
457Bull. Pol. Ac.: Tech. 64(3) 2016

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 64, No. 3, 2016
DOI: 10.1515/bpasts-2016-0051

*e-mail: a.czerepicki@wt.pw.edu.pl

Abstract. The article presents an innovative concept of applying graph databases in transport information systems. The model of a graph database
has been presented together with implementation of data structures and search operations in a graph. The transformation concept of relational
model to a graph data model has been developed. The schema of graph database has been proposed for public transport information system
purposes. The realization methods have been illustrated by the use of search function based on the Cypher query language.

Key words: databases, graph model, information systems in transport.

Application of graph databases for transport purposes

A. CZEREPICKI
Warsaw University of Technology, Faculty of Transport, 75 Koszykowa St., 00-662 Warsaw

to the task of algorithmic path-finding in a graph condi-
tioned by additional restrictions like time, distance, num-
ber of changes, etc.

Operational efficiency of search algorithms in a graph de-
pends on a graph representation form in computer memory.
What refers to most often used data structures are neighbour-
hood matrices and neighbourhood lists [4, 5]. Since traditional
databases do not offer their own tools for graph storage, in
practice, indirect solutions are applied. In relational databases,
conversion of a graph structure into recording in the form of
tables and relations is required. Whereas, realization of complex
search operations is left to the user.

The alternative solution consists of extending the existing
functionality of a database by the possibilities to store the graph
structures together with execution of basic search operations,
as it was the case with GraphGB system originating from ob-
ject-oriented database [6]. Anyway, all solutions based on ex-
isting database systems are burdened with a series of defects,
among which we can enumerate, e.g., additional expenses re-
lated to data conversion, necessity of operating at a low ab-
straction level, difficulties with interpretation of data obtained,
problems of solution scalability and limited applicability of op-
timization specific for graphs.

Graph Databases belong to the category of databases named
NoSQL (Not Only SQL). NoSQL databases use data models
other than relational model. They are characterized by high ef-
ficiency and scalability, which are obtained by resigning from
data integrity or accessibility [7]. The basis of a data model for
graph databases is a graph. Most often it is a directed graph
(digraph) whose nodes and edges can have attributes [8].

Depending on practical realization, graph databases differ
each other data storage method and in search algorithm realiza-
tion methods in a graph [9–11]. The present paper limits itself
to databases using their own storage and data search methods,
at implementing in graph model assumptions. So, adapting
a graph model to the needs of ITS systems, can be brought
down to the task of path-finding in a graph. In the case of sys-
tems using a graph database, there are ensured performance

1. Introduction

The paper presents the proposal for architecture of information
system in transport using a graph database for storing and pro-
cessing information.

Advanced databases usually constitute a central element of
modern intelligent transport systems (ITS). They play the role
of an integrator through combining information retrieved from
such sources as vehicles, maps, timetables, stops etc. and mak-
ing it available to end users or storing into data warehouse for
discovering and analysing frequently used routes, bottlenecks
etc. through advanced on-line analytical processing [1]. How-
ever, it should be mentioned that more and more often the re-
cipient of this information is an ordinary user of e.g. application
installed on a mobile device.

The growth in the number of users translates into increas-
ing demands on information systems, first of all, on data-
bases. What should be enumerated here are such features as
ability to handle large numbers of users, efficiency of query
processing and horizontal scalability of the system, which al-
lows simple expansion of the system to meet its performance
requirements [2].

Classic relational databases used in most ITS systems are
implemented on the basis of a relational data model. In accor-
dance to such model, abstraction of real world objects is stored
in the form of records in tables. Relationships among objects
are defined by means of integration constraints of primary and
foreign key columns. As early as in the 1980s a certain incom-
patibility was noticed between a relational and an object-ori-
ented approach, which is a more natural reflection of modelled
part of reality [3].

A similar mismatch can be observed in information ITS
systems which are oriented for search of optimal travel route
between two points on the map or public transport stops. The
task of finding optimal travel route can be brought down

458 Bull. Pol. Ac.: Tech. 64(3) 2016

A. Czerepicki

increasing user query processing, indicating, by the same to-
ken, a new perspective development direction for dedicated
group of ITS systems.

2. Graph database model

By definition, data model is constituted by data structures, a set
of operations on data and the constraints ensuring integrity of
the whole system [12].

2.1. Data structure of graph database. The basis of rep-
resentation of a graph data model is graph G = (W, K) con-
sisting of a set of nodes W = {W1, W2, … Wn} and edges
K = {K1, K2, … Km} connecting them. Each edge has its
start and end in the form of elements belonging to the set
of nodes W. Both nodes and edges can have a list of attri-
butes: L[Wi] = {A1, A2, … Ap}, L[Kj] = {A1, A2, … Ar}.
The pair (k, v) is referred to as attribute A, where k is the
key, whereas v represents a corresponding value for this key.
The enumerated elements of a graph model have been pre-
sented in Fig. 1.

