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Fusion Kalman filtration with k-step delay
sharing pattern

ZDZISŁAW DUDA

A fusion hierarchical state filtration with k−step delay sharing pattern for a multisensor
system is considered. A global state estimate depends on local state estimates determined by lo-
cal nodes using local information. Local available information consists of local measurements
and k−step delay global information - global estimate sent from a central node. Local estimates
are transmitted to the central node to be fused. The synthesis of local and global filters is pre-
sented. It is shown that a fusion filtration with k−step delay sharing pattern is equivalent to the
optimal centralized classical Kalman filtration when local measurements are transmitted to the
center node and used to determine a global state estimate. It is proved that the k−step delay
sharing pattern can reduce covariances of local state errors.
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1. Introduction

It is well known that an optimal state estimate for a linear dynamic system can be
determined by using a Kalman filter. Conventional Kalman filtration requires that all
process measurements are sent to a central node which determines an estimate of the
system state. The centralized architecture produces an optimal estimate in a minimum
mean square error (MMSE) sense, but it may require high processing and communica-
tion loads or may imply low survivability.

A lot of real systems use a large number of sensors. These systems are known as
multisensor systems. Practical applications of the multisensor systems find applications
in many areas such as robotics, aerospace, image processing, military surveillance. The
systems have an advantage over a systems with a single sensor e.g. improved reliability,
robustness, extended coverage, improved resolution. In these systems a state filtration
given the measurements is very important practical problem.

Theoretically, a classical Kalman filter may be carried out to determine a state esti-
mate of the multisensor system. Because of some drawbacks of this approach [11] fusion
algorithms and appropriate architectures are proposed.
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In many papers a centralized optimal state estimate is calculated from estimates de-
termined by local nodes. The global estimate is equivalent to the optimal centralized
one.

In [7] fusion algorithm without feedback (a fusion center does not broadcast infor-
mation to local nodes) was presented. In [11] a fusion filtration algorithm with feedback
(the fusion center transmits its latest global state estimate to the local nodes), suggested
in [4], was analysed.

Fusion algorithms guaranteed only local optimality are presented in [1, 2, 3].
Different methodologies to obtain non-centralized state estimation algorithms and

their implementations are discussed in [10].
A comprehensive review of the data state fusion state domain is given in [8].
In [5] a Kalman filter with one-step delay information structure, suggested in [4],

was educed. In a hierarchical filtration local nodes compute state estimates basing on
local current information and one step delayed global information from a fusion center.
It was shown that Kalman filtration is optimal and is equivalent to the corresponding
centralized one.

In this paper a hierarchical fusion system with k− step delay sharing pattern is pre-
sented . These equations are educed by directly derivation of a Kalman filter. It is shown
that for proposed architecture Kalman fusion is optimal and is equivalent to the corre-
sponding centralized Kalman filtering formula. An advantage of this structure is anal-
ysed.

2. Preleminaries

Let us consider a multisensor system described by a state equation

xn+1 = Anxn +wn (1)

and measurement equations

y j
n =C j

nxn + r j
n, j = 1, ...,M (2)

where xn,y
j
n are the state and the measurement from the jth sensor ( jth local node),

respectively; An,C
j
n are the system and observation models, wn,r

j
n are the state and mea-

surement noises, respectively.
It is assumed that x0 ∼ N(x̄0,X0),wn ∼ N(w̄n,Wn), r j

n ∼ N(0,R j
n) and xn ∈ Rk,wn ∈

Rk,y j
n ∈ Rp j

, r j
n ∈ Rp j

; An ∈ Rk×k, C j
n ∈ Rp j×k. Additionally, wn, r j

m are gaussian white
noise processes independent of each other and of the gaussian initial state x0.

Let us denote by yn = [y1T
n , ...,yMT

n ]T , Cn = [C1T
n , ...,CMT

n ]T , rn = [r1T
n , ...,rMT

n ]T , Rn =
ErnrT

n = block diag{R1
n, ...,R

M
n }.

