
Archives of Control Sciences
Volume 25(LXI), 2015
No. 3, pages 367–375

A Two-stage approach for an optimum solution
of the car assembly scheduling problem.

Part 2. CLP solution and real-world example

MICHAŁ MAZUR and ANTONI NIEDERLIŃSKI

A Constraint Logic Programming (CLP) tool for solving the problem discussed in Part 1
of the paper has been designed. It is outlined and discussed in the paper. The program has been
used for solving a real-world car assembly scheduling problem.

Key words: car sequencing, car assembly scheduling, workstation capacity constraints,
constraint logic programming.

1. Why use CLP?

The problem presented in the first part of the paper (M. Mazur, A. Niederliński,
"A Two-Stage Approach for an Optimum Solution of the Car Assembly Scheduling
Problem, Part 1. Problem statement, solution outline and tutorial example") has been
solved using Constraint Logic Programming (CLP). It is a declarative programming
tool, based on ideas first presented in Prolog, and used for for solving constraint sat-
isfaction problems (CSP). For the important combinatorial case CSP are characterized
by following features (see [2], [3], [8]):

• a finite set S of integer variables X1, ...,Xn, with values from finite domains
D1, ...,Dn;

• a set of constraints between variables. The i-th constraint Ci(Xi1 , ...,Xik) between
k variables from S is given by a relation defined as subset of the Cartesian product
Di1×, ...,×Dik that determines variable values corresponding to each other in a
sense defined by the problem considered. Quite often the constraints may not be
stated as relations, but by equations, inequalities, subroutines etc.;

• a CSP solution is given by any assignment of domain values to variables that
satisfies all constraints. It may be non-unique or unique;

M. Mazur is with General Motors Manufacturing Poland, Gliwice. A. Niederliński, the corresponding
author, is with University of Economics in Katowice, Poland. e-mail: antoni.niederlinski@ae.katowice.pl

Received 28.06.2015.

368 M. MAZUR, A. NIEDERLIŃSKI

• a CSP solution may additionally minimize or maximize an objective function.
Then it is usually referred to as constraint optimization problem (COP), and its
solution as optimum solution.

A basic notion of CLP is that of a predicate. A predicate is a relation between ordered
variables referred to as arguments, declared by naming it, naming the variables, arrang-
ing their order and defining them either by other predicates or by declaring their domains.
Predicates are used to express constraints. They may be either built-in, i.e. be part of the
CLP language, or be user-defined.

A salient feature of combinatorial CSP and COP is that all variables take values
from finite domains. Hence they are referred to as domain variables. It follows that in
theory any CSP and COP can either be shown to have no solution or be solved using
an algorithmically simple exhaustive search or direct enumeration approach. Therefore
the wisdom of developing special tools for such problems may be questioned. Why are
present-day tools for solving combinatorial CSP and COP better than exhaustive search?
The answer to this question is as follows:

• Because of the numerical effectiveness of determining CSP and COP solutions,
which for exhaustive search and large numbers of variables is very bad indeed:
the number of enumerations needed to get those solutions may be exorbitant. CLP
copes (to some extent, not entirely) with such problems by early and judicious use
of problem constraints, and by using implicit feasible problem-specific heuristics,
in order to substantially decrease the search space.

• Because of the declarativity of CLP programs, which means that a properly for-
malized description of the solved problem is tantamount to the program solving
the problem. It is contrasted with imperativity (procedurality) based on design-
ing algorithms needed to solve problems. Declarativity means further that while
using CLP languages no algorithms for problem solving need to be designed. The
algorithms, which are of course necessary for any computer-based problem solv-
ing, have been embedded into CLP compilers. To simplify a bit, it may be stated
that the art of CLP consists in designing such problem descriptions that are un-
derstood by CLP language compilers, and that ensure an effcient determination of
the solution.

2. Formulating a car assembly ontology

The first step in designing a CLP solution for a complicated combinatorial prob-
lem like scheduling car assembly lines consists of formulating a car assembly ontology,
see [7]. The ontology is a naming of all entities, ideas, and events, and precise defining of
their properties and relations, as needed to describe car assembly lines. The proposed on-
tology covers over 170 entities, ideas, and events, only some of them will be used below.