A graph data model represents:
●	 a directed graph (digraph), i.e. an edge connects ordered

pair of nodes,
●	 a disconnected graph, i.e. not for each pair of nodes there

exists a connecting path (the requirement of connection
would make it impossible to add new nodes without simul-
taneous definition of edge, which would make it difficult to
realize a graph database in practice),

●	 a graph included in the category of multigraphs, because
there is a possibility of connecting two nodes by means of
more than one edge,

●	 a graph, the size of which can be zero, because zero number
of nodes n = 0 and edges m = 0 is admissible in a graph
model, which signals zero state of the system.
The data model in Fig. 1. therefore presents the concept

of data organization in a graph database. This is a general

model, common for all practical graph database instances.
The structure of each particular instance of database is cre-
ated by its nodes – objects and edges – relations. By analogy
to relational databases, we will call this construction sche-
ma of a graph database. In contrary to relational databases,
where the schema must be known prior to using databases,
schema of a graph database is a very flexible structure and
allows to introduce almost any modifications during system
operation.

When analysing the path model – schema – instance, there
should be noted that in graph databases, the border between
a schema and an instance is fuzzy: each instance can have its
own schema or the schema can be common for several instanc-
es. The cases enumerated describe respectively a non-struc-
tural and structural data model. In the case of the structural
model, introduction of additional object construction rules are
required, similarly to a relational database: each object belong-
ing to a particular class of objects has attributes characteristic
for this class. When creating an instance of such an object, in
the database one should indicate the values of all its attributes
except default or automatically filled by the database. In the
graph database, there are no mechanisms which would require
the user to define all attributes of a node at its creation, there-
fore. The entire responsibility for this is the part of database
application.

The construction process of a graph database schema will
be described in details in Section 3.

2.2. Integrity constraints of graph data model. Integrity con-
straints ensure consistency of database i.e. compatibility of data
model with a fragment of reflected reality. In relational data-
bases, these are: object identity, primary and foreign key ref-
erence, the requirement of unique records in the table, domain
restriction, defaults and null values, etc.

In graph databases integrity is ensured by:
●	 the requirement of a unique identifier for each node within

the scope of the whole database i.e. instance identity, (en-
tity integrity),

Fig. 1. Data model of graph database

459Bull. Pol. Ac.: Tech. 64(3) 2016

Application of graph databases for transport purposes

●	 the requirement of connecting two nodes by means of an
edge (referential integrity),

●	 the requirement of unique attribute names within one node
(attribute integrity).

2.3. Graph database operations. On the basis of the data mod-
el presented in Fig. 1, we can distinguish basic types of data of
a graph database: node, edge, attribute key and attribute value.
Nodes and edges are represented by complex data structures
discussed further in the paper. Attribute key is a text value.
Attribute value can be represented by an object belonging to
the set of universal data types used in databases, among oth-
ers, Integer, Boolean, String, Date, etc. and also by an array
of elements.

Operations conducted on a graph database can have argu-
ments in the form of variables or objects of the abovementioned
types. In most databases, including graph databases, we can
distinguish four basic types of operations: inserting data, their
updating, deleting and searching. The cost of each type of op-
eration directly depends on physical organization of database

structure i.e. data storage method in external memory and or-
ganization of access to data.

As it results from the reference book analysis [9], the fol-
lowing general format of a graph database record can be as-
sumed (Fig. 2). For the storage of nodes, edges and attributes,
separate data files are used. In accordance to assumed classifi-
cation of structures of internal data file organization, the format
presented refers to the category of unordered files [13].

For nodes and edges, the size of record is fixed (elements
A and X respectively in Fig. 2). This allows for unconditional
addressing an object in a file based on its identifier, which is
an integer number. Address of the object is thus defined as
a product of record size and identifier number. Accordingly,
the complexity of node or edge search operation by identifier
does not depend on the number of objects in a database and it
is equal to O(1). The operation of node or edge adding consists
of creating a new record at the end of a database file. The cost
of such operation is linear O(1) and does not depend on a graph
size. The operation of deleting consists in setting an appropriate
flag in object record and does not cause the change of data file

Fig. 2. Structure of graph database file

460 Bull. Pol. Ac.: Tech. 64(3) 2016

A. Czerepicki

size, thus its complexity also is equal to O(1). In accordance
to the requirement of referential integrity of a graph database,
a node can be deleted, if there are no edges linked to it, whereas,
an edge can always be deleted.

Object’s attributes are addressed through master objects.
For example, in Fig. 2. the attributes name and age are ad-
dressed by means of indicators of master object A. The record
of a master object indicates the first attribute, while the next
attributes are addressed by indicators of attribute records. Thus,
the attribute set constitutes the data structure of the unidirec-
tional list type. Since attribute value can be represented by
a number of types of data, including complex ones, attribute
record will comprise either an indicator to another location in
a data file in which data is stored (indirect addressing), or the
value for basic data types (direct addressing). The operation
of attribute searching by name consists of the stage of master
object search and unidirectional list browsing. Its complexity
therefore is equal to where – number of object attributes. Since
k number is not large, in most cases, the operation complexity
of attribute search can be assumed as O(1). The same com-
plexity is also characteristic for adding or deleting attribute
operation.

As can be seen, a data file structure of graph database is
optimized for graph searching: the execution time of transversal
between two nodes connected by an edge does not depend on
the size of a database file.

