , ϕp(q)) represents the vector composed of basic func-
tions in the joint space and c ∈ Rp is a vector of parameters. Thanks to the parametriza-
tion of h(q) the approximation error takes the quadratic form

E(c) = cTQc−2cTR+D, (21)

where

Q =
∫
Q

∂ϕ(q)
∂q

PDC(q)
(

∂ϕ(q)
∂q

)T

m(q) dq,

R =

∫
Q

∂ϕ(q)
∂q

M−1(q)K(q)m(q) dq,

D =
∫
Q

m(q)Is dq.

After differentiation of the equation (21) with respect to c and equate to zero we
receive

∂E(c)
∂c

= 2Qc−2R = 0.

Under assumption that the matrix Q is non–singular, the optimal augmenting kinematics
map h(q) = c∗Tϕ(q) is obtained when c∗ = Q−1R.

5. Example

5.1. Manipulators

As a testbed for the performance evaluation of the newly proposed approximation
algorithm we have chosen the planar 3R manipulator shown in Fig. 1 and a 4 DOF sub–
manipulator of the PUMA 560 manipulator, Fig. 2.
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Figure 1: 3R planar manipulator.

Planar 3R manipulator Using the Cartesian position coordinates, the kinematic of
the planar 3R manipulator can be represented as

k(q) =

[
l1 cos(q1)+ l2 cos(q1 +q2)+ l3 cos(q1 +q2 +q3)

l1 sin(q1)+ l2 sin(q1 +q2)+ l3 sin(q1 +q2 +q3)

]
where li is the length of i-th arm. The dynamics equation of the manipulator is as followsM11 M12 M13

M12 M22 M23

M13 M23 M33


︸ ︷︷ ︸

M(q)

q̈+C(q, q̇)q̇+D(q) = τ,

where

M11 =
1
3
(l2

3m3 + l2
2(m2 +3m3)+ l2

1(m1 +3(m2 +m3)))+ l1l2(m2 +2m3)cos(q2)+

l2l3m3 cos(q3)+ l1l3m3 cos(q2 +q3),

M12 =
1
6
(2(l2

3m3 + l2
2(m2 +3m3))+3l1l2(m2 +2m3)cos(q2)+

3l3m3(2l2 cos(q3)+ l1 cos(q2 +q3))),

M13 =
1
6

l3m3(2l3 +3l2 cos(q3)+3l1 cos(q2 +q3)),

M22 =
1
3
(l2

3m3 + l2
2(m2 +3m3))+ l2l3m3 cos(q3),

M33 =
l2
3m3

3
,

τi is control force/torque and mi stands for the mass of i-th arm.
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Figure 2: Puma 560.

Puma 560 manipulator The kinematics of the manipulator (Fig. 2) is defined by the
XY position of the end–effector and the rotation around the z4 axis, that is

k(q) =−0.1501s1 + c1(s2(0.4331c3 +0.0203s3)+ c2(0.4318−0.0203c3 +0.4331s3))

0.1501c1 + s1(s2(0.4331c3 +0.0203s3)+ c2(0.4318−0.0203c3 +0.4331s3))

q4

 ,
where si, ci denote respectively sin(qi) and cos(qi).

For given manipulator’s dynamics M(q)q̈+C(q, q̇)q̇+D(q) = τ, the elements of the
inertia matrix are as follows [1]

M11 = 2.57+1.38cos2(q2)+0.3sin2(q2 +q3)+0.744cos(q2)sin(q2 +q3),

M12 = 0.69sin(q2)−0.134cos(q2 +q3)+0.0238cos(q2),

M13 = −0.134cos(q2 +q3)−0.00397sin(q2 +q3),

M14 = M24 = M34 = 0,
M22 = 6.79+0.744sin(q3),

M23 = 0.333+0.372sin(q3)−0.011cos(q3),

M33 = 1.16,
M44 = 0.2.
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Figure 3: 3R planar manipulator: conver-
gence of q1–q3 for extended Jacobian al-
gorithm.

Figure 4: 3R planar manipulator: conver-
gence of q1–q3 for dynamically consistent
Jacobian inverse algorithm.

Figure 5: 3R planar manipulator: convergence of q1–q3 for Jacobian pseudo inverse al-
gorithm.

5.2. Inverse kinematics problem

Planar 3R manipulator Since the degree of redundancy of the 3R manipulator equals
1, we shall find only one augmenting kinematics function h(q) which minimizes the
approximation error (14). For the sake of simplicity, we have chosen a linear function
h(q) = cTq, c ∈ R3. The approximation will be performed over a region

Q =
{

q ∈ R3
∣∣∣0 < q1 <

π
2
,0 < q2 <

π
2
,0 < q3 <

π
2

}
.

After a computations we obtained the following augmenting kinematics function

h(q) = 0.485q1 −0.064q2 +0.107q3. (22)

Function (22) determines the extended Jacobian and the extended Jacobian inverse (3)
which has been applied in order to solve inverse kinematic problem for the manipulator.



DESIGN OF INVERSE KINEMATICS ALGORITHMS: EXTENDED JACOBIAN APPROXIMATION
OF THE DYNAMICALLY CONSISTENT JACOBIAN INVERSE 45

The following data are assumed: the initial joint space configuration q(0) = (π
6 ,

π
2 ,

π
3 ), the

desired tasks space position yd = (0,1.6), the convergence rate γ = 0.5 and simulation
time interval T = [0,15][s].