A TWO-STAGE APPROACH FOR AN OPTIMUM SOLUTION
OF THE CAR ASSEMBLY SCHEDULING PROBLEM. PART 2. 369

The need for the ontology arises from the obvious circumstance, that humans perform-
ing car assembly scheduling use a lot of tacit and often vague background knowledge,
which - for the sake of computerizing the scheduling process - must be put on a precise
footing.

3. Choosing global constraints

The next step consists of choosing a set of global constraints suitable for modelling
the car assembly line. Global constraints (see [1], [5] and [8]) are built-in predicates,
defining advanced relations capturing sometimes tens of thousands of code lines in im-
perative programming languages. The following global predicates are particularly use-
ful:

• The among() predicate which ensures that a desired number of particular cars will
appear in chosen subsequences of the car sequence. This predicate is responsible
for enforcing in the schedule the workstation capacity constraints. Two versions
of this predicate are used in the program:

1. among (N,[X1,..,Xs],[C1,..,Cs],[V1,..,Vm],ground)
where N is a natural number or domain variable, [X1,..,Xs] is a
list of domain variables, [C1,..,Cs] is a list of natural numbers,
[V1,..,Vm] is a list of natural numbers in ascending order, Vi<V(i+1).
The constraint is fulfilled if [X1,...,Xs] contains N such values Xi, for
which Xi+Ci belong to list [V1,...,Vm]. E.g. the constraint:

among(2,[S1,S2,S3,S4,S5,S6,S7,S8,S9,S10],
[0,0,0,0,0,0,0,0,0,0],[5],ground)

is fulfilled if car model 5 appears 2 times in the list of produced car models
[S1,S2,S3,S4,S5,S6,S7,S8,S9,S10].

2. among([Low,Up,Seq,Least, Most], [X1,..,Xs],
[C1,..,Cs], [V1,..,Vm], ground)

where Low is a nonnegative integer, Up is a positive integer, Seq¬ s. The
constraint is fulfilled if at least Low integers and at most Up integers of each
Seq consecutive integers from the list [X1+C1, .. , Xs+Cs] belong
to list [V1,..,Vm], and that at least Least and at most Most of the
integers in the list [X1+C1, .. , Xs+Cs] are equal to integers from
the list [V1,..,Vm]. E.g. the constraint:

among([0,1,5,2,2],[S1,S2,S3,S4,S5,S6,S7,S8,S9,S10],
[0,0,0,0,0,0,0,0,0,0],[3],ground)

370 M. MAZUR, A. NIEDERLIŃSKI

is fulfilled if at least none and at most one car of each 5 consecutive cars
should be car model 3, and that at least 2 and at most 2 of the car models in
the list [S1,S2,S3,S4,S5,S6,S7,S8,S9,S10] should be car model
3.

• The disjunctive() predicate is used to enforce non-overlapping of time seg-
ments of assembly operations at the same workstation for different car models:

disjunctive(Time_segments, End),

where
Time_segments =

[[Segment_1_Start_Time, Segment_1_Duration],...
...[Segment_n_Start_Time, Segment_n_Duration]]

is a list of lists and End is an integer representing a coordinate not to be occupied
by time segments. The disjunctive constraint is fulfilled if there is no time overlap
of operations with start times Segment_i_Start_Time (i=1,..,n) and corre-
sponding durations Segment_i_Duration (i=1,..,n). Any workstation must
be represented in the CLP program by its own disjunctive() predicate.

Its usage is presented in Fig. 1 for three time segments A, B and C.

Figure 1: Examples of disjunctive() usage

• The minimizing predicate minimize(labeling(ENDS),MAKESPAN) is
used to search for a set of end times for all car bodies (in the list ENDS) that

A TWO-STAGE APPROACH FOR AN OPTIMUM SOLUTION
OF THE CAR ASSEMBLY SCHEDULING PROBLEM. PART 2. 371

minimizes the MAKESPAN. The end times (being the proper decision variables
of the mimimization) are searched by a labeling predicate that implements the
first fail search strategy. This strategy always starts with instantiating the variable
with the smallest domain.

