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LEDs based video camera pose estimation
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Abstract. For 3D object localization and tracking with multiple cameras the camera poses have to be known within a high precision. The

paper evaluates camera pose estimation via a fundamental matrix and via the known object in environment of multiple static cameras.

A special feature point extraction technique based on LED (Light Emitting Diodes) point detection and matching has been developed for

this purpose. LED point detection has been solved searching local maximums in images and LED point matching has been solved involving

patterned time functions for each light source. Emitting LEDs have been used as sources of known reference points instead of typically

used feature point extractors like ORB, SIFT, SURF etc. In such a way the robustness of pose estimation has been obtained. Camera pose

estimation is significant for object localization using the networks with multiple cameras which are going to an play increasingly important

role in modern Smart Cities environments.
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1. Introduction

Object localization using multiple cameras is still a widely

studied area in computer vision. Much progress has been made

to improve SLAM (Simultaneous Localization and Mapping)

and there are many developed approaches and papers pub-

lished solving SLAM problems, 3D reconstruction from im-

ages, object localization via cameras (etc.) [1]. The correct

object localization using multiple cameras requires knowing

of camera poses with high precision. It would allow object

localization via triangulation without solving complicated op-

timization equations in real time.

Similar camera pose estimation techniques based on LED

detection can be found in literature. In [2] and [3] works are

very similar. In both papers the same LED detection technique

is used where LEDs are lighted in sequence and LEDs are

synchronised with camera so that it is known what LED was

on for each captured image. The LED detection is based by

taking the brightest pixel value, and further improving coordi-

nate accuracy by sub-pixel analysis phase by taking weighted

average of pixels neighborhood. This work does not consider

robustness to cases where other bright objects appear in the

scene. In contrast out method accounts for cases where other

bright objects could be in scene.

In [4] infrared LED’s are used in known position to com-

pute camera pose. The usage of infrared LEDs allow sim-

ple LED detection using basic thresholding technique, but

requires usage of cameras with infrared-pass filter. In smart

city environments this requirement can limit the number of

usable cameras in existing infrastructure. Also their LED de-

tection method does not distinguish LEDs and to find LED

correspondences camera pose is computed for every possible

combination by taking some at minimum three LED coordi-

nates and by calculating the reprojection error of other LEDs

the combination which gives the least reprojection error is tak-

en to be correct one. This makes this method very slow for

larger number of LEDs which can limit accuracy of method,

where increasing number of LEDs can increase accuracy. In

contrast in out method each LED has different blink pattern

making each lead distinguishable.

In more detail the paper evaluates two approaches of mul-

tiple camera pose estimation: camera pose estimation via the

fundamental matrix and pose estimation via a known object.

Feature points extracted from LED sources are used as input

data for both methods in case of pose estimation. The spe-

cial feature point extraction technique based on LED point

detection and matching has been engineered for this purpose.

LED point detection has been solved searching for image lo-

cal maximums and LED matching has been solved involving

patterned time functions for each light source. Using the LED

approach the robustness of pose estimation could be achieved

and the method will not suffer from insufficient number and

quality of point matches as it could happen using feature ex-

traction based only on image processing. On the other hand,

camera pose estimation using feature extractors like ORB,

SIFT, SURF (etc.) of course has their own advantages and

it is convenient because all calculations could be done re-

motely processing video streams from the network cameras.

Nevertheless the parameter estimation using engineered LED

point extractor is suggested and it excludes worst case sce-

narios when a good fundamental matrix cannot be estimated

due to insufficient quality of extracted feature points. Eval-

uation of camera pose precision is a hard task (because real

poses still remain unknown) and in the paper it has been done

evaluating object localization and tracking quality. Typically

object localization using multiple cameras could be divided

into following steps [1]:

1. Feature point extraction and matching;

2. Camera pose calculation;

3. Object localization (point 3D reconstruction).
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All steps allow variations and the goal of each step could

be achieved differently. In the paper (step A) feature points

have been extracted and matched using (1) LED detection

and matching for camera pose estimations described further

and (2) keypoint extractor ORB used for object localization.

