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Following 3D paths by a manipulator

ALICJA MAZUR, JOANNA PŁASKONKA and MIRELA KACZMAREK

In the paper a description of a manipulator relative to a desired three-dimensional path was
presented. The path is parameterized orthogonally to the Serret-Frenet frame which is moving
along the curve. For the path two different time parameterizations were chosen. The control
law for the RTR manipulator which ensures realization of the task was specified. Theoretical
considerations were illustrated by simulation results.
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1. Introduction

Contemporary robotic manipulators are used in many domains of industry or in ev-
eryday life. They can realize different tasks, such as transhipment, transportation in close
area, lifting, arranging and treatment of elements using special ending, so-called end-
effector etc.

From control point of view, three types of tasks for industrial manipulators can be
defined: point stabilization, trajectory tracking and path tracking. In the paper only fol-
lowing some path, i.e. curve parameterized by curvilinear distance, has been considered.

In literature path tracking task has been discussed many times, for instance for mo-
bile platforms [8, 9, 10], for fixed-base manipulators [3] and mobile manipulators [6, 7].
The similar task was defined also for more complex robotic objects, such as auto-
nomic underwater vehicles [2] and flying robots [1]. However, most of papers deal
only with two-dimensional paths and present control algorithms which are dedicated
to robots moving on flat surfaces, consequently they cannot be simply extended into
three-dimensional case. Problems with designing of control law for path tracking are
a result of parametrization used in mathematical description of task geometry. Rarely,
the task of three-dimensional curve tracking can be realized as a composition of two-
dimensional displacements but such approach is not general in any sense and, more-
over, it is more time-consuming solution. Therefore concentration of research activity
on three-dimensional path tracking seems to be well-founded.
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In the paper general solution to the tracking of three-dimensional curves has been
proposed. For this reason orthogonal projection on given 3D curve, using Serret-Frenet
frame moving along the path, has been designed. General equations of robot’s motion
describing its position relative the path have been established in Section 2. Formulation
of control problem considered in the paper has been presented in Section 3. Main result,
i.e. control algorithm solving path tracking problem for fixed-base non-redundant ma-
nipulator was designed in Section 4. All considerations were illustrated with simulations
for RTR manipulator, presented in Section 5 and summarized in Section 6.

2. Equations of robot’s motion relative to the path

2.1. Dynamics of holonomic manipulator

Dynamic modeling of a robot manipulator consists of finding the mapping between
the forces exerted on the structure and the joint positions, velocities and accelerations.
Dynamic model of holonomic robot with n degrees of freedom can be derived from
Lagrange’s equations and has a form

M(θ)θ̈+C(θ, θ̇)θ̇+D(θ) = u (1)

where:
θ, θ̇, θ̈ ∈ Rn – vectors of joint positions, velocities and accelerations,
M(θ) – (n×n) inertia matrix of manipulator,
C(θ, θ̇) – (n×n) matrix coming from Coriolis and centrifugal forces,
D(θ) ∈ Rn – vector of gravity forces,
u ∈ Rn – vector of controls (input signals from actuators).

Inertia matrix M of any manipulator is always symmetric and positive definite. For
robotic manipulators skew-symmetry holds between matrices M and C, i.e.

d
dt

M =C+CT . (2)

2.2. Serret-Frenet parametrization for 3D curve

In the paper motion of manipulator moving in three-dimensional space, see Fig. 1,
has been considered. Point M describing position of manipulator’s end-effector can be
defined by cartesian coordinates p = (x,y,z)T expressed relative to basic frame X0Y0Z0.
In some distance s calculated along the path, the Serret-Frenet frame should be located

Q(s) = [T (s),N(s),B(s)],

where T is unit vector tangent to the path, N is unit vector normal and B – unit vector
binormal to given curve r

r(s) = (r1(s),r2(s),r3(s))T .
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Figure 1: Illustration of path tracking problem using three-dimensional Serret-Frenet
frame with orthogonal projection on a path.

To illustrate position of proper axes of Serret-Frenet frame, so-called Frenet trihe-
dron has been proposed.

Figure 2: Frenet trihedron.

