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Abstract. The paper describes a modification to the recently developed plug-in direct particle swarm repetitive controller (PDPSRC) for

the sine-wave constant-amplitude constant-frequency (CACF) voltage-source inverter (VSI). The original PDPSRC algorithm assumes that

the particle swarm optimizer (PSO) takes into account a performance index defined over the whole reference signal period. Each particle

stores all the samples of the control signal, e.g. α = 200 samples for a controller working at 10 kHz and the reference frequency equal to

50 Hz. Therefore, the fitness landscape (i.e. the performance index) is α-dimensional (αD), which makes optimization challenging. That

solution can be categorized as the single-swarm one. It has been previously shown that the swarm controller does not suffer from long-term

stability issues encountered in the classic iterative learning controllers (ILC). However, the convergence of the swarm has to be kept at a

relatively low rate to enable successful exploitation in the αD search space, which in turn results in slow responsiveness of the PDPSRC.

Here a multi-swarm approach is proposed in which we divide a dynamic optimization problem (DOP) among less dimensional swarms. The

reference signal period is segmented into shorter intervals and the control signal is optimized in each interval independently by separate

swarms. The effectiveness of the proposed approach is illustrated with the help of numerical experiments on the CACF VSI with an output

LC filter operating under nonlinear loads.

Key words: repetitive process control, dynamic optimization problem, particle swarm optimizer, repetitive disturbance rejection, non-

interacting subswarms, dimension-reduced fitness functional.

Nomenclature

2D – two-dimensional (here control system),

αD – α-dimensional (here optimization problem),

CACF – Constant-Amplitude Constant-Frequency (con-

verter),

DFF – Disturbance Feed-Forward,

DOP – Dynamic Optimization Problem,

FSF – Full-State Feedback (controller),

ILC – Iterative Learning Control(ler),

k-direction – pass-to-pass direction,

MMO – Multi-Modal Optimization,

p-direction – along the pass direction,

PDPSRC – Plug-in Direct Particle Swarm Repetitive Con-

troller (a basic approach),

PDMSRC – Plug-in Direct Multi-Swarm Repetitive Controller

(a novel approach),

PSO – Particle Swarm Optimization (-er),

RC – Repetitive Control(ler),

RFF – Reference Feed-Forward,

RMSE – Root Mean Squared Error (here calculated within

one period of a reference signal),

VSI – Voltage-Source Inverter,

α – number of samples per reference signal period,

αn – points of swarm division (points of subswarms’

adjacency),

i – swarm iteration identification number/index,

j – particle identification number/index,

J – cost functional,

k – pass (reference signal period) number,

n – subswarm identification number/index,

p – sample identification number,

•
m – measurement signal corrupted with noise,

•
ref – reference signal.

1. Introduction

The PDPSRC [1] was initially proposed for CACF inverters

with an LC output filter but its use is not limited to this kind

of power electronic converters. That was the first step towards

a novel versatile stochastic repetitive controller. Its develop-

ment was motivated by unsatisfactory results obtained using

the classic ILC scheme. Most of the iterative learning con-

trollers (ILC) suffer from long term stability problems and

additional filtering is essential to stabilize the system [2–6].

For example, the very basic P-type control law has to be mod-

ified into

u(p, k) = Q(z−1)u(p, k − 1) + L(z−1)kRCe(p, k − 1), (1)

where u denotes the control signal, e is the control error, kRC

is the controller gain, k is the iteration (pass, trial, cycle) in-

dex, p is the time index along the pass (1 ≤ p ≤ α, where

α is the pass length), with Q and L being usually non-causal

low-pass zero-phase-shift filters. The formula (1) represents a

uniformed framework for ILC and repetitive control (RC) [7].