The classical covariance Kalman filter x̂n+1|n+1 = E(xn+1|y0,y1, ...,yn+1) is de-
scribed by the equations [9]

x̂n+1|n+1 = x̂n+1|n +Kn+1(yn+1 −Cn+1x̂n+1|n) (3)
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where

x̂n+1|n = E(xn+1|y0,y1, ...,yn) = Anx̂n|n + w̄n. (4)

The matrix gain Kn+1 is described as

Kn+1 = Pn+1|nCT
n+1(Cn+1Pn+1|nCT

n+1 +Rn+1)
−1 (5)

where

Pn+1|n = AnPn|nAT
n +Wn (6)

and

Pn|n = (1−KnCn)Pn|n−1. (7)

An initial condition x̂0|0 results from the eqn. (3)

x̂0|0 = x̄0 +K0(y0 −C0x̄0). (8)

The covariance matrix P0|−1 can be determined as

P0|−1 = X0. (9)

Classical covariance filter presented above can be described in an information form
[6] as

x̂n+1|n+1 = Pn+1|n+1

[
P−1

n+1|nx̂n+1|n +CT
n+1(Rn+1)

−1yn+1

]
=

= Pn+1|n+1

[
P−1

n+1|nx̂n+1|n +
M

∑
j=1

C jT
n+1(R

j
n+1)

−1y j
n+1

]
x̂n+1|n = Anx̂n|n + w̄n

P−1
n+1|n+1 = P−1

n+1|n +CT
n+1(Rn+1)

−1Cn+1 =

= P−1
n+1|n +

M

∑
j=1

C jT
n+1(R

j
n+1)

−1C j
n+1. (10)

Information filter has some computational advantages in multisensor systems where
the matrix CT

n (Rn)
−1Cn is usually of high dimension and nondiagonal.

The global estimate performed by the central node depends on information state
vectors C jT

n+1(R
j
n+1)

−1y j
n+1 and information matrices C jT

n+1(R
j
n+1)

−1C j
n+1, j = 1, ...,M,

that can be performed and transmitted by local nodes to the central node. It may increase
processing speed.

Sometimes it is better to perform Kalman filtration by every local node upon its own
available information and then transmit local state estimates to the fusion center, where
a fusion is carrried out.
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3. Problem statement

Let us assume that local nodes perform local state estimates of the system (1) basing
on assumed available local information.

It is known a solution in the case when local estimates x̂ j
n|n, j = 1, ...,M, are based

on the local information y⃗ j
n = {y j

0, ...,y
j
n}. It leads to distributed Kalman filter fusion

without feedback [7].
In [5] the case when local estimates x̂ j

n|n, j = 1, ...,M, are based on the informa-

tion y⃗ j
n = {y0, ...,yn−1,y

j
n} was considered. It leads to distributed Kalman filter fusion

with one step delay feedback. Let us notice that the local node has global measurement
information of the system with one step delay.

In the paper a synthesis of local filters with k−step delay feedback information is
presented. In this case local estimates x̂ j

n|n, j = 1, ...,M, are based on the information

y⃗ j
n = {y0, ...,yn−k,y

j
n−k+1, ...,y

j
n}.

The problem is to find

x̂ j
n|n = E(xn |⃗y j

n). (11)

Local estimates are sent to the central node to be fused and to obtain a global state
estimate.

An advantage of the k−step feedback (in the sense of local filtering performance)
will be discussed.

4. Kalman filtering with one step delay sharing pattern

Let us assume that the jth local estimate of the state xn+1 is based on the local
information y⃗ j

n+1,1 = {y0, ...,yn,y
j
n+1}= {⃗yn,y

j
n+1}.

The local filtration problem for the jth mode is to find

x̂ j
n+1|n+1,1 = E(xn+1 |⃗y j

n+1,1). (12)

It was shown in [5] that

x̂ j
n+1|n+1,1 = Anx̂n|n + w̄n +K j

n+1,1

[
y j

n+1 −C j
n+1(Anx̂n|n + w̄n)

]
(13)

where x̂n|n is a global estimate sent by a fusion center to the jth local node with one step
delay.