Unit vectors of Serret-Frenet frame are defined as below

T =
dr
ds

=
ṙ

∥ ṙ ∥
, (3)
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N =
dT
ds

∥ dT
ds ∥

, (4)

B = T ×N. (5)

Three-dimensional curve is defined also by two parameters, namely curvature κ(s) and
torsion τ(s). Curvature of plain curve in some point is equal to inversion of radius of
such circle which is tangent to the curve in the same point. In turn, torsion τ defines how
much the curve swerves from the plane. The curvature of the path can be calculated from
definition as follows

κ(s) =∥ dT
ds

∥=∥ d2r(s)
ds2 ∥,

whereas the torsion is defined the following way

τ(s) =∥ dB
ds

∥= 1
κ2(s)

(
dr
ds

× d2r
ds2 ,

d3r
ds3

)
,

where (·, ·) denotes dot product of two vectors.
Motion of Serret-Frenet frame defined along given path can be expressed by Serret-

Frenet matrix equations (using curvilinear distance s) as follows

dQ
ds

= Q(s)W (s), (6)

where matrix W (s) defining Serret-Frenet frame (6) has a form

W (s) =

 0 −κ(s) 0
κ(s) 0 −τ(s)

0 τ(s) 0

 .
2.3. Equation of robot motion relative to path

As it has been presented in Fig. 1, coordinates of point M relative the Serret-Frenet
frame are equal to q= (q1,q2,q3)

T , while in normal plane (normal plane is spanned by N
and B unit vectors) position of the same point is defined by coordinates (q2,q3)

T . From
this reason it is necessary to obtain (s,q2,q3)

T coordinates of manipulator if description
of robot’s motion relative to moving Serret-Frenet frame is needed.

To locate point M in normal plane of the path, some condition has to be fulfilled

p− r ⊥ T =⇒ (T, p− r) = 0. (7)

After calculating time derivative of equation (7) and putting κ(s)N instead of term dT
ds ,

we get expression for path parametrization as follows

ṡ =
ds
dt

=− (T, ṗ− ṙ)
κ(N, p− r)

. (8)
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This relationship can be obtained only if position error (p− r) is not equal to zero. Such
assumption is valid if moving object is in some distance from the curve. In other words,
all further calculations can be done only if robot tracks a path but it is not on the path.
In means that equations hold during asymptotic tracking desired path but after reducing
position error (p− r) to very small value it is necessary to switch onto control algorithm
for following along the path.

Vectors p and q fulfill relationship

p = Qq+ r, (9)

which can be transformed to the form

q = QT (p− r) =

 (T, p− r)
(N, p− r)
(B, p− r)

=

 q1

q2

q3

 .

From equation (7) it can be concluded, that first coordinate q1 always equals to zero
because q1 = (T, p− r) = 0.

Taking time derivative of (9) and putting (6), we obtain following expression

ṗ = QWqṡ+Qq̇+ ṙ. (10)

The above equation can be transformed to the form

q̇ = QT (ṗ− ṙ)−Wqṡ = QT (ṗ− ṙ)−WQT (p− r)ṡ. (11)

Element WQT (p− r)ṡ can be rewritten by

WQT (p− r)ṡ = ṡ

 0 −κ(s) 0
κ(s) 0 −τ(s)

0 τ(s) 0


 T T

NT

BT

(p− r)

= ṡ

 0 −κ(s) 0
κ(s) 0 −τ(s)

0 τ(s) 0


 (T, p− r)

(N, p− r)
(B, p− r)



= ṡ

 −κ(N, p− r)
κ(T, p− r)− τ(B, p− r)

τ(N, p− r)

 . (12)

In turn, term QT (ṗ− ṙ) is equal to

QT (ṗ− ṙ) =

 T T

NT

BT

(ṗ− ṙ) =

 (T, ṗ− ṙ)
(N, ṗ− ṙ)
(B, ṗ− ṙ)

 . (13)
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Putting (12) and (13), each coordinate in equation (11) can be extracted as follows

q̇1 = (T, ṗ− ṙ)+ ṡκ(N, p− r), (14)
q̇2 = (N, ṗ− ṙ)− ṡκ(T, p− r)+ ṡτ(B, p− r), (15)
q̇3 = (B, ṗ− ṙ)− ṡτ(N, p− r). (16)

Using (T, p− r) = 0, equation (15) can be simplified to the form

q̇2 = (N, ṗ− ṙ)+ ṡτ(B, p− r). (17)