The main obstacle in practical implementation is that there are

no analytical methods for choosing the effective filtering that
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will stabilize the system in the presence of a usually unknown

repetitive disturbance. Therefore, filters are often selected by

guessing and checking. To ensure sufficient robustness, a low-

pass filtering with a cut-off frequency much below the Nyquist

limit has to be implemented, which in turn compromises the

effectiveness of the controller by reducing considerably its

bandwidth. That is why this scheme has not gained much

acceptance among power electronic practitioners whose con-

verters are usually subject to unknown repetitive load currents

of high harmonic content, including harmonics non-rejectable

due to plant limitations, and are expected to perform even hun-

dreds of millions repetitions without resetting. Nevertheless,

the classic ILC algorithm robustified using various Q and

L design strategies offers high-performance practical position

control schemes and as such becomes more and more popu-

lar among motion control engineers [8–11] whose mechanical

repetitive systems are subject to often negligible exogenous,

i.e. unknown, repetitive disturbance forces, which makes the

design requirements easier to define.

It should be noted that (1) with Q = L = 1 consti-

tutes the model of any repetitive signal and as such places

itself within the context of the internal model principle (IMP).

The same IMP is utilized to synthesize multi-resonant (multi-

oscillatory) controllers for selective harmonic disturbance re-

jection. By contrast, the multi-oscillatory controllers do not

suffer from long term stability problems and thus are one

of the best alternatives for a repetitive control of high-

performance CACF inverters [12–14]. The multi-oscillatory

controllers have also their limitations related to the problem-

atic implementation of oscillatory terms near the controller

bandwidth and the computational burden growing with the

number of harmonics needed to be rejected. They are also

sensitive to phase lags and in high-performance converters it

is required to take special measures to compensate for these

delays [15].

Recently, two new soft-computing approaches to repetitive

control have been proposed. In the first one an artificial neural

network (ANN) is used to shape the optimal control signal in

the iterative manner [16] and should not be confused with the

B-spline based voltage controller reported in [17] that employs

the idea scrutinized in [18], i.e. does not take advantage of a

global update rule. The polynomial and rational basis func-

tions are sometimes incorporated into repetitive systems to

produce a control signal which, i.a., is less prone to overlearn-

ing thanks to the smoothing effect and/or introduces inverse

dynamics to enhance transient performance. Some of the few

studied examples from motion control field are [19–21]. The

most recent approach to repetitive process control employs

PSO for direct optimization of the control signal in the online

mode [1]. The proposed swarm has been modified to cope

with a dynamic optimization problem (DOP) brought about

by the non-stationarity of the disturbance. In [1] a single-

swarm solution is reported. Such a solution results in high

dimensionality of the fitness function that makes the on-line

search for a good suboptimal repetitive control signal a dif-

ficult task. In the single-swarm approach the swarm has to

be managed in such a way that its explorative ability is kept

at a high level. This in turn results in a slow convergence

rate. In order to overcome this difficulty and improve respon-

siveness of the swarm, without deteriorating its exploitative

ability, a multi-swarm repetitive controller is proposed here.

The name PDPSRC is then modified into plug-in direct multi-

swarm repetitive controller (PDMSRC) to reflect the nature of

the population used here. The performance of the controller

has been verified through numerical simulation and selected

results are shown here to illustrate the possibility of reduc-

ing the dimensionality of the problem seen by the separate

subswarms without a major loss of output voltage waveform

quality.

The main contribution of this paper is the second step

towards a versatile swarm controller for repetitive processes

– the step in which the responsiveness of the stochastic con-

troller is improved by replacing the single-swarm optimizer

used in [1] by its multi-swarm counterpart. It should be high-

lighted that the particle swarm optimization algorithm is not

used here in the offline mode to determine parameters in any

of the ILC schemes already reported in the literature. The

proposed swarm explicitly stores control signal samples and

minimizes a user-defined cost function in the online mode.

The optimization task at hand is then equivalent to control

task itself. No Q-filtering (indispensable in (1)) is used here.

The robustness of the control system is shaped by the appro-

priate cost function selection – here by incorporating a penal-

ty for excessive control signal dynamics characteristic to the

overlearning phenomenon.