The matrix gain K j
n+1,1 is described as

K j
n+1,1 = Pn+1|nC jT

n+1(C
j
n+1Pn+1|nC jT

n+1 +R j
n+1)

−1 (14)
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The covariance matrix Pn+1|n is described by the eqn. (6).
Additionally it was shown that

C jT
n+1(R

j
n+1)

−1y j
n+1 = (P j

n+1|n+1,1)
−1x̂ j

n+1|n+1,1 −P−1
n+1|nx̂n+1|n (15)

and

C jT
n+1(R

j
n+1)

−1C j
n+1 = (P j

n+1|n+1,1)
−1 −P−1

n+1|n (16)

where an inverse of a local covariance matrix P j
n+1|n+1,1 defined as P j

n+1n+1,1 = E(xn+1−
x̂ j

n+1|n+1,1)(xn+1 − x̂ j
n+1|n+1,1)

T has the form

(P j
n+1|n+1,1)

−1 = P−1
n+1|n +C jT

n+1(R
j
n+1)

−1C j
n+1. (17)

Using the eqn. (15) and (16) in the eqn. (10) gives

x̂n+1|n+1 = Pn+1|n+1

[
M

∑
j=1

(P j
n+1|n+1,1)

−1x̂ j
n+1|n+1,1 − (M−1)P−1

n+1|nx̂n+1|n

]
x̂n+1|n = Anx̂n|n + w̄n

P−1
n+1|n+1 =

M

∑
j=1

(P j
n+1|n+1,1)

−1 − (M−1)P−1
n+1|n. (18)

Equations (18) describe the fusion Kalman filter that generates optimal global state es-
timate according to (10). Local node needs its own local measurement and global infor-
mation from the central node with one step delay to generate the local state estimate.
Thus communication from central node to the local nodes is needed. That is why this
algorithm is known as the fusion algorithm with one step delay feedback.

5. Local covariance Kalman filter with k-step delay sharing pattern

Let us assume that the jth local estimate of the state xn+1 is based on the local
information y⃗ j

n+1,k = {⃗yn+1−k,y
j
n+2−k, ...,y

j
n,y

j
n+1}, where y⃗n+1−k = {y0, ...,yn+1−k}.

The local filtration problem for the jth mode is to find

x̂ j
n+1|n+1,k = E(xn+1 |⃗y j

n+1,k) = E(xn+1 |⃗yn+1−k,y
j
n+2−k, ...,y

j
n,y

j
n+1). (19)

For the system described by the eqn. (1) and (2) the random vector
[xT

n+1, y⃗
T
n+1−k,y

jT
n+2−k, ....,y

jT
n ,y jT

n+1]
T is gaussian.

Thus the estimate x̂ j
n+1|n+1,k results from the relation [9]

x̂ j
n+1|n+1,k = E(xn+1 |⃗yn+1−k,y

j
n+2−k, ...,y

j
n)+E(xn+1|ỹ j

n+1|n,k−1)−Exn+1 (20)
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where

ỹ j
n+1|n,k−1 = y j

n+1 −E(y j
n+1 |⃗yn+1−k,y

j
n+2−k, ....,y

j
n). (21)

The random vector [xT
n+1, ỹ

jT
n+1|n,k−1]

T is gaussian, thus [9]

E(xn+1|ỹ j
n+1|n,k−1) =

= Exn+1 +

K j
n+1,k︷ ︸︸ ︷

Pxn+1ỹ j
n+1|n,k−1

P−1
ỹ j

n+1|n,k−1ỹ j
n+1|n,k−1

(ỹ j
n+1|n,k−1 −Eỹ j

n+1|n,k−1). (22)

Inserting the eqn. (22) to the eqn. (20) yields

x̂ j
n+1|n+1,k =

= E(xn+1 |⃗yn+1−k,y
j
n+2−k, ...,y

j
n)+K j

n+1,k(ỹ
j
n+1|n,k−1 −Eỹ j

n+1|n,k−1). (23)

Let us notice that

Eỹ j
n+1|n,k−1 = E

[
y j

n+1 −E(y j
n+1 |⃗yn+1−k,y

j
n+2−k, ....,y

j
n)
]
= 0. (24)

Thus the eqn. (23) can be written in the form

x̂ j
n+1|n+1,k =

x̂ j
n+1|n,k−1︷ ︸︸ ︷

E(xn+1 |⃗yn+1−k,y
j
n+2−k, ...,y

j
n)+K j

n+1,k(y
j
n+1 −C j

n+1x̂ j
n+1|n,k−1) (25)

where

x̂ j
n+1|n,k−1 = E(xn+1 |⃗yn+1−k,y

j
n+2−k, ...,y

j
n) = Anx̂ j

n|n,k−1 + w̄n. (26)