Operations presented above are related to single objects of
a graph database, therefore, they can be named as simple op-
erations. In accordance to the assumed approach, path-finding
operation in a graph is classified as the category of complex
operation, requiring iterative execution of simple operations
to obtain an expected result.

A linked list of graph nodes is connected by edges in such
a way that each edge appears on this list only once. This
is referred to in presented paper as path. In graph databas-
es this path corresponds to a distinct type of data including
the list of nodes and edges connecting them in a strict se-
quence. From formal point of view, the path makes directed
graph without a loop. A complex search operation make a set
of paths, which in particular cases can be empty. Thus, for
a graph in Fig. 2, a search operation of all paths will return
the set {𝐴 → 𝐵, 𝐴 → 𝐵 → 𝐶, 𝐴 → 𝐶, 𝐵 → 𝐶}.

A path-finding operation can contain constraints in the
form of conditions, which should be fulfilled by indication
of initial or final path node, edge types, middle nodes or the
values of selected attributes etc. For example, a query about
all paths leading from A to C (Fig. 2) will return response
{𝐴 → 𝐵 → 𝐶, 𝐴 → 𝐶}. Another example of a complex search can
be an operation returning all paths of defined length, starting
and ending at a given node.

Algorithmic complexity of path-finding operations in
a graph database can be estimated on the basis of a simple
BFS algorithm (breadth-first search) [14]. Its complexity makes
O(|W| + |K|), where |W| is a number of nodes, and |K| is a num-
ber of edges in a graph. Despite the fact that it is a large num-
ber, in practice, path-finding operation time can be significant-
ly reduced by means of imposing additional constraints in the

form of search conditions. Search time significantly depends on
graph density and the characteristics of its edges. In the case of
non-negative edge weights, application of Dijkstra’s algorithm,
for instance, [15] allows for decreasing algorithm complexity
of the shortest path search in a graph weighed to the value of.
However, this requires designing in a graph database a separate
search algorithm, for example, in a form of a separate module
written in a high level programming language.

Table 1 contains a summary of algorithmic complexities of
particular operations of a graph database.

In conclusion it can be stated that a graph data model is
a natural form of data representation form many algorithmic
tasks, including those which have application in the field of
logistics and transport. First of all, the problem of finding an
optimal route directions should be mentioned here. As there
has been shown above, algorithmic complexity of the trans-
versal along the edge connecting two nodes does not depend
on the total number of edges in the graph. This is a significant
difference in comparison implementation of a graph structure
of relational database, where such dependence is a logarithmic
function of the total number of edges. This allow to formulate
a thesis that the use of graph database can increase efficiency
to process some functions in transport information system in

Table 1
Algorithmic complexity of particular operations of graph database

Operation Time complexity

Adding, deleting and
searching for a single
object (node, edge) by
an identifier

𝑂(1)

Adding, deleting
and searching for an
attribute by a master
object identifier and by
attribute name

𝑂(|𝐴𝑖|)

Adding, deleting and
searching for an object by
name or attribute value
without indexation

𝑂(|𝑊|) for a node
𝑂(|𝐾|) for an edge

Adding, deleting and
searching for an object by
name or attribute value
using indexing structure

𝑂(log(|𝑊|)) for a node
𝑂(log(|𝐾|)) for an edge

Searching for all edges
outgoing from a node

for rare graphs >=𝑂(1)
for dense graphs <=𝑂(|𝐾|)

Searching for a path
between any two nodes

𝑂(|𝑊|+ |𝐾|) BFS algorithm,
𝑂(|𝑊| log |𝐾|) Dijkstra’s algorithm

Searching for all paths
between any two nodes 𝑂(|𝑊2|+ |𝐾|)

461Bull. Pol. Ac.: Tech. 64(3) 2016

Application of graph databases for transport purposes

comparison to systems based on classic relational databases.
Especially when a necessary condition is possibility to build an
appropriate data schema in which exploited the full potential
of databases.

3. Application of graph database for description
of public transport connections

3.1. System model. The proposed model of public transport
connections consists of elements presented in Fig. 3:

●	 stop: public transport stop which has its own name, num-
ber, GPS coordinates,

●	 line: public transport line is a directed list of stops which
belong to it,

●	 vehicle: means of transport running on a given line ac-
cording to its own timetable,

●	 timetable: table with times of departure of a given vehicle
from each stop belonging to a given line.

Let 𝑆 = {𝑆1, 𝑆2, … 𝑆𝑘} constitute a set of all stops in the city
and let the set 𝐿 = {𝐿1, 𝐿2, … 𝐿𝑛} constitute a set of all urban
connections, where each line is presented as a directed list of
stops 𝐿𝑖 = {𝑆𝑎 → 𝑆𝑏 → … → 𝑆𝑧}, where 𝑆𝑖 ∈ 𝑆 ∀ 𝑖. The task of the
system will be to find the optimal travel route from the initial
stop 𝑆𝑝 to the final stop 𝑆𝑘. If the optimization criterion is to
be adopted as minimization of time of travel, the goal function
can be written down as

6

3. Application of graph database
for description of public transport
connections

3.1. System model
The proposed model of public transport

connections consists of elements presented in
fig. 3:

o stop: public transport stop which has its
own name, number, GPS coordinates,

o line: public transport line is a directed
list of stops which belong to it,

o vehicle: means of transport running on
a given line according to its own
timetable,

o timetable: table with times of departure
of a given vehicle from each stop
belonging to a given line.