2. Plug-in direct multi-swarm repetitive

controller

Particle swarms are gaining more and more acceptance with-

in the DOP field. A representative set of swarm movement

laws effective in the dynamic environments can be found,

e.g., in [22]. The previously developed PDPSRC assumes a

single swarm travelling through the search space [1]. This

implies that a single particle stores all control signal samples

per period of a reference signal as depicted in Fig. 1. In the

proposed here PDMSRC, the task of online optimization of a

shape of the control signal according to a given performance

index has been divided between N independent swarms. This

means that the α-dimensional DOP has been split into less

dimensional DOPs and each of them has been assigned to a

different swarm. In general, the task does not have to be split

evenly (Fig. 2). In this study only subswarms equal in their

dimensionality have been tested. However, later on some hints

are given about the possible advantages of swarms covering

particular parts of the control signal – not necessarily equal

in the number of samples.

The meanings of subswarm and multi-swarm terms used

throughout this paper should not be confused with their most

popular interpretations as, e.g., in [23]. Usually both of them

are used in the context of a multimodal optimization (MMO).

Here the problem is assumed to be unimodal. The swarm has

been divided into subswarms to reduce dimensionality for

each swarm, i.e. a single particle from a selected swarm does
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not carry complete candidate solution any more whereas in

a typical multimodal problem each particle in each subswarm

stores complete candidate solution. Moreover, in a typical

MMO information sharing between subswarms is not totally

suppressed whereas here subswarms operate in the mutually

exclusive subsets of dimensions and there is no information

exchange between them at all. The terms subswarm and swarm

can then be used here interchangeably because each subswarm

operates as an independent entity.

Fig. 1. The single-swarm approach: a single particle covers all the

α samples of the control signal related to the entire period of the

depicted reference signal

Fig. 2. The multi-swarm approach: a single particle from a subswarm

covers only the subset of samples of the control signal related to the

entire period of the depicted reference signal – the scenario with 3

swarms and a non-even task distribution

The form of the fitness function (performance index) is

identical for all subswarms and is as follows

J (k, n) = J0 +

αn∑

p=αn−1+1

(
uref

C (p) − um
C (p, k)

)2

︸ ︷︷ ︸
penalty for control error

+ β

αn∑

p=αn−1+2

(uPSO(p, k) − uPSO(p − 1, k))
2

︸ ︷︷ ︸
penalty for control signal dynamics

,

(2)

where k is again the reference signal pass index, p is again the

sample index reset at each pass beginning, n ∈ [1, N ] denotes

the subswarm identification index, αn ∈ {α1, α2, . . . , αN}
define junctions between subswarms and β is the subjective

penalty factor. It has been assumed that each junction point

belongs to the swarm on its left hand side. Also, α0 is always

equal to 0 yielding the beginning of the pass at index p = 1,

and αN , where N denotes the number of swarms, is identical

with α being the pass length equal to the single period of the

reference voltage uref
C . The positive constant J0 in (2) is in-

troduced to ensure positive definitiveness of the performance

index which is crucial for a knowledge evaporation mecha-

nism described later on in the paper. The superscript in um
C

denotes a measurement signal corrupted by the noise.

Since particles directly store samples of the control signal,

they can be represented using vectors as follows

qnj = [uj(αn−1 + 1),uj(αn−1 + 2), . . . ,uj(αn)] , (3)

where j ∈ {1, 2, . . . , S}, with S being the swarm size, is the

particle’s identification number within the n-th swarm. In this

study all subswarms are equinumerable. The future control

signal is constructed from individual solutions by concatenat-

ing all NS vectors into a vector

uPSO
i = [q11(i),q21(i), . . . ,qN1(i),q21(i), . . . ,

qnj(i), . . . ,qNS(i)],
(4)

where i denotes swarm iteration number. The control signal

samples generated by the swarm form a time series as follows

uPSO =
[
uPSO

1 ,uPSO
2 ,uPSO

3 , . . .
]
, (5)

which real-valued entries are equivalent to uPSO in (2) and

serve the same purpose as u in (1).