From the eqn. (21) and (2) we have

ỹ j
n+1|n,k−1 = y j

n+1 −C j
n+1x̂ j

n+1|n,k−1 =C j
n+1

x̃ j
n+1|n,k−1︷ ︸︸ ︷

(xn+1 − x̂ j
n+1|n,k−1)+r j

n+1. (27)

Thus the matrix Pỹ j
n+1|n,k−1ỹ j

n+1|n,k−1
in (22) can be derived as

Pỹ j
n+1|n,k−1ỹ j

n+1|n,k−1
=

= E(ỹ j
n+1|n,k−1ỹ jT

n+1|n,k−1) =C j
n+1

P j
n+1|n,k−1︷ ︸︸ ︷

Ex̃ j
n+1|n,k−1x̃ jT

n+1|n,k−1C jT
n+1 +R j

n+1 (28)
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where

x̃ j
n+1|n,k−1 = xn+1 − x̂ j

n+1|n,k−1 = An

x̃ j
n|n,k−1︷ ︸︸ ︷

(xn − x̂ j
n|n,k−1)+wn − w̄n. (29)

The matrix Pxn+1ỹ j
n+1|n,k−1

in the eqn. (22) has the form

Pxn+1ỹ j
n+1|n,k−1

= E(xn+1 − x̄n+1)ỹ
jT
n+1|n,k−1 =

= E

xn+1︷ ︸︸ ︷
(x̃ j

n+1|n,k−1 + x̂ j
n+1|n,k−1) ỹ jT

n+1|n,k−1 = P j
n+1|n,k−1C jT

n+1. (30)

Thus the matrix gain K j
n+1,k defined in the eqn. (22) results from the eqn. (28) and (30)

as

K j
n+1,k = P j

n+1|n,k−1C jT
n+1(C

j
n+1P j

n+1|n,k−1C jT
n+1 +R j

n+1)
−1. (31)

The matrix P j
n+1|n,k−1 defined in the eqn. (28) can be found as

P j
n+1|n,k−1 = An

P j
n|n,k−1︷ ︸︸ ︷

Ex̃ j
n|n,k−1x̃ jT

n|n,k−1 AT
n +Wn. (32)

Using the eqn. (25) and (27) gives

x̃ j
n|n,k−1 = xn − x̂ j

n|n,k−1 = xn − x̂ j
n|n−1,k−2 −K j

n,k−1ỹ j
n|n−1,k−2 =

= x̃ j
n|n−1,k−2 −K j

n,k−1ỹ j
n|n−1,k−2 (33)

and

P j
n|n,k−1 = Ex̃ j

n|n−1,k−2x̃ jT
n|n−1,k−2 −EK j

n,k−1ỹ j
n|n−1,k−2x̃ jT

n|n−1,k−2 =

= (1−K j
n,k−1C j

n)P
j

n|n−1,k−2. (34)

For any n = 0,1, ..,k − 1, an available information for the jth node is defined as
y⃗ j

n = {y j
0, ...,y

j
n}. Thus the jth local filter may be determined from the eqn. (3)-(9) for

the system described by the eqn. (1) and (2).
For any n+1 k the jth local state estimate x̂ j

n+1|n+1,k can be found by a recursive

way starting with x̂ j
n−k+2|n−k+2,1 (the estimate with one step delay feedback described in

the section 4). Next we can determine the estimates x̂ j
n−k+3|n−k+3,2, ..., x̂ j

n|n,k−1, x̂ j
n+1|n+1,k

from the eqn. (25)-(26) with (31), (32) and (34).
The local estimates x̂ j

n+1|n+1,k, j = 1,2, ...,M, should be sent to the central node to
generate optimal global state estimate x̂n+1|n+1 according to the eqn. (10).