Step B camera pose calculation has been considered: (1) cam-

era pose estimation decomposing fundamental matrix into ro-

tation and translation, (2) camera pose estimation using known

object. In static camera case step B has to be done only once.

Step C object localization or object point reconstruction in

3D space from images has been solved using back-projection.

Next sections of the paper are aligned according to these

(A, B, C) steps: LED feature point extraction for pose esti-

mation in Sec. 2, camera pose calculation in Sec. 3, object

point (obtained using keypoint extractor ORB) localization

via back-projection in Sec. 4. Experimental results of point

localization in 3D space using estimated camera poses are

described in Sec. 5. The made efforts are considered within

Smart Cities and its environments where specialized assistant

networks via multiple video cameras are able to localize, track

and recognize objects.

2. Feature point extraction and matching

Calculating camera poses the corresponding points in two

paired images have to be known precisely. Taking this into

account the initial step is introduced where LED points of a

priori defined positions are estimated. For LED point track-

ing in images a special technique is described further in the

paper and evaluated on examples. Estimation of camera pos-

es as a separate step is considered for a reason that typical

feature point extractors like ORB, SIFT, SURF might not pro-

vide sufficiently good results. For example in cases of blank

scenes there could be little or no feature points detected. Al-

so in the scenes with multiple similar feature points, wrong

matches between images can be produced, requiring usage of

algorithms that are robust to outlier matches like RANSAC.

Also feature point geometric coordinates can be determined

imprecisely. Usage of ORB, SIFT, SURF etc. is considered

after camera calibration triangulating extracted keypoints into

3D space.

2.1. Technique for LED point extraction from videos. The

technique for camera pose estimation is described further.

It is based on observation of local maximum points during

some time period (processing video frame sequence over some

time). For LED source position extraction in images we have

considered the following processing scheme: Threshold – Se-

lect region Local maximum – Correlation – Point selection.

The special test module with LEDs has been created in

order to obtain experimental results. This module includes an

array of LEDs controlled by a single-board computer (Rasp-

berry Pi) via GPIO interface as it can be seen in Fig. 2.

The program has been written to control switching ON and

switching OFF of the LEDs to form various light patterns.

Threshold. Firstly, we threshold the image intensity be-

cause it is known that LEDs should be located on brightest

parts of images. The threshold should separate shining ob-

jects from background. In our case we have used 70–95%

of maximal image value intensity as a threshold (shown in

Fig. 3).

I∗(u, v) =

{

I(u, v), if I(u, v) > 0.8 max(I(u, v))

0, otherwise

(1)

where I(u, v) – image intensities within one video frame;

I∗(u, v) – thresholded image; u and v – image row and col-

umn numbers u = 1, U , v = 1, V . Image size U × V .

a)

b)

Fig. 1. Image after threshold and LED localization: a) image at be-

ginning, b) thresholded image and located LEDs

Fig. 2. Input image for LED detection

898 Bull. Pol. Ac.: Tech. 63(4) 2015



LEDs based video camera pose estimation

Fig. 3. LED point canditates

Select regions. Next thing is to select region of interest.

We use various size pixel regions (e.g. 64× 64) as a window

in order to select region from image. The region is shifted

with a step half of window length (in this case 32). Size

of windowing depends on image resolution and the main re-

quirement here is that window size should be large enough

to fit LED point and small enough to cut-off other shining

and bright regions. Ideally LED point should be alone in a

window on a zero background.

Hi,j(a, b) = I∗
(

i − 1

2
A + a,

j − 1

2
B + b

)

, (2)

where Hi,j – selected image region; a, b – region element

indexes a = 1, A, b = 1, B; i, j – selected region indexes

(window number); A and B – window size. After region se-

lection it could be discarded if the following criteria is not

met:

C1 <

A
∑

a=1

B
∑

b=1

Hi,j(a, b) < C2, (3)

where C1 and C2 – constants used to discard over-shined re-

gions and noise. These numbers depend on LED brightness

and therefore are influenced by distance between cameras and

LED points. This criteria also allow to reduce computation

burden in further processing. From our experiment it were

seen that it is better to choose coefficients which allow to

keep all LED points and then find them from many candi-

dates than loose some LED points trying to reduce candidate

number.