In this study the synchronous update rule is employed, i.e.

the subswarms, and thus also uPSO, are updated after passing

all αS consecutive control signal values to the PWM (pulse

width modulator). The swarm iteration should not be confused

with the reference signal period. It takes S such periods to

rate all particles in all subswarms. From the plant’s standpoint

the update in the k-direction takes place once per αS sam-

pling periods. However, it is possible to distribute in time most

PDPSRC/PDMSRC related calculations [24]. For example, (2)

can be calculated by adding increments after each sampling

time, (6) and (7) require invoking calculations for only one

dimension and only one particle in only one subswarm after a

given sampling instance. Hence the computational complexity

of the algorithm does not grow with an increasing number of

subswarms. Synchronization between all time indexes is il-

lustrated in Fig. 3. Their descriptions are collated in Table 1.

The resulting controller is depicted in Fig. 4. The PDMSRC

is accompanied by the RFF, FSF and RDF that are briefly

described in Sec. 3.

Table 1

Integer time indexes

Index Symbol Max. value

Pass k +∞

Sample p α

Subswarm n N

Particle j S

Swarm iteration i +∞
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Fig. 3. Synchronization of the time indexes

Fig. 4. A schematic diagram of the control system including a full-state feedback controller and a repetitive disturbance feedforward path –

the exemplary nonlinear load depicted for clarity (the block labeled as Load)

The optimization task at hand is of the DOP type due to

varying load conditions. Therefore at least two mechanisms

have to be implemented – one to keep the swarm alive and

another one to gradually forget possibly outdated memories.

The simple idea of placing repellers at an already detected

gbest and stored in the swarm memory pbests [25] has been

used. A speed and position update rules are as follows

vnj(i + 1) = c1vnj(i) + c2r
pbestδp

(
q

pbest
nj − qnj(i)

)

+ c3r
gbestδp

(
qgbest

n − qnj(i)
)
,

(6)

qnj(i + 1) = qnj(i)

+ min{max{−vclmp,vnj (i + 1)}, vclmp},
(7)

where vnj and qnj are the velocity and position of the j-th

particle within the n-th subswarm, q
pbest
nj stores the best so-

lution proposed so far by the j-th particle from the n-th sub-

swarm, qgbest
n denotes the best solution found so far by the

n-th subswarm, c1, c2 and c3 are the inertia, cognitive and so-

cial weights, respectively. A velocity clamping is implemented

and the maximum speed is vclmp. The random numbers rpbest

and rgbest are uniformly distributed in the unit interval. In all
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experiments described in this paper, the c1, c2 and c3 factors

have been calculated using the constricted PSO formula [26]

and are 0.73, 0.73·2.05 and 0.73·2.05, respectively. The direc-

tion variable δp, having value of −1 or 1, enables the swarms

to switch between attract and repel modes and is chosen to

be dimension-wise (p-wise), i.e. an individual control of di-

versity is possible in each search dimension. The Euclidean

radius has been selected as the diversity measure

D
p−wise
radius (p) =

1

2
(max{qn1(p), . . . , qnS(p)}

−min{qn1(p), . . . , qnS(p)})

(8)

and the attract and repel modes are being chosen according to

a user-defined diversity threshold Dthold that represents the

trade-off between a steady-state control error and a controller

dynamics in the pass-to-pass direction, and has to be chosen

by guessing and checking.

The potentially outdated memory of the pbests, and at the

same time of the gbest being the best of all pbests, is handled

using the knowledge gradual evaporation concept [27]. This

mechanism forces particles to loose gradually their personal

best fitness Pnj according to the following rule

[
Pnj(i + 1)

q
pbest
nj

]
=

=









ρPnj(i)

q
pbest
nj



 if J (qnj(i + 1)) ≥ ρPnj(i)




J (qnj(i + 1))

qnj(i + 1)



 if J (qnj(i + 1)) < ρPnj(i),

(9)

where ρ has a positive value bigger than 1 for any positive-

definite functional J and an optimization task formulated as

the minimization one. The smaller the value of ρ, the slower

the transition to the new optimum after a change in the shape

of the load current whereas too big a value of ρ is detrimental

to the output voltage quality under the repetitive disturbance

due to too fast an evaporation of good solutions that in this

particular situation do not become outdated. The evaporation

constant has to be set by the trial and error method. It should

be noticed that the knowledge evaporation mechanism (9) does

not work for a positive semi-definite problem, because a zero-

valued solution cannot be ”forgotten” by multiplying it by ρ.