Fig. 3. Model of public transport connections

Let 𝑆𝑆 = { 𝑆𝑆1, 𝑆𝑆2, … 𝑆𝑆𝑘𝑘 } constitute a set of all
stops in the city and let the set 𝐿𝐿 = { 𝐿𝐿1, 𝐿𝐿2, … 𝐿𝐿𝑛𝑛 }
constitute a set of all urban connections, where
each line is presented as a directed list of stops
𝐿𝐿𝑖𝑖 = { 𝑆𝑆𝑎𝑎 → 𝑆𝑆𝑏𝑏 → ⋯ → 𝑆𝑆𝑧𝑧 } , where 𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆 ∀ 𝑖𝑖 .
The task of the system will be to find the optimal
travel route from the initial stop 𝑆𝑆𝑝𝑝 to the final
stop 𝑆𝑆𝑘𝑘 . If the optimization criterion is to be
adopted as minimization of time of travel, the
goal function can be written down as

T(𝑆𝑆𝑝𝑝, 𝑆𝑆𝑘𝑘) = min (∑ (𝑇𝑇𝑖𝑖 + 𝑃𝑃𝑖𝑖))𝑛𝑛−1
𝑖𝑖=0 (1)

where T is a general travel time which is a sum of
constituent times 𝑇𝑇𝑖𝑖 of travelling parts of the route

of one line 𝐿𝐿𝑖𝑖 ∈ 𝐿𝐿 , waiting times 𝑃𝑃𝑖𝑖 connected
with a change to another line at the same stop. 𝑃𝑃0
corresponds to waiting time to start a journey,
𝑃𝑃𝑛𝑛−1 = 0. Journey time can be expressed by one
line as 𝑇𝑇𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖

𝑚𝑚−1
𝑗𝑗=0 where 𝑡𝑡𝑖𝑖 – is the travel time

between two neighbouring stops belonging to the
same line 𝐿𝐿𝑖𝑖, which depends on three factors: line
number, stop and departure time resulting from
the timetable: 𝑡𝑡𝑖𝑖 = 𝑅𝑅(𝐿𝐿𝑖𝑖, 𝑆𝑆𝑗𝑗, 𝜏𝜏) . The timetable R
can be then represented by a three-dimensional
matrix. In a model not addresses to timetables, we
should assume 𝑃𝑃𝑖𝑖 = 0 ∀ 𝑖𝑖.

3.2. Entity relationship diagram
On the basis of analysis of the domain

presented in fig 3. the following entities have
been distinguished which are components of a
logical model: line, stop, vehicle, timetable.

Line entity characterizes public transport
lines. Its key attribute is the line number.
Relationships with stop entity indicates the initial
and final stop of the line. Stop entity represents an
public transport stop of certain name and location.
The name of stop is a key attribute. The entity
takes part in a compulsory relationship with a
timetable, which is individual for each of the
stops and in an optional relationship with a
vehicle indicating the current position of vehicles.
Vehicle entity represents a specified means of
transport, which operates a selected line
according to a certain timetable and has a current
position. Vehicle registration number is a key
attribute.

The entities line, stop and vehicle are strong
entities existing independently of a timetable.
Timetable entity is a weak entity existing
exclusively in the context of relationships stop –
 timetable (a timetable valid for a given stop),
line - timetable (a line number for which a
timetable is valid) and vehicle – timetable (a
vehicle operating within a line, which should
appear at a stop at a given time).

Significant attributes of each entity and
their associations are presented in fig. 4. in the
form of an entity relationship diagram created in
crow's foot notation [16]. (1)

where 𝑇 is a general travel time which is a sum of constit-
uent times 𝑇𝑖 of travelling parts of the route of one line
𝐿𝑖 ∈ 𝐿, waiting times 𝑃𝑖 connected with a change to anoth-

er line at the same stop. 𝑃𝑜 corresponds to waiting time to
start a journey, 𝑃𝑛₋1 = 0. Journey time can be expressed by
one line as

6

3. Application of graph database
for description of public transport
connections

3.1. System model
The proposed model of public transport

connections consists of elements presented in
fig. 3:

o stop: public transport stop which has its
own name, number, GPS coordinates,

o line: public transport line is a directed
list of stops which belong to it,

o vehicle: means of transport running on
a given line according to its own
timetable,

o timetable: table with times of departure
of a given vehicle from each stop
belonging to a given line.

