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Pointwise observation of the state given by parabolic
system with boundary condition involving multiple

time delays

ADAM KOWALEWSKI

Various optimization problems for linear parabolic systems with multiple constant time de-
lays are considered. In this paper, we consider an optimal distributed control problem for a linear
parabolic system in which multiple constant time delays appear in the Neumann boundary con-
dition. Sufficient conditions for the existence of a unique solution of the parabolic equation with
the Neumann boundary condition involving multiple time delays are proved. The time horizon
T is fixed. Making use of the Lions scheme [13], necessary and sufficient conditions of opti-
mality for the Neumann problem with the quadratic cost function with pointwise observation of
the state and constrained control are derived.

Key words: distributed control, parabolic system, time delays, pointwise observation.

1. Introduction

Infinite dimensional distributed parameter systems with delays can be used to de-
scribe many phenomena in the real world. As is well known, heat conduction, properties
of elastic-plastic material, fluid dynamics, diffusion-reaction processes, transmission of
the signals at the certain distance by using electric long lines, etc., all lie within this area.
The object that we are studying (temperature, displacement, concentration, velocity, etc.)
is usually referred to as the state.

We are interested in the case where the state satisfies proper differential equations
that are derived from basic physical laws, such as Newton’s law, Fourier’s law etc. The
space in which the state exists is called the state space, and the equation that the state
satisfies is called the state equation. Consequently, by an infnite dimensional system we
mean one whose corresponding state space is infinite dimensional. In particular, we are
interested in the cases where the state equations are one of the following types: partial
differential equations, integro-differential equations, or abstract evolution equations.
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Very important optimization problems associated with the optimal control of dis-
tributed parabolic systems with time delays appearing in the boundary conditions have
been studied recently in Refs. [1] - [12] and [15], [16].

In this paper, we consider an optimal distributed control problem for a linear
parabolic system in which multiple constant time delays appear in the Neumann bound-
ary condition.

Such systems constitute in a linear approximation, a universal mathematical model
for the plasma control process [12].

Sufficient conditions for the existence of a unique solution of such parabolic equa-
tions with the Neumann boundary conditions involving multiple time delays are proved.

In this paper, we restrict our considerations to the case of the distributed control
for the Neumann problem. Consequently, we formulate the following optimal control
problem. We assume that the cost function has the quadratic form with pointwise ob-
servation of the state. Moreover, the time horizon is fixed in our optimization problem.
Finally, we impose some constraints on the distributed control. Making use of the Lions
framework [13] necessary and sufficient conditions of optimality with the quadratic cost
function with pointwise observation of the state and constrained control are derived for
the Neumann problem.

2. Existence and uniqueness of solutions

Consider now the distributed-parameter system described by the following parabolic
delay equation

∂y
∂t

+A(t)y = v x ∈Ω, t ∈ (0,T ) (1)

y(x,0) = y0(x) x ∈Ω (2)

∂y
∂ηA

=
m

∑
i=1

y(x, t−hi)+u x ∈ Γ, t ∈ (0,T ) (3)

y(x, t ′) = Ψ0(x, t ′) x ∈ Γ, t ′ ∈ [−hm,0) (4)

where: Ω ⊂ Rn is a bounded, open set with boundary Γ , which is a C∞ - manifold of

dimension n−1. Locally, Ω is totally on one side of Γ .
∂y

∂ηA
is a normal derivative at Γ,

directed towards the exterior of Ω,

y≡ y(x, t;v), v≡ v(x, t),

Q = Ω× (0,T ), Q̄ = Ω̄× [0,T ],

Σ = Γ× (0,T ), Σ0 = Γ× [−hm,0)
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hi are specified positive numbers representing time delays such that 0¬ h1 < h2 < .. . <
hm for i = 1, . . . ,m, Ψ0 is a initial function defined on Σ0.