Though it is highly unlikely that the sum of squared errors and

increments present in (2) would reduce to zero in any physical

system, it is still possible to get zero value from a theoretical

point of view. A positive offset J0 in (2) is then added for

mathematical elegance. Its value along with ρ shapes the for-

getting process. Here a relatively small value of 0.01 has been

assumed which is practically negligible and the forgetting is

almost identical as for the sole sum of squares. Key parame-

ters of the swarm are collated in Table 2. A flowchart of the

swarm repetitive control algorithm is depicted in Fig. 5.

Table 2

Parameters of the swarm

Parameter Symbol Value

Dimensionality of the problem α 200

Number of particlesa S 25

Swarms’ update frequency fref · S−1 2 Hz

Number of subswarmsb N 1, 2, 5, 10, 20 or 50

Points of divisionc (for α0 = 0) αn n α

N
∧ n ∈ {1, 2, . . . , N}

Evaporation constantd ρ 1.05, 1.10, 1.20, 1.40 or 1.50

Diversity threshold Dthold 1.5 · 325−1

Penalty factor β 0.25

Constant summand in cost function J0 0.01

Velocity clamping level vclmp 9.0
a identical for all subswarms
b selected case scenarios with subswarms that cover α

N
dimensions each

c in this study evenly spaced throughout the period of the reference signal
d exemplary values – always specified in captions

Fig. 5. A flowchart of the swarm repetitive controller

The two above-mentioned DOP-enabling mechanisms are

pivotal to correct operation of the controller and so the evapo-

ration constant and the diversity threshold are two parameters

critical for the correct operation of the PSO. Also the velocity
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clamping level is useful in shortening the settling time in the

k-direction. At the moment, all of them have to be tuned by

guessing and checking. Fortunately, they have very straightfor-

ward interpretation and the optimization/control results are not

very sensitive with respect to changes in these settings, i.e. the

change of 10% in the evaporation constant, or the change of

50% in the diversity threshold or the velocity clamping level

do not render the algorithm ineffective. These settings consti-

tute a compromise between the responsiveness (the ability to

react fast enough to environment dynamism caused by load

variations) and the steady-state voltage quality. The bigger the

evaporation constant and the diversity threshold, the faster the

transition to a new optimum. However, the bigger they are,

the weaker is the swarm’s ability to exploit the search space

and hence more distorted is the output voltage. The lower the

velocity clamping level, the more smooth the transition to a

new optimum. Nevertheless, this happens at the cost of the

transition duration, i.e. the responsiveness.

3. Full-state feedback controller

and disturbance feedforward

Clearly, the plug-in repetitive controller acts only in the k-

direction. Such a controller has to be assisted by a non-

repetitive controller acting in the p-direction. For the purpose

of this study, the full-state feedback (FSF) has been imple-

mented to increase damping in the highly underdamped plant

(compare Rf with Rcrit in Table 3). This gives control signal

uFSF = −(k11i
m
L + k12u

m
C ), (10)

additive to the PDMSRC output signal. In this particular study

the damping has been increased 5 times, i.e. FSF gains k11

and k12 have been determined using the pole placement proce-

dure to shift closed-loop poles 5 times deeper into the left-half

s-plane in respect to open-loop poles. The standard reference

feedforward (RFF) path

uRFF = (1 + k12)u
ref
C , (11)

gives a unity gain for the zero frequency [28]. Also, the dis-

turbance static feedforward (DFF) path is introduced to com-

pensate the resistive voltage drop (for the zero frequency) [13]

uDFF = (R̂f + k11)i
m
load, (12)

where R̂f is the identified resistance of the output filter and

imload denotes the measured load current. A relatively high

identification error is assumed in this study (R̂f = 0.5Rf)

to emphasize influence of the repetitive controller. Also the

prediction of the load current based on the previous pass pro-

posed in [29] to compensate the overall lag caused by a digital

implementation of the controller and an inherent delay of the

PWM has been omitted here in order to produce a more sig-

nificant control error for the PDMSRC and as a result to make

the case scenario more illustrative. The resulting control sig-

nal passed to the modulator

uPWM = uPSO + uRFF + uFSF + uDFF (13)

acts simultaneously in the along the pass direction and the

pass to pass direction.