Fig. 3. Model of public transport connections

Let 𝑆𝑆 = { 𝑆𝑆1, 𝑆𝑆2, … 𝑆𝑆𝑘𝑘 } constitute a set of all
stops in the city and let the set 𝐿𝐿 = { 𝐿𝐿1, 𝐿𝐿2, … 𝐿𝐿𝑛𝑛 }
constitute a set of all urban connections, where
each line is presented as a directed list of stops
𝐿𝐿𝑖𝑖 = { 𝑆𝑆𝑎𝑎 → 𝑆𝑆𝑏𝑏 → ⋯ → 𝑆𝑆𝑧𝑧 } , where 𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆 ∀ 𝑖𝑖 .
The task of the system will be to find the optimal
travel route from the initial stop 𝑆𝑆𝑝𝑝 to the final
stop 𝑆𝑆𝑘𝑘 . If the optimization criterion is to be
adopted as minimization of time of travel, the
goal function can be written down as

T(𝑆𝑆𝑝𝑝, 𝑆𝑆𝑘𝑘) = min (∑ (𝑇𝑇𝑖𝑖 + 𝑃𝑃𝑖𝑖))𝑛𝑛−1
𝑖𝑖=0 (1)

where T is a general travel time which is a sum of
constituent times 𝑇𝑇𝑖𝑖 of travelling parts of the route

of one line 𝐿𝐿𝑖𝑖 ∈ 𝐿𝐿 , waiting times 𝑃𝑃𝑖𝑖 connected
with a change to another line at the same stop. 𝑃𝑃0
corresponds to waiting time to start a journey,
𝑃𝑃𝑛𝑛−1 = 0. Journey time can be expressed by one
line as 𝑇𝑇𝑖𝑖 = ∑ 𝑡𝑡𝑖𝑖

𝑚𝑚−1
𝑗𝑗=0 where 𝑡𝑡𝑖𝑖 – is the travel time

between two neighbouring stops belonging to the
same line 𝐿𝐿𝑖𝑖, which depends on three factors: line
number, stop and departure time resulting from
the timetable: 𝑡𝑡𝑖𝑖 = 𝑅𝑅(𝐿𝐿𝑖𝑖, 𝑆𝑆𝑗𝑗, 𝜏𝜏) . The timetable R
can be then represented by a three-dimensional
matrix. In a model not addresses to timetables, we
should assume 𝑃𝑃𝑖𝑖 = 0 ∀ 𝑖𝑖.

3.2. Entity relationship diagram
On the basis of analysis of the domain

presented in fig 3. the following entities have
been distinguished which are components of a
logical model: line, stop, vehicle, timetable.

Line entity characterizes public transport
lines. Its key attribute is the line number.
Relationships with stop entity indicates the initial
and final stop of the line. Stop entity represents an
public transport stop of certain name and location.
The name of stop is a key attribute. The entity
takes part in a compulsory relationship with a
timetable, which is individual for each of the
stops and in an optional relationship with a
vehicle indicating the current position of vehicles.
Vehicle entity represents a specified means of
transport, which operates a selected line
according to a certain timetable and has a current
position. Vehicle registration number is a key
attribute.

The entities line, stop and vehicle are strong
entities existing independently of a timetable.
Timetable entity is a weak entity existing
exclusively in the context of relationships stop –
 timetable (a timetable valid for a given stop),
line - timetable (a line number for which a
timetable is valid) and vehicle – timetable (a
vehicle operating within a line, which should
appear at a stop at a given time).

Significant attributes of each entity and
their associations are presented in fig. 4. in the
form of an entity relationship diagram created in
crow's foot notation [16].

 where 𝑇𝑖 – is the travel time be-
tween two neighbouring stops belonging to the same line
𝐿𝑖, which depends on three factors: line number, stop and
departure time resulting from the timetable: 𝑡𝑖 = 𝑅(𝐿𝑖,𝑆𝑗,𝜏).
The timetable 𝑅 can be then represented by a three-dimen-
sional matrix. In a model not addresses to timetables, we
should assume 𝑃𝑖 = 0 ∀ 𝑖.

3.2. Entity relationship diagram. On the basis of analysis of
the domain presented in Fig. 3, the following entities have been
distinguished which are components of a logical model: line,
stop, vehicle, timetable.

Line entity characterizes public transport lines. Its key
attribute is the line number. Relationships with stop entity
indicates the initial and final stop of the line. Stop entity
represents an public transport stop of certain name and lo-
cation. The name of stop is a key attribute. The entity takes
part in a compulsory relationship with a timetable, which is
individual for each of the stops and in an optional relationship
with a vehicle indicating the current position of vehicles. Ve-
hicle entity represents a specified means of transport, which
operates a selected line according to a certain timetable and
has a current position. Vehicle registration number is a key
attribute.

The entities line, stop and vehicle are strong entities existing
independently of a timetable. Timetable entity is a weak entity
existing exclusively in the context of relationships stop – time-
table (a timetable valid for a given stop), line – timetable (a line
number for which a timetable is valid) and vehicle – timetable
(a vehicle operating within a line, which should appear at a stop
at a given time).

Fig. 3. Model of public transport connections

462 Bull. Pol. Ac.: Tech. 64(3) 2016

A. Czerepicki

Significant attributes of each entity and their associations
are presented in Fig. 4. in the form of an entity relationship
diagram created in crow’s foot notation [16].

It should be noticed that in the model there is no clear mech-
anism indicating the sequence of stops belonging to the same
line, and the travel time between them. The missing data can
be calculated based on the timetable. During implementation
of information system for the sake of system efficiency, we
can consider introduction of additional weak entity connection
including already calculated data.