The predicate is generating a list of end times for all cars (which is determinig
backwards the entire assembly schedule) together with the minimum makespan.

The bulk of the program consists of inequality constraints defining the assembly
technbology: the assembly of the next car at any station may start no sooner than the
assembly of the present car at that station is done with.

4. A real-world example

To illustrate the power of the proposed approach, the CLP program developed has
been applied to a following real-world example.

4.1. Determining admissible car body sequences

The investigated production plan consists of 30 cars to be produced in 6 groups of
options (Group 1, 2,.., 6), with 5 different options (Option O1,...,Option O5). A
production plan for 30 cars (if all cars had different options) results in 30! = 2.65∗1032

sequences. Taking into account the groups of options results in a "smaller" number of
sequences equal to 4.23∗1019. It is assumed that capacity constraints for needed options
are given by Tab. 8.

Table 8: Workstation capacity constraints for real-world example

Group 1 2 3 4 5 6 WCCOi

Option O1 0 0 0 0 0 1 2/27

Option O2 1 0 0 4 0 0 3/9

Option O3 0 1 0 0 1 0 4/10

Option O4 1 0 1 0 1 0 3/5

Option O5 0 0 1 0 0 1 3/11

Number of cars
in production 5 5 5 5 7 3

plan

372 M. MAZUR, A. NIEDERLIŃSKI

The meaning of this table is as follows: e.g. any of the 7 cars belonging to group 5
should be outfitted with option O3 with WCCO3 = 4/10, and option O4 with WCCO4 =
3/5.

4.2. Sequencing results

Taking into account the capacity constraints, 239 admissible sequences are generated
using the among() predicates. The reduction of the search space form 4.23∗1019 points
to 239 points is thus quite dramatic. The two first and two last admissible sequences
named by their S Number are listed in Tab. 9.

Table 9: Two first and two last admissible sequences

S001 [6,1,1,2,5,2,5,3,4,6,1,3,1,2,2,5,5,4,3,4,3,4,3,5,2,5,4,5,1,6]

S002 [6,1,1,5,2,2,5,3,4,6,1,3,1,2,2,5,5,4,3,4,3,4,3,5,2,5,4,5,1,6]

..... ..

S238 [6,1,5,4,5,2,5,3,4,3,4,3,1,2,2,5,5,4,3,4,6,1,3,5,2,2,5,1,1,6]

S239 [6,1,5,4,5,2,5,3,4,3,4,3,1,2,5,2,5,4,3,4,6,1,3,5,2,2,5,1,1,6]

The meaning of this table is as follows: e.g. for the admissible sequence S001 the
first car body fed into the line is from group 6, the next - from group 1, the next - from
group 5, and so on, from the right end of the sequence to the left end.

4.3. Scheduling constraints

It is assumed that there are 50 workstations on the assembly line. To each group of
car bodies a value of duration time of operations in each workstation has been attributed
as shown in Tab. 10. It is assumed that for the entire production plan the duration time
of all operations is in the range [3..7] minutes. The time is measured in Time units.
Practically a Time Unit is different for different automakers and usually may correspond
to values from 70 to 120 seconds.

The meaning of this table is as follows: e.g. for workstation 3 cars from group 1 are
handled 6 minutes, from group 2 are handled 7 minutes, from group 3 are handled 6
minutes, and so on.

The tact time is assumed to be TT=6, i.e. it is smaller than the maximum duration
time for some operation (equal 7). In order to perform all assembly operations it must be
thus assumed, that operators manning any workstation i can start assembly operations
in advance on the car body in the previous workstation i-1. To make this assumption
precise it is further assumed that for the Advance Time holds AT <= 5 minutes.
This is a difficult constraint to handle, but precisely this constraint results in different
admissible sequences having different makespans.