The operator A(t) has the form

A(t)y =−
n

∑
i, j=1

∂
∂xi

(
ai j(x, t)

∂y(x, t)
∂x j

)
(5)

and the functions ai j(x, t) satisfy the condition

n

∑
i, j=1

ai j(x, t)ΦiΦ j  α
n

∑
i=1

Φ2
i α > 0, (6)

∀(x, t) ∈ Q̄, ∀Φi ∈ R

where: ai j(x, t) are real C∞ functions defined on Q̄ (closure of Q). The equations (1) - (4)
constitute a Neumann problem.

First we shall prove sufficient conditions for the existence of a unique solution of the
mixed initial-boundary value problem (1) - (4) for the case where v ∈ L2(Q).

For this purpose, for any pair of real numbers r,s  0, we introduce the Sobolev
space Hr,s(Q) ( [14], Vol. 2, p.6) defined by

Hr,s(Q) = H0(0,T ;Hr(Ω))∩Hs(0,T ;H0(Ω)) (7)

which is a Hilbert space normed by T∫
0

∥ y(t) ∥2
Hr(Ω) dt+ ∥ y ∥2

Hs(0,T ;H0(Ω))

 1
2

(8)

where: the spaces Hr(Ω) and Hs(0,T ;H0(Ω)) are defined in Chapter 1 ( [14], Vol.1)
respectively. Consequently, some properties and central theorems for the functions y ∈
Hr,s(Q) are given in [8], [11] and [14].

The existence of a unique solution for the mixed initial-boundary value problem
(1) - (4) on the cylinder Q can be proved using a constructive method, i.e., first, solving
(1) - (4) on the subcylinder Q1 and in turn on Q2, etc. until the procedure covers the
whole cylinder Q. In this way the solution in the previous step determines the next one.
For simplicity, we introduce the following notations:

E j
∧
= (( j−1)λ, jλ) where λ = minhi, Q j = Ω×E j,

Σ j = Γ×E j for j = 1, . . . K .

Using the results of Section 14 ([13], pp. 182-185) we can prove the following result.
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Lemma 1 Let
v ∈ L2(Q) (9)

y j−1(·,( j−1)λ) ∈ L2(Ω) (10)

q j ∈ H1/2,1/4(Σ j) (11)

where:

q j(x, t) =
m

∑
i=1

y j−1(x, t−hi)+u(x, t)

Then, there exists a unique solution y j ∈ H2,1(Q j) for the mixed initial-boundary value
problem (1), (3), (10).

Proof We observe that for j = 1,

m

∑
i=1

y j−1
∣∣
Σ0
(x, t−hi) =

m

∑
i=1

Ψ0(x, t−hi).

Then the assumptions (10) and (11) are fulfilled if we assume that Ψ0 ∈ H1/2,1/4(Σ0),
u∈H1/2,1/4(Σ) and y0 ∈ L2(Ω). These assumptions are sufficient to ensure the existence
of a unique solution y1 ∈H2,1(Q1). Next for j = 2 we have to verify that y1(·,λ)∈ L2(Ω)
and q2 ∈ H1/2,1/4(Σ2). Really, from the Theorem 3.1 ( [14], Vol.1, p.19) we can prove
that y1 ∈ H2,1(Q1) implies that the mapping t → y1(·, t) is continuous from [0,λ]→
H1(Ω) ⊂ L2(Ω), hence y1(·,λ) ∈ L2(Ω). Then using the Trace Theorem ( [14], Vol. 2,
p.9) we can verify that y1 ∈ H2,1(Q1) implies that y1 → y1

∣∣∣
Σ1

is a linear, continuous

mapping of H2,1(Q1)→ H1/2,1/4(Σ). Assuming that u ∈ H1/2,1/4(Σ), the condition q2 ∈
H1/2,1/4(Σ2) is fulfilled.

We shall now summarize the foregoing result for any Q j, j = 3, . . . ,K .

Theorem 1 Let y0,Ψ0,u and v be given with y0 ∈ L2(Ω),Ψ0 ∈ H1/2,1/4(Σ0),
u ∈ H1/2,1/4(Σ) and v ∈ L2(Q). Then, there exists a unique solution y ∈ H2,1(Q) for
the mixed initial-boundary value problem (1) - (4). Moreover, y(·, jλ) ∈ L2(Ω) for
j = 1, . . . ,K.