3.3. Transformation of entity- relationship model to graph
model. The rules of transformation of an entity- relationship
model to the schema of a relational database are presented in the
reference book [17]. Such a transformation can be conducted in
most cases automatically: entities are transformed to the form
of a table, entity attributes become table columns, while entity
relationship is realized through connections between table keys.
Transformation from an entity-relationship model to a graph
model is not explicit, because the ultimate form of a final model
depends on the input data structure and their connections.

General demands for transformation of an entity-relation-
ship model to a graph model can be formulated in the follow-
ing way:
●	 entity is transformed to the form of a graph node; all nodes

representing a given entity have the same set of attributes,
the graph, therefore, can consist of nodes of several types,

●	 entity attribute is transformed to the form of node attribute
of a graph,

●	 entity relationship is transformed to the form of a graph set
of edges connecting nodes representing the entity.
The transformation method of entity relationships depends

on several factors: multiplicity of a relationship (one-to-one,
one-to-many or many-to-many), optionality of a relationship
(optional or compulsory) and directionality of a relationship.
Examples of transformations of selected entity relationships
are presented in Fig. 5.

Multiplicity of entity relationship affects the number of edg-
es connecting nodes corresponding to entities. One-to-one rela-
tionship in a graph structure reflects itself explicitly (Fig. 5a).
One-to-many and many-to-one relationships are identical in
execution, which consists in connecting a node representing
an entity on the side one, with all (or selected – in the case
of an optional relationship) nodes on the side many (Fig. 5b).
A unique feature of a graph model in comparison to a relational
model is possibility of direct implementation of relationship
many-to-many (Fig. 5c). In a relational database, such relation-
ship would require introduction of an additional table in the
schema of data.

Optionality of entity relationships is translated into node
connection: a compulsory relationship A-to-B means that a node
corresponding to an entity A must have connections to all nodes
representing an entity B. In this context optionality means that
part of enumerated edges may not exist (Fig. 5c).

Fig. 4. Entity relationship diagram of public transport connections

463Bull. Pol. Ac.: Tech. 64(3) 2016

Application of graph databases for transport purposes

A graph data model introduces a notion of directionality
of relationship. In a relational model, an entity relationship is
a bilateral one, while in a graph model there are only direct-
ed relationships. In other words, representation of relationship
A-to-B in a graph model requires execution of relations 𝐴 → 𝐵

and 𝐵 → 𝐴. In practice, relationship implementation in both
directions depends on the logic of business application and it
is not always necessary.

Following the above mentioned rules, the result of an en-
tity relationship model transformation of the public transport
connections system to a graph model can be presented in the
form of fig 6. Integrity of the data model is ensured by the fol-
lowing constraints:
●	 two nodes of the same type cannot have the same value of

a key attribute i.e. stop name, line number and vehicle reg-
istration number are unique within the system,

●	 from one node of stop type there cannot outgo two edges
of identical values of line attribute i.e. for each line from
one stop there is a departure in only one direction because
lines 𝐴 → 𝐵 and 𝐵 → 𝐴 and constitute separate instances
of the entity line,

●	 a graph does not have a loop i.e. the next stop for vehicle
running according to a certain line cannot be the same stop.

3.4. Construction of graph database structure. In the case of
graph databases there is no clear division into data schema and
data themselves, as it takes place in relational databases. In gen-
eral the structure of relational database is rigid and its change is
associated with the necessity of modification of large data sets.
In contrary to relational database, the structure of graph database
depends directly on data processed within the system and can
be flexibly changed. Thus, an empty graph database does not
include either nodes or edges, whereas a table within a relational
database always exists.

Fig. 6. Graph data model of public transport connection system

Fig. 5. Transformation methods of entity relationship to graph model

464 Bull. Pol. Ac.: Tech. 64(3) 2016

A. Czerepicki

Figure 7 illustrates a part of the structure of sample graph
database built according to the graph model presented in Fig. 6.
The model system comprises two lines 𝐿1 and 𝐿2 connecting
seven stops 𝑆1..𝑆7. The lines are related to vehicles 𝑃1..𝑃3 in
certain locations. Connections are executed respectively by re-
lations of the type operates and location. A timetable is rep-
resented by a relation of the type timetable, which connects
subsequent stops 𝑃𝑖 → 𝑃𝑖�1 belonging to one line L. Relation of
this type has attributes {departure, time} and represents respec-
tively departure time from the stop and the time of travelling
the route to the next stop. In order to simplify the figure, in the
described database schema, unidirectional lines have been used.

The algorithm for creating a graph database structure con-
sists of two stages. In the first stage, the nodes of the types stop
(S), vehicle (P) and line (L) to the database are added. Then,
the connections between the nodes of the type timetable 𝑆 → 𝑆,
location 𝑃 → 𝑆, begin and end 𝐿 → 𝑆 are defined. For communi-
cation with a graph database, a Cypher query language has been
used. It is a universal declarative language of communication
with a database designed and developed as an integral part of
the graph database Neo4j [18]. Figure 8 presents the syntax
of commands defining a node of the type stop (a) and an edge
of the type timetable (b). In order to simplify the calculation,
departure time can be expressed as an integer.