Local maximums. After region selection we take local

maximum coordinates as LED point candidate. Of course oth-

er criteria could be considered. Nevertheless local maximum

is computationally efficient criteria in comparison for exam-

ple to convolution (taking maximum after convolution). Local

maximum values are following:

zi,j = max(Hi,j(a, b)), (4)

where zi,j – maximum value in particular image region Hi,j .

The coordinates of local maximum are following:

pi,j = (l, m) | zi,j = I∗(l, m)

and (i − 1)
A

2
≤ l ≤ i

A

2
, (j − 1)

B

2
≤ m ≤ j

B

2
,

(5)

where pi,j – image element coordinates corresponding to

maximum value in each image region numbers i, j. Can-

didate point extraction of considered technique has been eval-

uated processing 44 test images (available on the server using

Link 1: failiem.lv/u/slmwrxr) and the results are summarized

in Table 1. The results of processed images are available at

Link 2: failiem.lv/u/mxfttlt.

Dependence on range, illumination and other bright ob-

jects should be taken into account. The provided results could

quickly drop as it is expected into considered videos at Link 3:

failiem.lv/u/zqbdjrh. There are other overshined objects too

close to LED points and therefore LEDs cannot be sepa-

rated from other bright regions using windowed local maxi-

mums.

Fig. 4. Selected LED points

Candidate points also could be united by choosing point

with larger pixel intensity or averaging if the distance between

them is close. It will reduce number of candidates.

Correlation and point selection. After candidate point

selection it is observed for a time. The candidate is taken as

LED point if it emits required pattern of ON-OFF signals

during the video frames

ri,j(t) ∈ {0, 1}, (6)

where ri,j(t) – ON-OFF signal corresponding to candidate

point coordinates pi,j in frames t.
For matching LED points from candidates many criteria

could be used together: matched filtering, Fourier transform

on selected frequencies, mean values close to zero. For more

reliable performance Hamming codes can be incorporated. In

two camera case LED point also is likely to be seen in both

cameras at the same time. It could be used for correlation

calculation as a criteria.

In our research we have used Fourier coefficients on se-

lected frequencies matched to LED point switching frequen-

cies. This is seen in Fig. 5 where the first LED is located in

both images (white circles). Processed videos are available at

following Link 4: failiem.lv/u/iihapwg.
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a)

b)

Fig. 5. One LED point matched in both images: a) left image, b) right

image

2.2. Point extraction using ORB. In order to localize ob-

jects we chose to use current state of the art keypoint ex-

traction algorithm from images called ORB (also applicable

calculating fundamental matrix). The main paper describing

ORB is [5]. Basically ORB consists of FAST (Features from

Accelerated Segment Test) [6] corner detector and BRIEF (Bi-

nary Robust Independent Elementary Features) [7] descriptor

with many modifications targeted to improve the performance.