The results have been displayed in Figs. 3–5. The solution of the inverse kinemat-
ics has been compared for the optimal extended Jacobian, the dynamically consistent
Jacobian inverse and the Jacobian pseudo inverse.

To evaluate the performance of the extended Jacobian algorithm we defined the qual-
ity measure of approximation

δ(q(t)) =
∥∥J(q(t))M−1(q(t))

(
In − JT(q(t))J#T(q(t))

)∥∥2
F .

For the solution obtained by the dynamically consistent Jacobian inverse the quality
measure is equal zero during the trajectory. We expect the measure to be as close as
possible to zero for the extended Jacobian inverse. It is worth to notice that the approxi-
mation over the certain region is optimal in a mean way. In Figs. 6 and 7 one can see that
the criterion value is much lower for the approximate Jacobian than the pseudo inverse
Jacobian.

It follows that the approximation problem is solved in a satisfactory way in a sense
that the solution stays acceptably close to the solution provided by the dynamically con-
sistent Jacobian inverse algorithm.

Figure 6: 3R planar manipulator: quality
measure of approximation for extended Ja-
cobian algorithm.

Figure 7: 3R planar manipulator: qual-
ity measure of approximation for Jacobian
pseudo inverse algorithm.

Puma 560 As in previous example we shall find the augmenting kinematics function
which will minimize the approximation error (14) over a prescribed joint space region

Q =
{

q ∈ R3∣∣0 < q1 <
π
2
,0 < q2 <

π
2
,0 < q3 <

π
2
,0 < q4 <

π
2

}
. (23)

In this case the augmenting kinematics function is computed as

h(q) =−0.0274q1 −0.1862q2 +0.04414q3 +0q4. (24)
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The inverse kinematic problem is solved under the conditions: q(0) = (π
2 ,

π
2 ,

π
2 ,0),

yd = (−0.13,0.2, π
3 ), γ = 0.5 and T = [0,15][s]. Figures 8–10 illustrate the solution of

the inverse kinematics problem. The criterion value during the motion for the extended
Jacobian algorithm and the Jacobian pseudo inverse algorithm are shown respectively in
Fig. 11 and Fig. 12.

Figure 8: PUMA: trajectories of q1–q3 for
extended Jacobian algorithm.

Figure 9: PUMA: trajectories of q1–q3 for
dynamically consistent Jacobian inverse
algorithm.

Figure 10: PUMA: trajectories of q1–q3 for Jacobian pseudo inverse algorithm.

5.3. Crucial properties

To investigate the crucial features of the new algorithm we propose two kind of
numerical tests for the 3R planar manipulator. Firstly, we may consider the repeatability
property. For this purpose we will make a series of movements between the three points
A = k(π

2 ,
π
4 ,0), B = k(π

4 ,
π
2 ,

π
3 ), C = k(π

3 ,
π
4 ,

π
4 ) which compose the closed path in task

space. The results are shown in Figs. 13 and 14. It can be seen that for closed path in
tasks space the dynamically consistent Jacobian algorithm does not return the close path
in joint space unlike the extended Jacobian algorithm.
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Figure 11: PUMA: quality measure of ap-
proximation for extended Jacobian algo-
rithm.

Figure 12: PUMA: quality measure of ap-
proximation for Jacobian pseudo inverse
algorithm.

Figure 13: Trajectories in joint space for
extended Jacobian algorithm.

Figure 14: Trajectories in joint space
for dynamically consistent Jacobian algo-
rithm.

To check the dynamic consistency, let us consider the following example. The goal
is to maintain the end–effector at static equilibrium by application of the operational
force which compensate the gravity, centrifugal and Coriolis forces reflected at the end–
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effector. All internal motions should be constrained to the null space. Let us select Γ0 =
(2(q1 − π

2 ),2(q2 +
π
6 ),2(q3 − π

2 )). In case of dynamically consistent Jacobian the end–
effector remains at the same place while the joints are moving, Fig. 15. After apply
the optimal extended Jacobian it can be seen in Fig. 16 that the end–effector is slightly
moving, however this motion is smaller than in case of Jacobian pseudo inverse, Fig. 17.

Figure 15: Gravity compensation – dyami-
cally consistent Jacobian.

Figure 16: Gravity compensation – ex-
tended Jacobian.

Figure 17: Gravity compensation – Jacobian pseudo inverse.

6. Conclusion

We have proposed the new optimal extended Jacobian inverse kinematics algorithm.
We have approximated the dynamically consistent Jacobian inverse by the extended Ja-
cobian. The extended Jacobian obtained from the solution of the approximation problem
combines the advantages of both the extended Jacobian algorithm and the dynamically
consistent Jacobian algorithm, which has been shown by the numerical tests. The pre-
sented results confirm that the approximation problem has been solved successfully.
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The computations have been done using the WOLFRAM MATHEMATICA. The
simulations show that the quality of approximation is dependent on the choice of the
basis functions employed in the Ritz method. On the other hand it has been checked that
the linear augmenting kinematics function is a good compromise between the quality of
simulations and the computational effort. For example, in case of 3R planar manipulator
for the linear augmenting kinematics function the time required to obtain the solution
is 5 seconds (PC equipped with 2.4[GHz] processor). Obviously, for more complicated
manipulators (with higher degree of redundancy, much more complicated inertia matrix
or more Degrees of Freedom) the optimization could be more time–consuming. Never-
theless, the obtained extended Jacobian can be used to solve many different tasks.

Presented results underlie base for the future work in which the possibility of the
application the approximated extended Jacobian in the force control algorithms for the
redundant manipulator should be investigated.
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