Table 3

Parameters of the converter

Parameter Symbol Value

Filter inductance Lf 300 µH

Filter capacitance Cf 160 µF

Filter resistance Rf 0.2 Ω

Filter resonant frequency fres 726 Hz

Critical damping resistance Rcrit 2.74 Ω

Reference frequency fref 50 Hz

Sampling/PWM frequency fs 10 kHz

Pass length α 200

DC-link voltage kc 450 V

Measurement noise – ca. 1%

Voltage measurement gain ku 1/325 [1/V]

Current measurement gain ki 1/200 [1/A]

Rectifier power – ca. 6 kW

Rectifier current crest factor – ca. 2.5

Resistive load power – ca. 4 kW

4. Numerical experiment results

Selected parameters of the plant are given in Table 3. A test

scenario is as follows:

a) the swarms are initialized with near zero uPSO
0 control vec-

tor (no pre-tuning, e.g. for no load conditions, is assumed),

b) the resistive load of ca. 4 kW is applied for 200 s, 100 s or

50 s adequately to the swarm dynamics being evaluated,

c) the resistive load is switched off and the diode rectifier

(ca. 6 kW, current crest factor of ca. 2.5) is switched on

for 200 s, 100 s or 50 s adequately to the swarm dynamics

being evaluated,

d) the diode rectifier is switched off and the initial resistive

load is applied once again.

It is apparent from Fig. 6 that the 2-swarm approach is

more effective than the single-swarm in terms of convergence

rate without reducing the capability to explore effectively

the search space. All swarm movement parameters, such as

Dthold, vclmp and ρ have been left unchanged. The perfor-

mance improvement comes from problem dimensionality re-

duction. It should be noted that the multi-swarm algorithm

does not imply higher computational burden than the single-

swarm one. The amount of data to be stored and processed is

almost identical. It has been tested whether further increasing

of the number of subswarms is clearly beneficial. Certainly,

at some point further division of the optimization task can be

even detrimental. For example, in the boundary case of single-

dimensional swarms, i.e. for the 1D optimization landscape,

it is impossible to calculate second term in (2) and this term

is required to prevent overlearning that could lead to instabil-

ity in the long horizon – an issue similar to the phenomenon

encountered in the classic ILC scheme. The performance of

the 2-swarm and 5-swarm controllers has been compared in

Fig. 7. Potential benefits of the 5-swarm algorithm over 2-

swarm one are disputable if identical relatively low evapora-

tion rates ρ are assumed. However, the gradual fitness evapo-

ration affects the quality of the output voltage uniquely for dif-

ferent optimization landscapes. It has been observed that faster
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knowledge evaporation is less deleterious if more subswarms

are used. This is illustrated in Fig. 8. In this particular setup

the 2-swarm controller is unable to track effectively the mov-

ing optimum in the noisy environment whereas its 5-swarm

counterpart does the job effectively. The root mean square er-

ror (RMSE) as a cumulative error indicator does not provide

comprehensive information on voltage quality. Therefore, the

output voltage is always scrutinized using instantaneous error

graphs. An example of such a graph for the 5-swarm con-

troller is given in Fig. 9. Also, the transient states caused by

load type change have been monitored visually in graphs de-

picting the evolution of output voltage in the k-direction as

in Fig. 10.

Fig. 6. Comparison of the RMSE graphs for the single-swarm and

2-swarm controllers

Fig. 7. Comparison of the RMSE graphs for the 2-swarm and

5-swarm controllers

Fig. 8. Comparison of the RMSE graphs for the 2-swarm and

5-swarm controllers in the case of fast knowledge evaporation

(ρ = 1.10)