It should be noticed that the dynamic element of the structure
is the location of the vehicle, changed in the time. The remaining
elements of structure are static. This allows to minimizing the
cost of updating the data in the system and focusing on optimiza-
tion of connection search task, as well as accounting for delay or

failure of a vehicle. By this quality evaluation of journey system
can be increased and adapted to actual conditions.

3.5. Execution of search operations in graph database.
Search operations in a graph database can be executed by means
of specialized graph query language, such as the previously
introduced Cypher language, or programming in a high level
programming language e.g. Java. Both approaches have their
advantages and disadvantages. There is easier to formulate sim-
ple queries in a graph database. In this case database server
is responsible for interpretations and execution of commands.
A database user does not have to execute complex algorithms
of search in a graph. The ability is however, required to formu-
late queries correctly and to interpret the results presented in
the form of plain text. When the high level language is used,

Fig. 7. Part of sample graph database structure

Fig. 8. Defining stops and connections in Cypher language

465Bull. Pol. Ac.: Tech. 64(3) 2016

Application of graph databases for transport purposes

the stage of formulating a query can be omitted by acting di-
rectly on database objects – nodes, edges and paths. One can
implement one’s own algorithm of graph traversal if a built-in
implementation is ineffective for a given case.

In Fig. 9 a simplified syntax diagram of a query in Cypher
language executing the function of graph transversal are pre-
sented. This is equivalent to select operation in the SQL lan-
guage. The keyword start specifies the conditions for starting
a search operation, for example, it indicates an initial node in
a graph. Section match includes a pattern of path transversal
in the form of nodes and edges list. Instruction where serves
the purpose of filtering results returned by the query and it can
contain logical conditions operating on attributes of nodes or
edges. The query results are returned in section return.

Fig. 9. Syntax diagram of graph transversal instruction in Cypher
language

Fig. 11. Query result returning the timetable of a given line

Fig. 12. All possible connections between stops 𝑆1. . 𝑆6

Fig. 10. Query that returns timetable of a given line
Fig. 13. Query that returns all possible routes with limiting of departure

time

The timetable of a given line can be downloaded from
a graph database by means of the instruction (Fig. 10). Nodes
represented by variables a and b are respectively a line number
and its final stop. In the example, addressing the nodes by their
names has been used by means of an index of the name nodes.
Regular expression in the section match limits the set of paths
returned to the subset fulfilling the condition of belonging to
the line 𝐿1 and of the length not smaller than 2. The second
condition serves the purpose of elimination of auxiliary edge
connecting node 𝐿1 with a final stop 𝑆6.

Variable p comprises the query result in the form of paths in
a graph. In order to display the information obtained in a legible
form for the user, instruction extract has been used which for
each of the stops on the path displays its name, departure time
and travel time to the next stop. The query result in the form
of text has been presented in Fig. 11.

In order to obtain all possible connections between two
selected stops, the query to the database should be modified.
The potential changes can be accounted for by including line
in the form of condition [𝑟:𝐿1|𝐿2*] in section match. For the
connection 𝑆1 → 𝑆6 the query will return 4 possible journey
variants (Fig. 12).

There is easy to notice that among four possible connec-
tions, two are not correct from the point of view of the current
timetable because time for the line change cannot be negative
i.e. departure time cannot be earlier than arrival time. Cypher
language currently does not have mechanisms making possible
to operate on edge attributes [19]. The problem can be solved
by conducting additional verification of the result obtained
𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒(𝑃𝑖�1) ≥ 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒(𝑃𝑖) + 𝑡𝑗𝑜𝑢𝑟𝑛𝑒𝑦(𝑃𝑖 → 𝑃𝑖�1) for all pairs of
connected stops. In the case of the search algorithm implemen-
tation by the programming interface API , query execution time
does not change.

Limiting of departure time from an initial stop can be intro-
duced by the where condition (Fig. 13).

Query result presented in Fig. 12 will be narrowed down
to the second and fourth position, which will fulfil basic con-
ditions. The only possible journey in this case starts 𝐿2 with
a change to 𝐿1 at stop 𝑆2. The variant with a change at stop

466 Bull. Pol. Ac.: Tech. 64(3) 2016

A. Czerepicki

𝑆5 does not fulfill the condition of non-negative time for
a change. In the case of returning several correct route vari-
ants, the optimal solution of the task will be a variant where
the value 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒(𝑃𝑖) + 𝑡𝑗𝑜𝑢𝑟𝑛𝑒𝑦(𝑃𝑖 → 𝑃𝑖�1) for the last edge will
be minimal i.e. the shortest travel time. If for the assessment
criterion of route quality minimal number of changes has been
selected, the query should be accompanied by a clause return-
ing the number of changes count(distinct lines) as changes and
then the variant should be selected where the variable changes
will be minimal.

4. Conclusions

The paper presents the idea of graph database and its imple-
mentation in the task solution of optimal route search connect-
ing two stops in public transport environment. Graph databases
make a rapidly growing segment of modern non-relational data-
bases and refer itself to the category of NoSQL database. They
are characterized by high efficiency, scalability and ability to
handle a large number of users. A graph data model is a natu-
ral form of abstraction of transport tasks addressed to optimal
travel route search. Therefore, the use of a graph database in the
above mentioned task-oriented information system improved
the quality of system by shortening the response time of the
system and simplifying the implementation of given system
functions.