3. Problem formulation. Optimization theorems

We shall now formulate the optimal distributed control problem for the Neumann prob-
lem. Let us denote by U = L2(Q) the space of controls. The time horizon T is fixed in
our problem.

Let x1, . . . ,xµ be points of Ω. We assume that the observation is {y(x j, t;v)}, 1¬ j¬
µ - provided we can attach a meaning to this.
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If we now assume that the coefficients of the operator A in the equation (1) are
sufficiently regular, then from the Theorem 1 it follows that

y(v) ∈ H2,1(Q). (12)

Hence, y(v) ∈ L2(0,T ;H2(Ω)) and y(x j, t) has meaning (and ”t → y(x j, t)” ∈ L2(0,T ))
if

H2(Ω)⊂C0(Ω) (13)

which is true if (and only if)

1
2
− 2

n
< 0 i.e. n¬ 3 . (14)

Hence we make the standing hypothesis that the dimension is n¬ 3.
Then the observation

Cy(v) = {y(x j, t;v)} ∈ (L2(0,T ))µ. (15)

The cost function is now given

I(v) = λ1 ∥Cy(v)− zd ∥2
(L2(0,T ))µ +λ2

∫
Q

(Nv)v dxdt. (16)

If zd = {zd1, . . . ,zµ},

I(v) = λ1

µ

∑
j=1

T∫
0

| y(x j, t;v)− zd j(t) |2 dt+ λ2

∫
Q

(Nv)v dxdt (17)

where: λi  0, λ1 + λ2 > 0; zd j(t) are given elements in L2(0,T ) and N is a positive,
linear operator on L2(Q) into L2(Q).

Finally, we assume the following constraint on controls v ∈Uad , where

Uad is a closed, convex subset of U (18)

Let y(x, t;v) denote the solution of the mixed initial-boundary value problem (1)- (4) at
(x, t) corresponding to a given control v ∈ Uad . We note from the Theorem 1 that for
any v ∈Uad the cost function (17) is well-defined since y(v) ∈ H2,1(Q). The solving of
the formulated optimal control problem is equivalent to seeking a v0 ∈ Uad such that
I(v0) ¬ I(v) ∀v ∈ Uad . Then from the Theorem 1.3 ( [13], p. 10) it follows that for
λ2 > 0 a unique optimal control v0 exists; moreover, v0 is characterized by the following
condition

I′(v0) · (v− v0) 0 ∀v ∈Uad (19)
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Using the form of the cost function given by (17) we can express (19) in the following
form

λ1

µ

∑
j=1

T∫
0

(y(x j, t;v0)− zd j(t))(y(x j, t;v)− y(x j, t;v0))dt +

(20)
+λ2

∫
Q

Nv0(v− v0)dxdt  0 ∀v ∈Uad

To simplify (20), we introduce the adjoint equation and for every v ∈Uad , we define the
adjoint variable p = p(v) = p(x, t;v) as the solution of the equation

−∂p(v)
∂t

+A∗(t)p(v) = λ1

µ

∑
j=1

(y(x j, t;v)− zd j(t))⊗δ(x− x j)

(21)
x ∈Ω, t ∈ (0,T )

p(x,T ;v) = 0 x ∈Ω (22)

∂p(v)
∂ηA∗

(x, t) =
m

∑
i=1

p(x, t +hi;v) x ∈ Γ, t ∈ (0,T −hm) (23)

∂p(v)
∂ηA∗

(x, t) = 0 x ∈ Γ, t ∈ (T −hm,T ) (24)

where 

g(t)⊗δ(x− x j) is the distribution,

Ψ→
T∫

0

g(t)Ψ(x j, t)dt, Ψ ∈D(Q)

A∗(t)p =−
n

∑
i, j=1

∂
∂x j

(
ai j(x, t)

∂p
∂xi

) (25)

The existence of a unique solution for the problem (21) - (24) on the cylinder Q can be
proved using a constructive method. It is easy to notice that for given zd and v, prob-
lem (21) - (24) can be solved backwards in time starting from t = T , i.e., first, solving
(21) - (24) on the subcylinder QK and in turn on QK−1, etc. until the procedure covers the
whole cylinder Q. For this purpose, we may apply Theorem 1 (with an obvious change
of variables) to problem (21) - (24) (with reversed sense of time, i.e., t ′ = T − t).

