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Analysis and adaptive control of a novel 3-D
conservative no-equilibrium chaotic system

SUNDARAPANDIAN VAIDYANATHAN and CHRISTOS VOLOS

First, this paper announces a seven-term novel 3-D conservative chaotic system with four
quadratic nonlinearities. The conservative chaotic systems are characterized by the important
property that they are volume conserving. The phase portraits of the novel conservative chaotic
system are displayed and the mathematical properties are discussed. An important property of
the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hid-
den chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are
obtained as L1 = 0.0395,L2 = 0 and L3 =−0.0395. The Kaplan-Yorke dimension of the novel
conservative chaotic system is DKY = 3. Next, an adaptive controller is designed to globally sta-
bilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive
controller is also designed to achieve global chaos synchronization of the identical conservative
chaotic systems with unknown parameters. MATLAB simulations have been depicted to illus-
trate the phase portraits of the novel conservative chaotic system and also the adaptive control
results.

Key words: chaos, chaotic system, conservative chaotic system, adaptive control, synchro-
nization.

1. Introduction

Chaos theory describes the qualitative study of unstable aperiodic behavior in deter-
ministic nonlinear dynamical systems. A dynamical system is called chaotic if it satisfies
the three properties: boundedness, infinite recurrence and sensitive dependence on initial
conditions [1].

A significant development in chaos theory occurred when Lorenz discovered a 3-D
chaotic system of a weather model [2]. Subsequently, Rössler discovered a 3-D chaotic
system in 1976 [3], which is algebraically simpler than the Lorenz system. Indeed,
Lorenz’s system is a seven-term chaotic system with two quadratic nonlinearities, while
Rössler’s system is a seven-term chaotic system with just one quadratic nonlinearity.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [4], Sprott
systems [5], Chen system [6], Lü-Chen system [7], Liu system [8], Cai system [9], T-
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system [10], etc. Many new chaotic systems have been also discovered like Li system
[11], Sundarapandian systems [12, 13], Vaidyanathan systems [14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26], Pehlivan system [27], Jafari system [28], Sampath system [29],
Pham systems [30, 31], etc.

Chaos theory has applications in several fields of science and engineering such as
lasers [32], oscillators [33], chemical reactions [34, 35], biology [36], ecology [37],
neural networks [38, 39], robotics [40, 41], fuzzy logic [42, 43], electrical circuits
[44, 45, 46], cryptosystems [47, 48], memristors [49, 50, 51],etc.

In the chaos literature, there is an active interest in the discovery of conservative
chaotic systems [52], which have the special property that the volume of the flow is
conserved. If the sum of the Lyapunov exponents of a chaotic system is zero, then the
system is conservative. Classical examples of conservative chaotic systems are Nosé-
Hoover system [53], Hénon-Heiles system [54], etc. A recent example of a conservative
chaotic system is Vaidyanathan-Pakiriswamy system [55].

In this paper, we announce a novel 3-D conservative chaotic system which does not
possess any equilibrium point. Thus, the novel chaotic system belongs to the class of
chaotic systems with hidden attractors [56]. Studying systems with hidden attractors is
a new research direction because of their practical and theoretical importance [57, 58].

Next, this paper derives an adaptive control law that stabilizes the novel conservative
chaotic system, when the system parameters are unknown. This paper also derives an
adaptive control law that achieves global chaos synchronization of the identical novel
conservative systems with unknown parameters.

Synchronization of chaotic systems is a phenomenon that may occur when a chaotic
oscillator drives another chaotic oscillator. Because of the butterfly effect which causes
the exponential divergence of the trajectories of two identical chaotic systems started
with nearly the same initial conditions, synchronizing two chaotic systems is seemingly
a very challenging problem.

In most of the synchronization approaches, the master-slave or drive-response for-
malism is used. If a particular chaotic system is called the master or drive system and
another chaotic system is called the slave or response system, then the idea of synchro-
nization is to use the output of the master system to control the response of the slave
system so that the slave system tracks the output of the master system asymptotically.