Fig. 9. The shape of the output voltage under the diode rectifier

load for the 5-swarm controller – the load current, the commanded

average voltage for the VSI and the control error added for clarity

Fig. 10. The evolution of the output voltage after connecting the non-

linear load (the diode rectifier) for the 5-swarm repetitive controller

with ρ = 1.10

Only one minor disadvantage of the multi-swarm approach

in comparison with the single-swarm one has been identified

during the study. It sometimes happens that the control sig-

nal at transition points between subswarms has clearly higher

increment in the p-direction than the signal proposed by a sin-

gle swarm. This is due to the lack of direct communication

between the swarms. The only interaction between optimizers

is through the physical plant itself. This implies that a giv-

en swarm strives to maximize its performance at the cost of

neighbours. However, this seems to be manageable taking in-

to account an overall quality of the output voltage waveform,

i.e. an acceptable tradeoff between the number of transition

points and the convergence rate can be worked out by the tri-

al and error method. This has been illustrated in Figs. 11–15

and 16, respectively. The less dimensional search subspace

is, i.e. the more swarms operate in parallel, the faster knowl-

edge evaporation can be applied due to a simpler landscape.

This, in turn, allows for a faster responsiveness of the swarm

when a shape of the load current changes. The PDMSRC

can effectively search for the optimal control signal even in

the near-extreme case of 50 swarms; however, the transitions

between swarms are not always quite smooth. This case has

been illustrated in Fig. 16 with vertical gray bars indicating

subsets of dimensions searched through by the subswarms (to

be compared with e.g. Fig. 12).
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Fig. 11. Evolution of the RMSE for the optimization space divided

into 20D subspaces, i.e. 10-swarm controller, and ρ = 1.20

Fig. 12. The shape of the output voltage under the diode rectifier

load for the 10-swarm controller and ρ = 1.20 – the load current,

the commanded average voltage for the VSI and the control error

added for clarity

Fig. 13. Evolution of the RMSE for the optimization space divided

into 10D subspaces, i.e. 20-swarm controller, and ρ = 1.40

Fig. 14. The shape of the output voltage under the diode rectifier

load for the 20-swarm controller and ρ = 1.40 – the load current,

the commanded average voltage for the VSI and the control error

added for clarity

Fig. 15. Evolution of the RMSE for the “extreme” case of optimiza-

tion space divided into 4D subspaces, i.e. 50-swarm controller, and

ρ = 1.50

Fig. 16. The shape of the output voltage under the diode rectifier

load for the 50-swarm controller and ρ = 1.50 – the load current,

the commanded average voltage for the VSI and the control error

added for clarity

The multi-swarm approach is clearly beneficial with re-

spect to the convergence rate which is apparent from Figs. 8,

11, 13 and 15. These results also indicate that under the steady

nonlinear load conditions the output voltage quality is very

similar in terms of the RMSE performance index in all four

cases. The accompanying Figs. 9, 12, 14 and 16 also demon-

strate similar quality of the voltage waveforms at a steady

state. It can be read from the graphs that for this particular

plant going beyond 20 subswarms does not practically im-

prove the convergence rate any further. The recommendation

is then to synthesize such a controller using 10–20 subswarms.

It should be recalled that the subswarms do not necessar-

ily have to cover identical number of dimensions. It would be

beneficial to avoid transitions between swarms at samples with

high absolutes values of the load current derivative. However,

this has been assumed to be out of the scope of the paper and

probably such an approach would be of no practical use due

to the lack of a priori knowledge about the shape of a load

current needed to determine optimal adjacent points for the

swarms.

5. Responsiveness in the pass-to-pass direction

As illustrated in Sec. 4, the proposed swarm controller is rel-

atively slow in the k-direction. However, it is important to

acknowledge that the controller action in the k-direction is

not designed to stabilize the system and shape the transient
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states on a sample-after-sample basis. This has to be rendered

by the non-repetitive part of the controller (here RFF, FSF

and DFF). The PDMSRC performs only fine shaping of the

control signal from pass to pass. Obviously, its dynamics has

to match the anticipated frequency of disturbance load varia-

tions. For the proposed controller, if significant load current

shape variations occur for periods of time shorter than ca.