Since ORB is a binary keypoint descriptor it is quite simple to

compare two keypoint descriptors by simply calculating their

Hamming distance [8]. If two keypoint descriptors from dif-

ferent images produce a Hamming distance smaller than our

chosen threshold, then we assume that those two points are

at the same location in the real world environment. The main

idea behind the ORB is following. FAST corner detector uses

exhaustive search on every pixel of the image. Each pixel is

checked whether it is a center pixel of a corner. Checking

consists of comparing 16 pixels located in a circle (Bresen-

ham circle of radius 3 is used) [6, 9]. Specific center pixel

is recognized as corner center pixel if at least 12 contigu-

ous pixels have intensity below or above intensity of center

pixel by some set threshold. Such approach allows to greatly

optimize each test, because at beginning the only four pix-

els have to be checked at Bresenham circle locations 1, 9,

5 and 13 to determine whether current point corresponds to

the aforementioned statement. FAST corner detector is fast but

unfortunately it doesn’t contain any information about corners

orientation. The corners orientation is estimated using simple

and effective corner orientation measurement called intensity

centroid [10], which is based on assumption that corners ori-

entation is its intensity deviation from its center and in such a

way this vector can be used to describe the orientation of cor-

ner. Other part of ORB is BRIEF descriptor. Basically BRIEF

is a description of a patch from image by string of bits, which

are acquired by performing binary intensity tests. These tests

are performed by choosing two pseudo random pixels for each

test and comparing their intensity, compare result can be saved

in one bit, respectively is the intensity of first pixel above the

intensity of second pixel. The implementation of ORB uses

256 such pair of pixels, respectively each point is described

by 256 bits. Of course, to compare two different points the

same pairs of pixels with respect to the center of point needed

to be taken in the same sequence. BRIEF descriptor is fast

and it should be adjusted by corner orientation from FAST,

in that way, even after in-plane rotation the same pixels are

chosen for binary intensity tests. Comparison of most popular

descriptors and BRIEF can be found in paper [5]. The ORB

algorithm implementation can be found in OpenCV library.

3. Camera pose calculation

This section describes camera pose estimation. Two camera

configuration is related with their relative rotation and trans-

lation. After keypoint matching between two cameras the esti-

mation of rotation and translation could be done. The quality

and accuracy of extracted keypoints have direct impact on ac-

curacy of rotation and translation estimation. In the paper the

quality of camera pose estimation has been evaluated indi-

rectly via 3D point reconstruction.

3.1. Calculation of fundamental matrix. Extended compar-

ison of many fundamental matrix calculation approaches is

given in the paper [11]. In practice for good fundamental

matrix estimation one object has to be seen in at least two

pictures taken from different positions in space. According

to rules of perspective geometry each picture or view is in

its own coordinate system, where the beginning of coordinate

system is view’s perspective center. The fundamental matrix

ties together two coordinate systems. It is a 3× 3 matrix ex-

pressing a transfer and rotation from one coordinate system

to another (belonging to one camera and another). It has to be

noted that in calculation of fundamental matrix, focal length

is normed to be 1. 3D object projection in a 2D plane, is

expressed in homogeneous coordinate system [1, 12, 13]

pT
r Fpl = 0. (7)

The fundamental matrix is defined by expression (7),

where pr and pl is a projection of 3D point expressed in

homogeneous coordinate system accordingly in right and left

picture. Using expression (7) it is possible to calculate funda-

mental matrix if a defined amount of corresponding points are

found in both pictures. Generally at least 8 matching points

are needed, but there is an algorithm which allows calculation

of fundamental matrix from only 7 points [1]. In a direct form

fundamental matrix can be calculated using 8 matching points
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(8 point algorithm). Each match n point pn
l = (xn

l , yn
l , 1) and

pn
r = (xn

r , yn
r , 1) together with unknown elements of funda-

mental matrix constructs the linear equation:

xn
r xn

l f11 + xn
r yn

l f12 + xn
r f13 + yn

r xn
l f21 + yn

r

+ yn
l f22 + yn

r f23 + xn
l f31 + yn

l f32 + f33 = 0.
(8)

Converting elements of fundamental matrix into form of

vectors using row-major, expression (9) can be expressed as

a scalar multiplication of vectors:

(xn
r xn

l , xn
r yn

l , xn
r , yn

r xn
l , yn

r yn
l , yn

r , xn
l , yn

l , 1)f = 0. (9)

In expression (9) f is a fundamental matrix in a vector

form by row-major layout. Multiple matching points gives a

linear equation system, which can be simply described by ex-

pression:

Af = 0. (10)

In expression (10) matrix A is called a measurement ma-

trix and it depends on matching point coordinates in both pic-

tures. Each row of this matrix is formed from expression (9).

It is obvious that fundamental matrix is P null space and it

can be calculated using linear algebra. For fundamental ma-

trix to have a solution the rank of measurement matrix have to

be 8. Some combinations of points leads to unstable results of

fundamental matrix calculation, that’s why in practice we use

more than 8 points. On the other hand if the rank of measure-

ment matrix were higher than 8 then the equations might have

no solution therefore in practice singular value decomposition

(SVD) is used.