After elimination ṡ from (15) and (16), we get following form of q̇2 and q̇3

q̇2 = (N, ṗ− ṙ)+ ṡτ(B, p− r) = (N, ṗ− ṙ)− τ
κ
(B, p− r)(T, ṗ− ṙ)

(N, p− r)

=

(
N − τ

κ
(B, p− r)
(N, p− r)

T, ṗ− ṙ
)
, (18)

q̇3 = (B, ṗ− ṙ)− ṡτ(N, p− r) = (B, ṗ− ṙ)+
τ
κ
(T, ṗ− ṙ)
(N, p− r)

(N, p− r)

=
(

B+
τ
κ

T, ṗ− ṙ
)
. (19)

Moreover, after putting (8) into (6) another definition of Serret-Frenet frame can be
obtained

Ṫ = κṡN =− (T, ṗ− ṙ)
(N, p− r)

N, (20)

Ṅ = ṡ(−κT + τB) =
(T, ṗ− ṙ)
(N, p− r)

(
T − τ

κ
B
)
, (21)

Ḃ = ṡτN =
τ
κ
(T, ṗ− ṙ)
(N, p− r)

N. (22)

Finally, we get the following equations describing robot position relative to moving
Serret-Frenet frame

ṡ = − (T, ṗ− ṙ)
κ(N, p− r)

, (23)

q̇2 =

(
N − τ

κ
(B, p− r)
(N, p− r)

T, ṗ− ṙ
)
, (24)

q̇3 =
(

B+
τ
κ

T, ṗ− ṙ
)
, (25)

Ṫ = − (T, ṗ− ṙ)
(N, p− r)

N, (26)

Ṅ =
(T, ṗ− ṙ)
(N, p− r)

(
T − τ

κ
B
)
, (27)
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Ḃ =
τ
κ
(T, ṗ− ṙ)
(N, p− r)

N. (28)

Equations (23)-(28) are point of departure to design control algorithms for three-
dimensional path tracking. It is necessary to remember that vector p=(x,y,z)T describes
robot’s cartesian position relative to fixed basic frame X0Y0Z0, vector r = (r1,r2,r3)

T de-
scribes given path in R3 relative to the same basic frame and (s,q2,q3)

T are coordinates
of the robot relative to the path.

3. Control problem statement

In the paper, we want to address the following control problem to fixed-base robotic
arms:

Determine control law u such that a holonomic robotic manipulator with
fully known dynamics follows the desired smooth path defined in R3 space.

To design path tracking controller for considered manipulators, let us observe that com-
plete mathematical equations describing manipulator relative to desired curve in R3

space have cascaded structure consisting of two groups of equations: kinematics (23)-
(28) and dynamics (1).

Figure 3: Structure of the proposed control algorithm: cascade with two stages.

For this reason the structure of the controller is divided into two parts, see Fig. 3,
working simultaneously:

• kinematic controller θr – represents a vector of embedded control inputs, which
ensure realization of the task for the geometric path tracking problem if the dy-
namics were not present. Such the controller generates ’velocity profile’ which
can be executed in practice to follow the desired curve in R3.

• dynamic controller – as a consequence of cascaded structure of the system model,
the system’s velocities cannot be commanded directly, as it is assumed in the de-
sign of kinematic controller, and instead they must be realized as the output of the
dynamics driven by u.
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To solve the presented control problem for manipulators, backstepping-like algorithm [5]
has to be evoked. Backstepping is well-known and often used approach to control cas-
caded systems, e.g. systems with nonholonomic constraints or systems with additional
constraints on robot velocities, such as solution to the geometric path tracking problem.

4. Control algorithm for non-redundant manipulator

4.1. Description of manipulator moving along the curve

Equations (23)-(28) can be rewritten as follows

ṡ = − (T, ṗ− ṙ)
κ(N, p− r)

= P1 ṗ+R1 (29)

q̇2 =

(
N − τ

κ
(B, p− r)
(N, p− r)

T, ṗ− ṙ
)
= P2 ṗ+R2, (30)

q̇3 =
(

B+
τ
κ

T, ṗ− ṙ
)
= P3 ṗ+R3, (31)

with selected elements equal to

P1 = − T T

κ(N, p− r)
,

P2 =

(
N − τ

κ
(B, p− r)
(N, p− r)

T
)T

,

P3 =
(

B+
τ
κ

T
)T

,

R1 =
(T, ṙ)

κ(N, p− r)
,

R2 = −
(

N − τ
κ
(B, p− r)
(N, p− r)

T, ṙ
)
,

R3 = −
(

B+
τ
κ

T, ṙ
)
.