To do this an information form of the local covariance filter will be determined.
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6. Information form of the local Kalman filter

Let us notice that the eqn. (25) can be written as

x̂ j
n+1|n+1,k = (1−K j

n+1,kC
j
n+1)x̂

j
n+1|n,k−1 +K j

n+1,ky j
n+1. (35)

Let us transform (1−K j
n+1,kC

j
n+1) and K j

n+1,k to an appropriate form. We have

1−K j
n+1,kC

j
n+1 =

P j
n+1|n+1,k(34)︷ ︸︸ ︷

(1−K j
n+1,kC

j
n+1)P

j
n+1|n,k−1(P

j
n+1|n,k−1)

−1. (36)

Denote by

O j
n+1,k =C j

n+1P j
n+1|n,k−1C jT

n+1 +R j
n+1. (37)

Multiplying the both sides of the eqn. (31) by O j
n+1,k gives

K j
n+1,k

O j
n+1,k(37)︷ ︸︸ ︷

(C j
n+1P j

n+1|n,k−1C jT
n+1 +R j

n+1) = P j
n+1|n,k−1C jT

n+1(R
j
n+1)

−1. (38)

Thus

K j
n+1,kR j

n+1 = (1−K j
n+1,kC

j
n+1)P

j
n+1|n,k−1C jT

n+1 (39)

and

K j
n+1,k = P j

n+1|n+1,kC
jT
n+1(R

j
n+1)

−1. (40)

Inserting the eqn. (36) and(40) to the eqn. (35) gives

x̂ j
n+1|n+1,k =

= P j
n+1|n+1,k(P

j
n+1|n,k−1)

−1x̂ j
n+1|n,k−1 +P j

n+1|n+1,kC
jT
n+1(R

j
n+1)

−1y j
n+1. (41)

From the eqn. (41) we have

C jT
n+1(R

j
n+1)

−1y j
n+1 = (P j

n+1|n+1,k)
−1x̂ j

n+1|n+1,k − (P j
n+1|n,k−1)

−1x̂ j
n+1|n,k−1. (42)

The relation (42) will be used in the eqn. (10) to determine the global state estimate
x̂n+1|n+1.

Now we determine a recursive form of the covariance matrix (P j
n+1|n+1,k)

−1.
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The covariance matrix P j
n+1|n+1,k results from the eqn. (34) and can be written by

P j
n+1|n+1,k = P j

n+1|n,k−1 −K j
n+1,kO j

n+1,k

K jT
n+1,k(31)︷ ︸︸ ︷

(O j
n+1,k)

−1C j
n+1P j

n+1|n,k−1 =

= P j
n+1|n,k−1 −K j

n+1,kO j
n+1,kK jT

n+1,k. (43)

The eqn. (43) has the form

P j
n+1|n+1,k =

P j
n+1|n,k−1 −K j

n+1,kR j
n+1K jT

n+1,k −K j
n+1,kC

j
n+1P j

n+1|n,k−1C jT
n+1K jT

n+1,k. (44)

But from the eqn. (36) we have

K j
n+1,kC

j
n+1 = 1−P j

n+1|n+1,k(P
j

n+1|n,k−1)
−1. (45)

Inserting the eqn (45) to the eqn. (44) yields

P j
n+1|n+1,k = (46)

= P j
n+1|n+1,k(P

j
n+1|n,k−1)

−1P j
n+1|n+1,k +P j

n+1|n+1,kC
jT
n+1(R

j
n+1)

−1C j
n+1P j

n+1|n+1,k.

Multiplying two-times the both sides of the eqn.(47) by (P j
n+1|n+1,k)

−1 gives

(P j
n+1|n+1,k)

−1 = (P j
n+1|n,k−1)

−1 +C jT
n+1(R

j
n+1)

−1C j
n+1. (47)

Thus

C jT
n+1(R

j
n+1)

−1C j
n+1 = (P j

n+1|n+1,k)
−1 − (P j

n+1|n,k−1)
−1. (48)

The relation (48) will be used in the eqn. (10) to determine the inverse of the covariance
Pn+1|n+1.