In the chaos literature, an impressive variety of techniques have been proposed to
solve the problem of chaos synchronization such as active control method [59, 60, 61],
adaptive control method [62, 63, 64], backstepping control method [66, 67, 68], sliding
mode control method [69, 70, 71], etc.

All the main adaptive results in this paper are proved using Lyapunov stability the-
ory [72]. MATLAB simulations are depicted to illustrate the phase portraits of the novel
conservative chaos system, adaptive stabilization and synchronization results for the
novel 3-D conservative chaotic system.
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2. A seven-term 3-D novel conservative chaotic system

In this section, we describe a seven-term novel conservative chaotic system with four
quadratic nonlinearities, which is modeled by the 3-D dynamics

ẋ1 = ax2 + x1x3

ẋ2 = −bx1 + x2x3

ẋ3 = 1− x2
1 − x2

2

(1)

where x1,x2,x3 are the states and a,b are constant, positive, parameters of the system.
The system (1) exhibits a conservative chaotic attractor for the values

a = 0.05 and b = 1. (2)

For numerical simulations, we take the initial conditions of the state x(t) as x1(0) =
−1, x2(0) =−1 and x3(0) = 4.

Fig. 1 shows the 3-D phase portrait of the conservative chaotic attractor of the system
(1). Figs. 2–4 show the 2-D projection of the chaotic attractor of the system (1) on
(x1,x2),(x2,x3) and (x1,x3) planes, respectively.
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Figure 1: Phase portrait of the conservative chaotic System



336 S. VAIDYANATHAN, CH. VOLOS

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

Figure 2: 2-D projection of the conservative chaotic system on the (x1,x2) plane
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Figure 3: 2-D projection of the conservative chaotic system on the (x2,x3) plane
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Figure 4: 2-D projection of the conservative chaotic system on the (x1,x3) plane

3. Analysis of the 3-D novel conservative chaotic system

3.1. Equilibrium points

The equilibrium points of the novel system (1) are obtained by solving the equations

ax2 + x1x3 = 0 (3a)

−bx1 + x2x3 = 0 (3b)

1− x2
1 − x2

2 = 0. (3c)

From (3a) and (3b), it follows that

x1x2x3 =−ax2
2 = bx2

1

which gives
bx2

1 +ax2
2 = 0. (4)

Since a > 0 and b > 0, the only solution of (4) is given by

x1 = 0, x2 = 0. (5)

Since (3c) and (5) contradict each other, there is no equilibrium point to the novel
system (1).
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3.2. Rotation symmetry about the x3-axis

We define a new set of coordinates as

z1 = −x1

z2 = −x2

z3 = x3.

(6)

We find that
ż1 = −ax2 − x1x3 = az2 + z1z3

ż2 = bx1 − x2x3 = −bz1 + z2z3

ż3 = 1− x2
1 − x2

2 = 1− z2
1 − z2

2.

(7)

This shows that the 3-D novel conservative chaotic system (1) is invariant under the
change of coordinates

(x1,x2,x3) 7→ (−x1,−x2,x3). (8)

Since the transformation (8) persists for all values of the parameters, it follows that
the 3-D novel conservative chaotic system (1) has rotation symmetry about the x3-axis
and that any non-trivial trajectory must have a twin trajectory.

3.3. Invariance

It is easy to see that the x3-axis is invariant under the flow of the 3-D novel conser-
vative chaotic system (1). The invariant motion along the x3-axis is characterized by the
scalar dynamics

ẋ3 = 1 (9)

which is unstable.

3.4. Lyapunov exponents and Kaplan-Yorke dimension

For the parameter values given in (2), the Lyapunov exponents of the novel chaotic
system (1) are calculated as

L1 = 0.0395, L2 = 0, L3 =−0.0395. (10)

Clearly, the maximal Lyapunov exponent of the novel chaotic system (1) is given by
L1 = 0.0395, which is positive.