A = UΣVT . (11)

Using singular value decomposition SVD the measure-

ment matrix is decomposed into three parts where U is called

the left singular vector matrix, V is called right singular vec-

tor matrix and Σ is called diagonal matrix which consists of

singular values. The solution of linear equations can be found

in the last column on matrix V [14].

3.2. Camera pose estimation with fundamental matrix.

For decomposing the fundamental matrix into relative coordi-

nate system’s rotation and transition the essential matrix has

to be calculated, which is fundamental matrix only with dif-

ference that camera focal lengths are normed to camera real

values (commonly expressed by pixels) [15]:

E = KT
r FKl, (12)

where E – 3× 3 essential matrix; Kr and Kl – 3× 3 pro-

jection matrices for left and right view. Through SVD we

acquire relative translation and rotation of coordinate systems

(expressing one view relation to another) [1]:

E = UΣVT . (13)

SVD (13) produces two solutions for coordinate system

relative translation and two for possible rotations. The rela-

tive translation of coordinate system t with + or − sign is

the last column of matrix U from (13). To continue calcula-

tion we have to choose the right translation and rotation. It is

done by restoring one 3D point using all R1, R2, t and −t

combinations searching for a solution where reconstructed 3D

point is in front of both cameras (reconstructed 3D point z
coordinate have to be positive)

W =







0 −1 0

1 0 0

0 0 1






, (14)

R1 = UWVT , (15)

R2 = UWT VT . (16)

Equations (14), (15) and (16) allow to decompose the fun-

damental matrix into translation and rotation between two cor-

responding camera poses.

3.3. Camera pose calculation via known object. PnP prob-

lem (Perspective n point problem) is defined as determining

camera pose, when the an intrinsic parameter matrix for cam-

era is known and set of n 3D to 2D point correspondences

are determined. Various methods exist for PnP problem solv-

ing which mainly fit in two groups: non-iterative methods and

iterative methods. Non-iterative methods are faster than itera-

tive methods, but in general provide poorer accuracy for cam-

era pose estimation and are less robust to noise from point

measurements. For earliest iterative methods, described in:

[16–21], time complexity range from O(n2) to O(n8), what

makes these methods slow for increased number of point cor-

respondences. In contrast one of the latest algorithms, called

EPnP has time complexity O(n) and provides better accuracy

and reduced noise sensitivity than previous methods [22].

The iterative PnP solving methods estimate camera pose

by iteratively minimizing an appropriate criterion, like re-

projection error. Various iterative methods exist in literature:

[23–25]. Although iterative methods can achieve excellent ac-

curacy when they converge properly, they are in general slower

that non-iterative methods. Iterative estimation methods must

be provided with initial guess for camera pose, and estima-

tion speed depends on how close the initial guess is to the

actual camera pose. The main weakness for iterative methods

are when they are poorly initialized, because then they may

fail to converge, or could give solution that gives only local

minimum for minimized cost function.

To overcome the drawbacks of iterative methods being

slow and non-iterative methods being less accurate, combined

methods can be used, where iterative methods are initialized

by pose found with non-iterative method. For example in pa-

per [22] it is shown, that EPnP algorithm followed by Gauss-

Newton optimization gives better accuracy than single EPnP

method, while computation time increases insignificantly.

For our purposes for camera pose estimation EPnP algo-

rithm is used to estimate initial guess of extrinsic camera pose

parameters – P0 for iterative algorithm, which solves camera

pose via Levenberg-Marquardt optimisation by minimizing re-

projection error. In each iteration camera pose parameters are

altered by vector δδδ (17)

Pi = Pi−1 + δδδ. (17)
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Re-projection error – ǫǫǫ is used as a minimization criterion

(18). This error is distance between measured points – p of

calibration object in image and re-projected points f(Pi), by

projecting those points using computed camera pose (18)

ǫǫǫ = d(p, f(Pi)). (18)

The update vector δδδ can be estimated by solving linear

Eq. (19). In this equation J is Jacobian matrix – ∂f(Pi)/∂Pi

(JT J + λdiag(JT J))δδδ = JTǫǫǫ. (19)

Parameter λ is changed in each iteration. Usually initial value

of λ is taken around 10−3. If camera pose parameters in iter-

ation altered by δδδ leads to a decreased error, then λ is divided

by factor 10. Otherwise, if error increases, then λ factor is

increased by factor 10, until camera pose parameter alteration

gives decreased error.