A TWO-STAGE APPROACH FOR AN OPTIMUM SOLUTION
OF THE CAR ASSEMBLY SCHEDULING PROBLEM. PART 2. 373

Table 10: Duration time of assembly operation

Workstation Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
number cars 1-5 cars 6-10 cars 11-15 cars 16-20 cars 21-27 cars 28-30

1 5 5 7 6 5 5
2 5 4 6 7 5 7
3 6 7 6 5 7 5
4 4 5 4 6 7 5
5 4 4 7 5 5 5
6 5 5 4 6 4 5
7 4 6 6 4 4 4
8 7 5 4 5 7 6
9 4 6 6 6 5 4

10 4 5 7 5 4 5
11 4 6 4 7 7 4
12 4 5 4 5 7 4
13 7 4 5 4 4 4
14 6 5 4 6 6 6
15 5 4 4 6 6 4
16 6 5 5 4 5 7
17 5 6 4 6 5 7
18 6 4 5 4 7 6
19 4 5 5 6 5 5
20 4 7 7 5 7 5
21 5 4 7 4 5 4
22 5 4 7 6 7 6
23 4 6 5 4 5 5
24 4 7 4 7 7 6
25 6 7 4 5 6 4
26 5 4 7 6 5 6
27 4 7 7 5 6 6
28 6 5 5 4 5 7
29 7 5 6 4 4 5
30 6 4 7 5 4 7
31 5 7 5 6 5 6
32 5 7 5 6 7 4
33 7 7 4 6 6 7
34 4 5 5 7 6 5
35 4 6 4 5 7 7
36 4 7 5 5 6 7
37 5 7 5 5 6 6
38 7 5 5 6 7 6
39 4 4 7 6 6 6
40 4 5 4 6 6 7
41 5 7 6 4 6 4
42 6 7 4 5 5 7
43 5 6 4 5 7 6
44 7 4 6 5 4 4
45 4 4 5 5 4 4
46 6 6 7 5 5 5
47 4 4 6 6 7 4
48 6 6 5 5 7 5
49 5 7 6 7 7 5
50 7 5 6 4 4 7

4.4. Scheduling results

The assembling for all 239 admissible sequences was simulated and the corre-
sponding makespans determined. The results are presented in Fig. 2. It can be seen that

374 M. MAZUR, A. NIEDERLIŃSKI

makespans for different admissible sequences may vary between 510 and 521 TU, with
two sequences having the minimum makespan 510.

Figure 2: Makespans for admissible sequences

Fig. 3 presents the distribution of makespans for the entire set of admissible se-
quences.

Figure 3: Distribution of makespans for admissible sequences

5. Summary

A two stage decomposition for determining minimum makespan schedules for car
assembly lines using a CLP approach has been presented and applied to a nontrivial
real-world. The most important global constraints used in the CLP program have been
discussed.

A TWO-STAGE APPROACH FOR AN OPTIMUM SOLUTION
OF THE CAR ASSEMBLY SCHEDULING PROBLEM. PART 2. 375

References

[1] A. AGGOUN and N. BALDICEANU: Extending CHIP in Order to Solve Com-
plex Scheduling and Placement Problems. Mathematical and Computer Modelling,
17(7), (1993), 57-73.

[2] K.R. APT: Principles of Constraint Programming. Cambridge University Press,
Cambridge, 2003.

[3] K.R. APT and M.G. WALLACE: Constraint Logic Programming using ECLiPSe.
Cambridge University Press, Cambridge, 2007.

[4] N. BALDICEANU and E. CONTEJEAN: Introducing Global Constraints in CHIP.
Mathematical and Computer Modelling, 20(12), (1994), 97-123.

[5] N. BALDICEANU: Global Constraints Catalog.
http://www.emn.fr/x-info/sdemasse/gccat/, 2010.

[6] M. DINCBAS, H. SIMONIS and P. VAN HENTENRYCK: Solving the car-
sequencing problem in constraint logic programming. Proc. of the ECAI, (1988),
290-295.

[7] M. MAZUR: Ontologia procesu wyznaczania harmonogramu optymalnego dla
montażu samochodów (Car Assembly Ontology). In K. Malinowski, J. Józefczyk
and J. Świątek: Aktualne problemy automatyki, EXIT, Warszawa, 2014, 716-726,
(in Polish).

[8] A. NIEDERLIŃSKI: A Gentle Guide to Constraint Logic Programming via
ECLiPSe. PKJS, Gliwice, 3-rd edition, revised and expanded, 2014.

	Tekst7: 10.1515/acsc-2015-0024