Since the sum of the Lyapunov exponents in (10) is zero, the novel chaotic system
(1) is conservative.

The Kaplan-Yorke dimension of a chaotic system is defined as

DKY = j+
j

∑
i=1

Li

|L j+1|
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where j is the maximum integer such that the sum of the j largest Lyapunov exponents
is still non-negative. DKY represents an upper bound for the information dimension of
the system. It is easy to deduce that for the 3-D conservative chaotic system (1), the
Kaplan-Yorke dimension is given by

DKY = 3. (11)

4. Adaptive control of the 3-D novel conservative chaotic system with unknown
parameters

In this section, we use adaptive control design to derive an adaptive feedback control
law for globally stabilizing the 3-D novel conservative chaotic system with unknown
parameters.

Thus, we consider the 3-D novel conservative chaotic system given by
ẋ1 = ax2 + x1x3 +u1

ẋ2 = −bx1 + x2x3 +u2

ẋ3 = 1− x2
1 − x2

2 +u3.

(12)

In (12), x1,x2,x3 are the states and u1,u2,u3 are adaptive controls to be determined
using estimates â(t) and b̂(t) for the unknown parameters a and b, respectively.

We consider the adaptive control law defined by
u1 = −â(t)x2 − x1x3 − k1x1

u2 = b̂x1 − x2x3 − k2x2

u3 = −1+ x2
1 + x2

2 − k3x3

(13)

where k1,k2,k3 are positive gain constants.
Substituting (13) into (12), we get the closed-loop plant dynamics as

ẋ1 = [a− â(t)]x2 − k1x1

ẋ2 = −
[
b− b̂(t)

]
x1 − k2x2

ẋ3 = −k3x3.

(14)

The parameter estimation errors are defined as{
ea(t) = a− â(t)

eb(t) = b− b̂(t).
(15)
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Using (15), we can simplify (14) as
ẋ1 = eax2 − k1x1

ẋ2 = −ebx1 − k2x2

ẋ3 = −k3x3.

(16)

Differentiating (15) with respect to t, we obtain{
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t).
(17)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (xxx,ea,eb) =
1
2
(
x2

1 + x2
2 + x2

3 + e2
a + e2

b
)
. (18)

Clearly, V is a positive definite function on ℜ5.
Differentiating V along the trajectories of (16) and (17), we get

V̇ =−k1e2
1 − k2e2

2 − k3e2
3 + ea

[
x1x2 − ˙̂a

]
+ eb

[
−x1x2 − ˙̂a

]
. (19)

In view of (19), we take the parameter update law as follows:

˙̂a = x1x2
˙̂b = −x1x2.

(20)

Next, we state and prove the main result of this section.

Theorem 7 The novel 3-D conservative chaotic system (12) with unknown system pa-
rameters is globally and exponentially stabilized for all initial conditions by the adaptive
control law (13) and the parameter update law (20), where k1,k2,k3 are positive gain
constants.

Proof We prove this result using Lyapunov stability theory [72].
We consider the quadratic Lyapunov function defined by (18), which is a positive

definite function on ℜ5.
By substituting the parameter update law (20) into (19), we obtain the time derivative

of V as
V̇ =−k1x2

1 − k2x2
2 − k3x2

3. (21)

From (21), it is clear that V̇ is a negative semi-definite function on ℜ5.
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Thus, we can conclude that the state vector xxx(t) and the parameter estimation error
are globally bounded, i.e.[

x1(t) x2(t) x3(t) ea(t) eb(t)
]T

∈ L∞.