7. Optimal global filtering with k-step delay sharing pattern

The jth local estimate can be determined from the eqn. (3)-(9), for n = 0,1, ..,k−1.
Global state estimate results from the eqn. (10) and has the form

x̂n+1|n+1 =

Pn+1|n+1

{
P−1

n+1|nx̂n+1|n +
M

∑
j=1

[
(P j

n+1|n+1)
−1x̂ j

n+1|n+1 − (P j
n+1|n)

−1x̂ j
n+1|n

]}
(49)
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P−1
n+1|n+1 = P−1

n+1|n +
M

∑
j=1

[
(P j

n+1|n+1)
−1 − (P j

n+1|n)
−1
]

(50)

(P j
n+1|n+1)

−1 = (P j
n+1|n)

−1 +C jT
n+1(R

j
n+1)

−1C j
n+1 (51)

P j
n+1|n = AnP j

n|nAT
n +Wn. (52)

Using the eqn. (42) and (48) in the eqn. (10), for n+1 k, gives

x̂n+1|n+1 = (53)

Pn+1|n+1

{
P−1

n+1|nx̂n+1|n+
M

∑
j=1

[
(P j

n+1|n+1,k)
−1x̂ j

n+1|n+1,k−(P j
n+1|n,k−1)

−1x̂ j
n+1|n,k−1

]}

P−1
n+1|n+1 = P−1

n+1|n +
M

∑
j=1

[
(P j

n+1|n+1,k)
−1 − (P j

n+1|n,k−1)
−1
]
. (54)

The local node needs its own local measurement and the global state estimate from
the central node with k−step delay to generate the local state estimate. Thus a commu-
nication from the central node to the local nodes is need. That is why this algorithm may
be named as the fusion algorithm with k−step delay feedback.

8. The quality of the k-step delay sharing pattern

Let us notice that the centralized Kalman filtering (10) and the fusion algorithm with
k step delay sharing pattern are exactly equivalent. Thus the feedback does not improve
the performance at the central node.

Does the k−step feedback reduce local state filtering error?
Let us compare local covariance matrices P j

n+1|n+1,k and P j
n+1|n+1described by the

eqn. (47) and (51), respectively.
It was shown [5], that in the one step delay information structure, local error state

estimate may be reduced in the sense that

(P j
n+1|n+1,1)¬ (P j

n+1|n+1). (55)

Thus for the k−step delay structure we have

P j
n−k+2|n−k+2,1 ¬ P j

n−k+2|n−k+2 (56)
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and consequently

P j
n−k+3|n−k+2,1(32)︷ ︸︸ ︷

An−k+2P j
n−k+2|n−k+2,1AT

n−k+2 +Wn−k+2 ¬

P j
n−k+3|n−k+2(52)︷ ︸︸ ︷

An−k+2P j
n−k+2|n−k+2AT

n−k+2 +Wn−k+2

(P j
n−k+3|n−k+2,1)

−1  (P j
n−k+3|n−k+2)

−1

(P j
n−k+3|n−k+3,2)

−1(47)︷ ︸︸ ︷
(P j

n−k+3|n−k+2,1)
−1 +C j

n−k+3(R
j
n−k+3)

−1C jT
n−k+3 



(P j
n−k+3|n−k+3)

−1(51)︷ ︸︸ ︷
(P j

n−k+3|n−k+2)
−1 +C j

n−k+3(R
j
n−k+3)

−1C jT
n−k+3

P j
n−k+3|n−k+3,2 ¬ P j

n−k+3|n−k+3 (57)

Working recursively we obtain

(P j
n|n,k−1)¬ (P j

n|n)

P j
n+1|n,k−1(32)︷ ︸︸ ︷

AnP j
n|n,k−1AT

n +Wn ¬

P j
n+1|n(52)︷ ︸︸ ︷

AnP j
n|nAT

n +Wn

(P j
n+1|n,k−1)

−1  (P j
n+1|n)

−1

(P j
n+1|n+1,k)

−1(47)︷ ︸︸ ︷
(P j

n+1|n,k−1)
−1 +C j

n+1(R
j
n+1)

−1C jT
n+1 

(P j
n+1|n+1)

−1(51)︷ ︸︸ ︷
(P j

n+1|n)
−1 +C j

n+1(R
j
n+1)

−1C jT
n+1

P j
n+1|n+1,k ¬ P j

n+1,n+1. (58)

By the eqn. (58) it is seen that the k−step delay feedback information structure may
reduce the local state filtering errors for n+1 k.

9. Conclusion

A new hierarchical fusion filtration formula for a multisensor system with the k−step
delay sharing pattern was presented. It was shown that the fusion algorithm with the k−
step delay information feedback is equivalent to the centralized Kalman filter, thus is
optimal. Comparing with a structure without feedback this algorithm improves local
performances in the sense that it reduces local state error covariances.
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