4. Object localization in two camera case

After camera position estimation each 3D point could be cal-

culated or localized in 3D space using corresponding image

points. It requires to know camera poses and corresponding

image points belonging to the object. Corresponding key-

points could be found using one of popular keypoint extrac-

tors. Examples are ORB, SIFT, SURF etc.

4.1. 3D point reconstruction. The object localization has

two parts:

A. Feature point extraction and matching,

B. 3D information reconstruction.

The scheme is the same to camera pose calculation on-

ly purpose now is object localization. In our experiments we

choose ORB as a good representative of object point extrac-

tors (described in Sec. 2). The other keypoint detectors also

do not clearly outperform the ORB. The comparison and eval-

uation of various keypoint detectors could be found [5].

In our paper back-projection is used for 3D point recon-

struction from two corresponding image points. At beginning

the reprojection matrices M1 and M2 have to be construct-

ed [1]:

M1 =







1 0 0 0

0 1 0 0

0 0 1 0






, (20)

M2 = [R t], (21)

where R – rotation matrix between two cameras; t – transla-

tion between two cameras.

For each corresponding point pair n the linear equation

system can be constructed and solved with SVD:

SV D

([

[pn
l ]×M1

[pn
r ]×M2

])

. (22)

After singular value decomposition similar to (11) and

(13) the homogenized last column of V is the reconstructed

3D point. Of course, other reconstruction techniques exist al-

lowing to cope with corresponding point irregularities caused

by imprecise point coordinate estimation etc. These methods

have to be considered depending on application.

In our experiments camera pose estimation has been stud-

ied indirectly using described 3D point reconstruction.

4.2. Good keypoint selection with RANSAC. In case the

fundamental matrix is calculated without LED points using

some other keypoint detector the additional criteria might have

to be required. The common technique is RANSAC for detect-

ed point seperation into inliers and outliers [26]. We have used

RANSAC to separate matching points from false positives. As

a criteria we have used Sampson distance [27] because it is

shown in [1] that it gives good results

ds =
(pT

r Fpl)
2

(l1l )
2 + (l2l )

2 + (l1r)
2 + (l2r)

2
. (23)

In the equation pr and pl are two point coordinates in

pictures. ll, lr – vectors of corresponding point epipolar line

coefficients in left and right images. It is the corresponding

point correlation coefficients of epipolar line on the left image

and it is also the corresponding point correlation coefficients

of epipolar line on the right image. For each match Sampson

distance ds is calculated and if it reaches threshold T then

the match is treated as wrong. In each iteration we count how

many matches were found as correct. As the end result we

use the iteration which gave the most correct matches.

5. Experiment results

The comparison of camera pose estimation via the funda-

mental matrix and a priori known dots is considered in this

Section. After the camera pose estimation ORB based object

localization has been shown indicating accuracy of pose esti-

mation. Some experiments have been shown in Sec. 2 where

LED point extraction and matching have been considered.

5.1. Experimental setup and LED point reconstruction

precision. The localisation system consists of two network

cameras. Images from cameras are obtained with 640x480

resolution with 30 fps frame rate in MPEG-4 compression

format. Camera placement is represented in Fig. 6.

Fig. 6. Cameras used for object localisation
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Camera extrinsic and intrinsic parameter matrices are

found by calibrating cameras using OpenCV library. The cali-

bration object for calibration purposes used is LED board that

is represented in Fig. 1a. The LED board pattern was chosen

arbitrary, because it is assumed that the pattern doesn’t affect

accuracy.