On the example of public transport information system, the
transition method from a classic relational model to a graph
model has been demonstrated. Basic rules have been designed
for entities and their relationships transform process to ob-
jects and relations of graph database. A general graph database
model has been developed and on its basis a detailed schema
of a graph database of information system has been proposed.
Using Cypher query language of a graph database, basic com-
mands have been given to search the vehicle routes and the
connections between indicated stops.

The idea of the system presented in the paper has innova-
tive features as:
●	modern technology is applied in the form of graph database

solving the problems traditionally belonging the relational
databases,

●	 flexible structure is used which can be easily adapted to
the actual transport requirements for accounting location of
transport means, delays, failures, etc.,

●	 efficiency of basic task solutions is done due to adapting
domain model to a database model.
The system model proposed in the paper has been tested

using the data corresponding actual situation data. All the dis-
cussed queries have been checked in terms of correctness of
returned data. In some cases, it was shown that the possibilities
of the query language used in the work of database system
are not sufficient for execution of all required functions. The
solution proposed by the author is using libraries of direct
access to database objects using the high level programming
language e.g. Java.

The subject of a separate study is an experimental assess-
ment of efficiency of graph transversal algorithms built in the
graph database management system and a possible implemen-
tation of one’s own algorithm. Calculation of complexity and
an average time of algorithm implementation are also subject
to practical verification together with a comparison of results
obtained for relational and graph databases.

References
	 [1]	 B.	Bębel,	T.	Morzy,	Z.	Królikowski	and	R.	Wrembel,	“Formal	

model of time point-based sequential data for OLAP-like anal-
ysis”, Bull. Pol. Ac.: Tech 62, 331–340 (2014).

	 [2]	 A.	Czerepicki,	“Perspectives	of	using	NoSQL	databases	in	in-
telligent transportation systems”, Transport 92, 29–38 (2013).

 [3] C. J. Date and H. Darween, Foundation for Object/Relational
Databases: The Third Manifesto, Addison Wesley, 2001.

	 [4]	 A.	Malikov,	“Directed	graphs	in	relational	database”,	Proceed-
ings of Tomsk State University of Control Systems and Radio-
electronics 2 (18), 100–104 (2008).

 [5] D. Knuth, The Art of Computer Programming, Addison- Wesley,
2011.

	 [6]	 R.	Güting,	“GraphDB:	modeling	and	querying	graphs	in	databas-
es”, Proceedings of the 20th International Conference on Very
Large Databases,	297‒308	(1994).

	 [7]	 E.	Brewer,	“A	certain	freedom:	thoughts	on	the	CAP	theorem”,	
Proceeding of the XXIX ACM SIGACT-SIGOPS symposium on
Principles of distributed computing (2010).

	 [8]	 “Neo4j:	What	 is	 a	Graph	database?”,	 (http://www.neo4j.org/	
learn/graphdatabase	,	accessed	2013.11.15).

 [9] I. Robinson, J. Webber and E. Eifrem, Graph Databases, O’Reil-
ly Media, 2013.

	[10]	 S.	Salihoglu	and	J.	Widom,	“GPS:	a	Graph	processing	system”,	
Proceedings of the 25th International Conference on Scientific
and Statistical Database Management (2013).

	[11]	 N.	Martınez-Bazan,	S.	Gomez-Villamor	and	F.	Escale-Clav-
eras,	“DEX:	A	high-performance	graph	database	management	
system”, Data Engineering Workshops (ICDEW), IEEE 27th
International Conference (2011).

 [12] P. Beynon-Davies, Database Systems, third edition, Palgrave
Macmillan, NY, 2003.

 [13] R. Elmasri and S. Navathe, Fundamentals of Database Systems.
6th Edition, Addison-Wesley, 2011.

	[14]	 M.	Kurant,	A.	Markopoulou	and	P.	Thiran,	“On	the	bias	of	BFS	
(Breadth First Search)”, International Teletraffic Congress (ITC
22), Cornell University Library (2010)	(http://arxiv.org,	article	
id: 1004.1729, accessed 2013.11.15).

	[15]	 E.	Dijkstra,	“A	note	on	two	problems	in	connection	with	graphs”,	
Numerische Mathematik	1,	269‒271	(1959).

 [16] T. Halpin and T. Morgan, Information Modelling and Relational
Databases, Elsevier Science, 2008.

 [17] T. Connolly, C. Begg and R. Holowczak, Business Database
Systems, Addison-Wesley, 2008.

	[18]	 “Cypher	Query	Language”	(http://docs.neo4j.org/	chunked/mile-
stone/	cypher-introduction.html,	accessed	2013.11.15).

	[19]	 “Limiting	a	Neo4j	cypher	query	results	by	sum	of	relationship	
property”	(http://stackoverflow.com/	questions/12449295/limit-
ing- a-neo4j-cypher-query-results-by-sum-of-relationship-prop-
erty, acce