We define k = min{k1,k2,k3}.
Then it follows from (21) that

V̇ ¬−k∥xxx(t)∥2. (22)

Thus, we have
k∥xxx(t)∥2 ¬−V̇ . (23)

Integrating the inequality (23) from 0 to t, we get

k
t∫

0

∥xxx(τ)∥2dτ ¬ V (0)−V (t). (24)

From (24), it follows that xxx ∈ L2.
Using (16), we can conclude that xxx ∈ L∞.
Using Barbalat’s lemma [72], we conclude that xxx(t)→ 0 exponentially as t → ∞ for

all initial conditions x(0) ∈ ℜ3. This completes the proof.
For the numerical simulations, the classical fourth-order Runge-Kutta method with

step size h = 10−8 is used to solve the systems (12) and (20), when the adaptive control
law (13) is applied.

The parameter values of the novel conservative chaotic system are taken as in the
chaotic case, viz. a = 0.05 and b = 1. We take the positive gain constants as ki = 5 for
i = 1,2,3.

Furthermore, as initial conditions of the novel conservative chaotic system (12), we
take x1(0) = 7.2,x2(0) =−5.3 and x3(0) = 3.7.

Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take â(0) =
5.6 and b̂(0) = 4.8.

In Fig. 5, the exponential convergence of the controlled states of the 3-D conservative
chaotic system (12) is depicted.

5. Adaptive synchronization of the 3-D novel conservative chaotic systems with
unknown parameters

In this section, we use adaptive control method to derive an adaptive feedback control
law for globally synchronizing identical 3-D novel conservative chaotic systems with
unknown parameters.
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Figure 5: Time-history of the controlled states x1(t),x2(t),x3(t)

As the master system, we consider the 3-D novel conservative chaotic system given
by 

ẋ1 = ax2 + x1x3

ẋ2 = −bx1 + x2x3

ẋ3 = 1− x2
1 − x2

2.

(25)

In (25), x1,x2,x3 are the states and a,b are unknown system parameters.
As the slave system, we consider the 3-D novel conservative chaotic system given

by 
ẏ1 = ay2 + y1y3 +u1

ẏ2 = −by1 + y2y3 +u2

ẏ3 = 1− y2
1 − y2

2 +u3.

(26)

In (26), y1,y2,y3 are the states and u1,u2,u3 are the adaptive controls to be deter-
mined using estimates â(t) and b̂(t) for the unknown parameters a and b, respectively.
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The synchronization error between the novel 3-D conservative chaotic systems (25)
and (26) is defined by 

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3.

(27)

Then the synchronization error dynamics is obtained as
ė1 = ae2 + y1y3 − x1x3 +u1

ė2 = −be1 + y2y3 − x2x3 +u2

ė3 = −y2
1 + x2

1 − y2
2 + x2

2 +u3.

(28)

We consider the adaptive feedback control law
u1 = −â(t)e2 − y1y3 + x1x3 − k1e1

u2 = b̂(t)e1 − y2y3 + x2x3 − k2e2

u3 = y2
1 − x2

1 + y2
2 − x2

2 − k3e3

(29)

where k1,k2,k3 are positive gain constants.
Substituting (29) into (28), we get the closed-loop error dynamics as

ė1 = [a− â(t)]e2 − k1e1

ė2 = −
[
b− b̂(t)

]
e1 − k2e2

ė3 = −k3e3.

(30)

The parameter estimation errors are defined as{
ea(t) = a− â(t)

eb(t) = b− b̂(t).
(31)

In view of (31), we can simplify the plant dynamics (30) as
ė1 = eae2 − k1e1

ė2 = −ebe1 − k2e2

ė3 = −k3e3.

(32)

Differentiating (31) with respect to t, we obtain ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t).
(33)



344 S. VAIDYANATHAN, CH. VOLOS

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V (eee,ea,eb) =
1
2
(
e2

1 + e2
2 + e2

3 + e2
a + e2

b
)
. (34)

Differentiating V along the trajectories of (32) and (33), we obtain

V̇ =−k1e2
1 − k2e2

2 − k3e2
3 + ea

[
e1e2 − ˙̂a

]
+ eb

[
−e1e2 − ˙̂b

]
. (35)

In view of (35), we take the parameter update law as ˙̂a(t) = e1e2

˙̂b(t) = −e1e2.
(36)

Next, we state and prove the main result of this section.