After rearranging, equations (29)-(31) can be expressed in matrix form

ξ̇ = Pṗ+R, (32)

where

ξ =

 s
q2

q3

 , P =

 P1

P2

P3

 , R =

 R1

R2

R3

 .
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On the other hand, cartesian coordinates of end-effector p are functions of joint
variables, given by manipulator’s kinematics

p = k(θ), (33)

so ṗ depends on joint velocities in the following manner

ṗ =
∂k
∂θ

θ̇ = J(θ)θ̇, (34)

where J(θ) is Jacobi matrix for position coordinates. Substituting (34) into (32), we get
expression

ξ̇ = PJθ̇+R, (35)

in which signal θ̇ plays a role of control input.

4.2. Kinematic controller

If manipulator is non-redundant, as it has been assumed earlier, then Jacobi matrix
is square matrix. If desired path does not require singular configurations by manipulator,
then matrix J(θ) is invertible. Next, if it is possible to invert matrix P, the following
kinematic control algorithm can be proposed

θ̇re f = J−1P−1(ξ̇d −Kpeξ −R), eξ = ξ−ξd , (36)

with positive definite regulation matrix Kp > 0. Vector

ξd = (sd(t),q2d ,q3d)
T

describes desired behavior of path tracking errors, usually q2d = 0 and q3d = 0, whereas
desired path parametrization (dependency on time) can be arbitrary function, depending
on designer’s choice. Designed velocity (36) substituted into equations (35) makes path
tracking error eξ convergent to zero. Signal θ̇re f is proposed velocity of the robot’s joints,
i.e. ’velocity profile’ coming from kinematic controller – motion planning subsystem.
Such velocity has to be next realized on dynamic level.

In the kinematic control law (36) inversion of Jacobi matrix plays a special role. Its
existence is crucial from control point of view and therefore assumption about passing
by manipulator only through non-singular configurations has to be added. Such assump-
tion occurs not only in control law presented in this article but it has been made in many
robot’s tasks, for example for motion defined in cartesian coordinates even than manipu-
lator has only rotational degrees of freedom. In the case of motion along straight line an
input-output decoupling control algorithm [4] has to be used which near singular config-
urations stops motion of industrial manipulators. The same approach, i.e. stopping near
singularities, can be used in kinematic control law given by (36).
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4.3. Dynamic controller

For realization of trajectory ξd(t) tracking, dynamic control algorithm can be pro-
posed

u = M(θ)θ̈re f +C(θ, θ̇)θ̇re f +D(θ)−Kd ėθ, ėθ = θ̇− θ̇re f , Kd > 0, (37)

with positive definite regulation matrix Kd . Such control law applied to robot dynamics
(1) preserves asymptotic convergence of velocity tracking error ėθ to zero. It implies
proper realization of path tracking process, because real velocities of robot joints θ re-
produce velocities θre f planned by kinematic controller, i.e. motion planning control
subsystem.

Proof of convergence of dynamic controller. Equations of system (1) with applied
control law (37) have a form

M(θ)ëθ +C(θ, θ̇)ėθ +Kd ėθ = 0. (38)

For closed-loop system (38) following Lyapunov-like function should be considered

V (ėθ) =
1
2

ėT
θ M(θ)ėθ. (39)

Due to positive definiteness of inertia matrix M(θ), such function V (ėθ) is always non-
negative.

Using skew-symmetry property (2), time derivative of V calculated along trajectories
of system (38) can be expressed as

V̇ = ėT
θ M(θ)ëθ +

1
2

ėT
θ Ṁ(θ)ėθ = ėT

θ (−C(θ, θ̇)ėθ −Kd ėθ)+
1
2

ėT
θ Ṁ(θ)ėθ

= −ėT
θ Kd ėθ ¬ 0. (40)

From La Salle invariance principle it can be straightforwardly concluded that ėθ = 0 is
asymptotic stable equilibrium point for system (38). This completes the proof.