To estimate accuracy of camera poses the 3D coordinates

by calibrating LEDs were estimated using triangulation and

these coordinates are compared to the real coordinates.

Figure 7 shows reconstructed camera poses, represent-

ed the camera coordinate axis for each camera and the re-

constructed 3D coordinates of calibration LEDs are showed.

The accuracy of the reconstructed points is given in terms of

Euclidian distance (24):

di(p, pr) =
√

(x − xr)2 + (y − yr)2 + (z − zr)2, (24)

where di(p, pr) is distance between coordinates of recon-

structed and actual points, x, y, z are corresponding coor-

dinates of actual points and xr, yr, zr are coordinates of

reconstructed points. The RMS error for reconstructed points

is 1.7 mm and maximum error for points is 8.5 mm.

Fig. 7. Camera poses reconstructed via known LED object. Black

points are reconstructed coordinates of calibration object, green

points are actual coordinates of calibration object

The same LED points have been reconstructed using fun-

damental matrix (ignoring a priori information about LED

point positions) and according to our simulations we could

improve results compared to methods with initial calibration

only when added error where significantly small (equivalent

to some pixels). Cope with LED point coordinate irregulari-

ties using fundamental matrix has to be considered for precise

enough reconstruction.

In Fig. 8 is shown reconstruction simulation of LED points

via fundamental matrix when LED point estimation is perfect.

Object detection for tracking has been implemented using

ORB keypoint detection and matching. Keypoints have been

extracted from each frame of both cameras and keypoint de-

scriptors have been then matched to previously extracted key-

points of tracking object. If considerable amount of matches

have been found in frames of both cameras the object is de-

tected, and it’s location can be estimated via triangulation.

In Figs. 9 and 10 the detection of object is shown in both

cameras. The borders of object have been found by comput-

ing perspective transform of borders from the trained image

using matched keypoints. After the border has been found

the intersection of diagonals for the quadrilateral serve as the

tracking point.

a)

b)

Fig. 8. Computer simulated LED point reconstruction via fundamen-

tal matrix

Fig. 9. Left camera image of tracking object
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Fig. 10. Right camera image of tracking object

5.2. Object tracking results. To evaluate accuracy out of ex-

perimental setup for object localization, experiment has been

made where object location coordinates estimated with ex-

perimental setup has been compared to actual coordinates of

objects position. The actual coordinates of object where esti-

mated by placing object on marked coordinate grid. The book

shown in Figs. 9 and 10 was used as an object to be localized.

The coordinates of the object on the coordinate grid where es-

timated with accuracy of 0.5 mm. The trajectory of an object

was chosen to be in one plane.

Object location has been estimated in 87 locations, and the

trajectory for object is shown in Fig. 11. It can be seen that

estimated object coordinates are close to actual coordinates

of object position. The error metric for accuracy estimation

is chosen Euclidian distance between points (24).

Fig. 11. Comparison of estimated object trajectory with real trajec-

tory

The errors estimated for object positions ranged from

0.7 mm to 12 mm. In Fig. 12 the error for object location

with respect to distance from cameras. It can be seen, that

there is tendency for error to be bigger at greater distance

from camera.

Fig. 12. Object location error with respect to distance from cameras

6. Summary and conclusions

The paper considers two basic approaches for camera pose es-

timation: camera pose estimation via the fundamental matrix

and pose estimation via a known object. The static camera

case has been considered. Evaluation of camera poses has

been done indirectly estimating some object localization and

tracking quality. As it were expected the better results pro-

vided approach using pose estimation via a known object.

Experiments calculating camera poses using ORB points and

calculation of the fundamental matrix provided significantly

poorer results than usage of defined LED point extraction and

pose calculation via a priori known object. After calibration

phase the object positions could be estimated with an error

ranged from 0.7 mm to 12 mm when the approximate dis-

tance between cameras were 50 cm and the object distance

from camera base line were 80 cm (see Fig. 12). Developed

LED point detection and matching could provide more robust

and stable known point extraction. Further development of

developed LED point extraction and matching technique has

to be continued.
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