Lemma 2 Let the hypothesis of Theorem 1 be satisfied. Then, for given zd j(t)∈ L2(0,T )
and any v ∈ L2(Q), there exists a unique solution p(v) ∈ H2,1(Q) for the problem
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(21) - (24) defined by transposition∫
Q

p(v0)

(
∂Ψ
∂t

+AΨ
)

dxdt =

=
µ

∑
j=1

T∫
0

(
y(x j, t;v0)− zd j(t)

)
Ψ(x j, t)dt (26)

∀Ψ ∈ H2,1(Q),Ψ
∣∣∣
Σ
= 0 and Ψ(x,T ) = 0 .

Remark 1 The right hand side of (26) is a continuous linear form on H2,1(Q) if n¬ 3.

Consequently, after transformations, the first component on the left-hand side of (20)
can be rewriten as

λ1

µ

∑
j=1

T∫
0

(y(x j, t;v0)−zd j(t))(y(x j, t;v)−y(x j, t;v0))dt =

=
∫
Q

p(v0)(v− v0) dxdt (27)

Substituting (27) into (20) we obtain

∫
Q

(p(v0)+λ2Nv0)(v− v0) dxdt  0

∀v ∈Uad

(28)

Theorem 2 For the problem (1) - (4) with the cost function (17) with zd j(t) ∈ L2(0,T )
and λ2 > 0 and with constraints on controls (18), there exists a unique optimal control
v0 which satisfies the maximum condition (28).

Consider now the particular case where Uad = L2(Q). Thus the maximum condition
(28) is satisfied when

v0 =−λ−1
2 N−1 p(v0) (29)

We must notice that the conditions of optimality derived above (Theorem 2) allow
us to obtain an analytical formula for the optimal control in particular cases only (e.g.
there are no constraints on controls). This results from the following: the determining of
the function p(v0) in the maximum condition from the adjoint equation is possible if and
only if we know y0 which corresponds to the control v0. These mutual connections make
the practical use of the derived optimization formulas difficult. Therefore we resign from
the exact determining of the optimal control and we use approximation methods.



196 A. KOWALEWSKI

In the case of performance functional (17) with λ1 > 0 and λ2 = 0, the optimal con-
trol problem reduces to the minimizing of the functional on a closed and convex subset
in a Hilbert space. Then, the optimization problem is equivalent to a quadratic program-
ming one (Ref. [11]) which can be solved by the use of the well-known algorithms, e.g.
Gilbert’s (Ref. [11]).

The practical application of Gilbert’s algorithm to an optimal control problem for a
parabolic system with boundary condition involving a time delay is presented in [12].
Using Gilbert’s algorithm, a one-dimensional numerical example of the plasma control
process is solved.

4. Conclusions

The results presented in the paper can be treated as a generalization of the results
concerning pointwise observation of the state given by the parabolic equation with the
homogeneous Dirichlet boundary condition obtained in [13] onto the case of parabolic
equations with the Neumann boundary conditions involving multiple constant time de-
lays.

Sufficient conditions for the existence of a unique solution of such parabolic equa-
tions with the Neumann boundary conditions involving multiple constant time delays
are proved (Lemma 1 and Theorem 1). The optimal control is characterized by using the
adjoint equation (Lemma 2). The necessary and sufficient conditions of optimality are
derived for a linear quadratic problem (1)-(4), (17), (18) (Theorem 2).

We can also obtain estimates and a sufficient condition for the boundedness of solu-
tions for such parabolic time delay systems with specified forms of feedback control.

Finally, we can consider optimal control problems of time delay hyperbolic systems
with pointwise observation of the state.

The ideas mentioned above will be developed in forthcoming papers.
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