5. Simulation study

The simulations were run with the MATLAB package and the SIMULINK toolbox.
As an object of simulations we have taken RTR manipulator with three degrees of free-
dom, presented in Fig. 4.

Links of the RTR manipulator have been modeled as homogenous sticks with length
equal to l2 = 0.9 m and l3 = 1 m and masses m2 = 20 kg and m3 = 20 kg. Dynamics of
RTR manipulator are given by (1) with elements equal to:



FOLLOWING 3D PATHS BY A MANIPULATOR 127

Figure 4: Manipulator RTR – object of simulation

• inertia matrix

M(θ) =

 M11 0 0
0 M22 M23

0 M23 M33

 ,
M11 = (1/3)m2l2

2 +m3
(
l2
2 +(1/3)l2

3 cos2 θ3 + l2l3 cosθ3
)
,

M22 = m2 +m3,

M23 = (1/2)m3l2l3 cosθ3,

M33 = (1/3)m3l2
3 ,

• matrix of Coriolis and centrifugal forces

C(θ, θ̇) =

 C11 0 C13

0 0 C23

C31 0 0

 ,
C11 = θ̇3

(
−(1/2)m3l2l3 sinθ3 − (1/3)m3l2

3 sinθ3 cosθ3
)
,

C13 = −θ̇1
(
(1/2)m3l2l3 sinθ3 +(1/3)m3l2

3 sinθ3 cosθ3
)
,

C23 = −(1/2)θ̇3m3l2l3 sinθ3, (41)
C31 = θ̇1

(
(1/2)m3l2l3 sinθ3 +(1/3)m3l2

3 sinθ3 cosθ3
)
,
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• gravity vector

D(θ) =

 0
(m2 +m3)g

1
2 gm3l3 cosθ3

 .

The goal of the simulations was to investigate a behavior of this rigid fixed-base
manipulator with the controllers (36) and (37) proposed in the paper. Simulation was
conducted for two different function of path parameterizations sd : linear and quadratic.

As a desired path a screw curve has been chosen

r(s) = (r1(s),r2(s),r3(s))T =

(
cos

s√
2
,sin

s√
2
,

s√
2

)T

. (42)

Unit vectors T , N and B and path parameters are selected as below

T (s) =
1√
2


−sin s√

2

cos s√
2

1

 N(s) =


−cos s√

2

−sin s√
2

0



B(s) =
1√
2


sin s√

2

−cos s√
2

1

 κ(s) =
1
2
, τ(s) =

1
2
.

Cartesian position of end-effector for RTR manipulator can be expressed as

p =

 x
y
z

=

 cosθ1(l3 cosθ3 + l2)
sinθ1(l3 cosθ3 + l2

l3 sinθ3 +θ2

 ,

then Jacobi matrix has a form

J(θ) =

 −sinθ1(l3 cosθ3 + l2) 0 −cosθ1 sinθ3l3
cosθ1(l3 cosθ3 + l2) 0 −sinθ1 sinθ3l3

0 1 cosθ3l3

 .
Inverse Jacobi matrix J−1(θ) exists if the manipulator RTR does not pass through singu-
lar configurations

sinθ3 = 0 l3 cosθ3 + l2 = 0.

First singular configuration means that robotic arm is stretchet in maximal range and the
second one can occur only if length l2 is bigger than l3. It is possible to avoid all singu-
larities in robotic joint space if manipulator can realize motion from initial configuration
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to desired task without necessity to pass through singular configuration. Such a case is
presented in this simulation study.

Matrix P is non-singular in whole domain of parametrization validity because

det P =
−1

κ(N, p− r)
̸= 0,

only if vector p− r (distance between effector and given path) is different from zero.

5.1. Linear path parametrization sd

Definition of the path with linear time dependency can be selected e.g. as

ξd(t) = (sd ,q2d ,q3d)
T (t) =

( t
10

,0,0
)T

. (43)

In simulations the influence of the regulation matrix Kp on behavior of manipulator’s
end-effector has been tested. Matrix Kp is diagonal with the same value of parameter on
the diagonal. Matrix Kd is chosen as constant and equal to Kd = diag{50}.

Tracking of the desired path for RTR manipulator by linear time parametrization has
been presented in Figure 5. Tracking errors of cartesian coordinates in normal plane have
been presented in Figures 6-7. In turn, errors of curvilinear distance es = s−sd have been
plotted in Figure 8.