Theorem 8 The novel 3-D conservative chaotic systems (25) and (26) with unknown
system parameters are globally and exponentially synchronized for all initial conditions
by the adaptive control law (29) and the parameter update law (36), where k1,k2,k3 are
positive gain constants.

Proof We prove this result by applying Lyapunov stability theory [72].
We consider the quadratic Lyapunov function defined by (34), which is clearly a

positive definite function on ℜ5.
By substituting the parameter update law (36) into (35), we obtain the time-derivative

of V as
V̇ =−k1e2

1 − k2e2
2 − k3e2

3. (37)

From (37), it is clear that V̇ is a negative semi-definite function on ℜ5.
Thus, we can conclude that the state vector eee(t) and the parameter estimation error

are globally bounded, i.e.[
e1(t) e2(t) e3(t) ea(t) eb(t)

]T
∈ L∞.

We define k = min{k1,k2,k3}.
Then it follows from (37) that

V̇ ¬−k∥eee(t)∥2. (38)

Thus, we have
k∥eee(t)∥2 ¬−V̇ . (39)



ANALYSIS AND ADAPTIVE CONTROL OF A NOVEL 3-D CONSERVATIVE
NO-EQUILIBRIUM CHAOTIC SYSTEM 345

Integrating the inequality (39) from 0 to t, we get

k
t∫

0

∥eee(τ)∥2 dτ ¬ V (0)−V (t). (40)

From (40), it follows that eee ∈ L2.
Using (32), we can conclude that ėee ∈ L∞.
Using Barbalat’s lemma [72], we conclude that eee(t)→ 0 exponentially as t → ∞ for

all initial conditions eee(0) ∈ ℜ3. This completes the proof.
For the numerical simulations, the classical fourth-order Runge-Kutta method with

step size h = 10−8 is used to solve the systems (25) and (26) and (36), when the adaptive
control law (29) is applied.

The parameter values of the novel 3-D conservative chaotic systems are taken as
in the chaotic case, viz. a = 0.05 and b = 1. We take the positive gain constants as
k1 = 5,k2 = 5 and k3 = 5.

Furthermore, as initial conditions of the master system (25), we take

x1(0) = 5.7, x2(0) = 3.9, x3(0) =−7.4.

As initial conditions of the slave system (26), we take

y1(0) =−4.2, y2(0) = 8.5, y3(0) = 6.4.

Also, as initial conditions of the parameter estimates, we take

â(0) = 8.1, b̂(0) = 3.4.

Figs. 6-8 describe the complete synchronization of the 3-D novel conservative
chaotic systems (25) and (26), while Fig. 9 describes the time-history of the synchro-
nization errors e1,e2,e3.

6. Conclusions

In this research work, we detailed a seven-term novel 3-D conservative no-
equilibrium chaotic system with four quadratic nonlinearities. In the chaos literature,
there are very few conservative no-equilibrium chaotic systems. Thus, the proposed no-
equilibrium conservative chaotic system is a valuable addition to the chaos literature.
Next, we designed an adaptive controller to globally stabilize the novel conservative
chaotic system with unknown parameters. We also designed an adaptive controller to
achieve global chaos synchronization of the identical conservative chaotic systems with
unknown parameters. MATLAB simulations were shown to illustrate all the main results
derived in this research work.
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Figure 6: Complete synchronization of the states x1 and y1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

Time (sec)

x 2, y
2

 

 

x
2

y
2

Figure 7: Complete synchronization of the states x2 and y2



ANALYSIS AND ADAPTIVE CONTROL OF A NOVEL 3-D CONSERVATIVE
NO-EQUILIBRIUM CHAOTIC SYSTEM 347

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−8

−6

−4

−2

0

2

4

6

8

Time (sec)

x 3, y
3

 

 

x
3

y
3

Figure 8: Complete synchronization of the states x3 and y3
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Figure 9: Time-history of the synchronization errors e1,e2,e3
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