20 s, the benefits are disputable. The reaction time in the k-

direction is bounded to be at the level of tens of seconds if the

PSO approach is utilized. It is widely recognized that usually,

i.e. for most of practical optimization problems, a sufficient

number of particles is around 30 and that an effective compro-

mise between exploration and exploitation requires hundreds

or even thousands of swarm iterations. It has been tested that

small swarms (of around 5 particles) do not perform well in

the proposed control system. The 25-particle swarm has been

identified as the effective one and then selected as the base

for this study. This in turn implies that for the 50 Hz refer-

ence signal the swarms are iterated at 2 Hz. Since, even for

fitness landscapes with a reduced dimensionality, several tens

of iterations are needed to move the swarm effectively near

a new optimum, response times counted in tens of seconds

seem to be inevitable for the synchronous update rule used

here. Nevertheless, to the best of authors’ knowledge there are

systems that are characterized by load profiles changing far

slower than on the tens of seconds scale. Additionally, present-

ed numerical experiments demonstrate that the multi-swarm

approach is more effective than the single-swarm one with

respect to its response time. This concept could be potentially

helpful also in other on-line optimization, e.g. estimation by

optimization, problems such as self-commissioning of electric

drives, which are time/iteration-critical.

It should be highlighted that in general the proposed multi-

swarm optimizer is not equivalent to its single-swarm coun-

terpart with respect to the optimal solution to be found. This

is due to the coupled nature of most real-life optimization

tasks which in turn implies that a problem with α decision

variables

J = f(u1, u2, . . . , uα) (14)

cannot be easily (or at all) split into an equivalent set of N

subproblems






J1 = f1(u1, . . . , uα1
)

J2 = f2(uα1+1, . . . , uα2
)

...

JN = fN(uαN−1+1, . . . , uα).

(15)

However, most real-life optimization problems in control sys-

tems are based on user-defined performance indices. It is the

engineer who designs fitness functions that are appropriate to

the problem at hand, i.e. that force a desired behaviour of the

system. This means that the problem is not necessarily bound

to be defined as (14). It has been illustrated with CACF VSI

that for the online swarm-based optimization it is beneficial

to redefine the problem into the form of (15) and its lack of

equivalence to (14) occurs to be of little importance.

6. Practicalities

Optimal control is usually associated with optimal offline tun-

ing of controller gains. Computational burden of an optimiza-

tion algorithm is then of next to no importance as long as

the procedure can be completed in a reasonable time. By

contrast, in any online optimization task the computational

complexity of the algorithm becomes the major area of con-

cern. In the proposed PDMSRC, the PSO itself constitutes

the control algorithm and hence all the PSO related calcu-

lations have to be performed in real time. In large part the

choice of this particular optimization algorithm, as well as

all necessary modifications required to handle the dynamic

nature of the discussed optimization task, has been dictated

by their practicality in terms of real-time implementation on

an off-the-shelf microcontroller. The execution of the PDM-

SRC code can be distributed along all αS sample periods as

illustrated in [30]. Moreover, the complexity of the algorithm

does not grow with the number of subswarms because the

more subswarms are introduced, the lower the dimensionality

of the particle becomes as shown in [31]. It has been tested

that the computational power of, e.g., the industrial microcon-

troller TMS320F2812 is sufficient to execute the swarm algo-

rithm featuring parameters given in Table 2 [24]. Regardless

of the number of subswarms, the amount of time necessary

to complete all calculations on this particular digital signal

controller is less than 30 µs. The physical implementation of

the controller is the subject of our current work.

7. Conclusions

A multi-swarm approach to a direct particle swarm repetitive

controller has been proposed and investigated. It has been

shown that the previously developed plug-in direct single-

swarm repetitive controller for the single-phase inverter with

the LC output filter can be enhanced by applying the multi-

swarm concept. The optimization task has been divided into

several less dimensional subtasks, which occurs to simplify

the search. By doing so, the convergence rate of the swarm

is improved without a significant loss of output voltage qual-

ity. The obtained numerical results suggest feasibility of the

developed algorithm for controlling the continuous repetitive

process of PWM VSI output voltage shaping. The proposed

algorithm is universal in the sense that it can serve as a plug-

in repetitive controller for any continuous repetitive process,

as well as for batch processes with a state resetting capability

at the beginning of each trial.
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