From plots in Figures 5-8 it can be concluded that path tracking with linear time
parametrization is realized properly and tracking errors go to zero. Moreover, real curvi-
linear parametrization s(t) tends to the desired function sd(t).

It is worth to observe that distance tracking errors e2 and e3 have only positive values
– it means that distance (p− r) is positive and does not change sign during regulation
process. In other words, matrix P is non-singular and path parametrization using orthog-
onal projection on the curve is valid.

a b c

Figure 5: Trajectory of manipulator for linear time parametrization:
a – trajectory for Kp = 0.02, b – trajectory for Kp = 0.05, c – trajectory for Kp = 0.1
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a b c

Figure 6: Distance error e2 = q2 −q2d for linear time parametrization:
a – error e2 for Kp = 0.02, b – error e2 for Kp = 0.05, c – error e2 for Kp = 0.1

a b c

Figure 7: Distance error e3 = q3 −q3d for linear time parametrization:
a – error e3 for Kp = 0.02, b – error e3 for Kp = 0.05, c – error e3 for Kp = 0.1

a b c

Figure 8: Curvilinear error es = s− sd for linear time parametrization:
a – error es for Kp = 0.02, b – error es for Kp = 0.05, c – error es for Kp = 0.1

5.2. Quadratic path parametrization sd

Definition of the path with quadratic time dependency can be selected e.g. as

ξd(t) = (sd,q2d,q3d)
T (t) =

(
0.1t −0.0001t2,0,0

)T
. (44)
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a b c

Figure 9: Trajectory of manipulator for quadratic time parametrization:
a – trajectory for Kp = 0.02, b – trajectory for Kp = 0.05, c – trajectory for Kp = 0.1

Tracking of the desired path for RTR manipulator by quadratic time parametrization
has been presented in Fig. 9. Tracking errors of cartesian coordinates in normal plane
have been presented in Figures 10-11.

a b c

Figure 10: Distance error e2 = q2 −q2d for quadratic time parametrization:
a – error e2 for Kp = 0.02, b – error e2 for Kp = 0.05, c – error e2 for Kp = 0.1

In turn, errors of curvilinear distance es = s− sd have been plotted in Figure 12.
From plots 9-12 it can be concluded that path tracking with quadratic time

parametrization is realized properly and tracking errors go to zero. Moreover, real curvi-
linear parametrization s(t) tends to the desired function sd(t).

Similarly to linear parametrization, distance tracking errors e2 and e3 have only pos-
itive values – it means that distance p− r is positive and does not change sign during
regulation process. In other words, matrix P is non-singular and path parametrization is
valid in simulation.
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a b c

Figure 11: Distance error e3 = q3 −q3d for quadratic time parametrization:
a – error e3 for Kp = 0.02, b – error e3 for Kp = 0.05, c – error e3 for Kp = 0.1

a b c

Figure 12: Curvilinear error es = s− sd for quadratic time parametrization:
a – error es for Kp = 0.02, b – error es for Kp = 0.05, c – error es for Kp = 0.1

6. Conclusions

In the paper general solution to path tracking problem in three-dimensional space
has been presented. To achieve robot’s description relative to the curve, Serret-Frenet
parametrization with orthogonal projection on given path has been used. Obtained equa-
tions are valid only in such a case, if distance between object and the path, i.e. p− r,
does not equal to zero.

For stationary non-redundant manipulator cascaded control scheme has been pro-
posed. Such control scheme consists of two stages in cascade, namely kinematic con-
troller solving geometric problem of path tracking, and dynamic controller which makes
possibly to realize velocities designed in kinematic controller on dynamic level.

To test, if designed control approach solves path tracking problem for any time de-
pendency of curvilinear distance, two different time parameterizations for the same curve
has been chosen: linear and quadratic function on time. Simulations have confirmed
proper action of control algorithm introduced in the paper.

As trends for future works it is worth to mention that new defined control algorithm
can be used to regulate other robotic objects, such as mobile manipulators or object with
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parametric uncertainty of dynamics. However, most important limitation of proposed
control scheme is fact that distance to the path has to stay not equal to zero. It implies
that motion along the three-dimensional path has to be realized without overshoot.
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