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Abstract. The paper presents an automatic approach to recognition of the drill condition in a standard laminated chipboard drilling process. 
The state of the drill is classified into two classes: “useful” (sharp enough) and “useless” (worn out). The case “useless” indicates symptoms of 
excessive drill wear, unsatisfactory from the point of view of furniture processing quality. On the other hand the “useful” state identifies tools 
which are still able to drill holes acceptable due to the required processing quality. The main problem in this task is to choose an appropriate 
set of diagnostic features (variables), based on which the recognition of drill state (“useful” versus “useless”) can be made. The features have 
been generated based on 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. Different statistical parameters 
describing these signals and also their Fourier and wavelet representations have been used for defining the features. Sequential feature selec-
tion is applied to detect the most class discriminative set of features. The final step of recognition is done by using three types of classifiers, 
including support vector machine, ensemble of decision trees and random forest. Six standard drills of 12 mm diameter with tungsten carbide 
tips were used in experiments. The results have confirmed good quality of the proposed diagnostic system.
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materials is a reason behind much more intensive edge wear-
ing [5, 7].

The key issue in diagnostics of cutting tool state is the selec-
tion of sensors. Usually force sensors, electrical power, acoustic 
emission, vibration and acoustic pressure are applied in TCM 
[4, 8]. The best results in metal working are achieved using 
force sensors.

The disadvantage of this kind of measurement in normal 
production is that the force or torque transducers are relatively 
expensive and there are difficulties in mounting these sensors 
to the cutting tool or work piece. Therefore vibration sensors 
– easy to install, but at the same time less accurate because of 
background noise – are most commonly used in wood industry 
[5]. Vibration measurement is easy, since an accelerometer can 
be mounted close to the spindle bearing and no modifications 
of machine tools are needed [9].

Quite similar to vibration is the sound signal, which can 
also be used in assessment of drill state. Mechanical vibration 
of the cutting tool, machine holder and drill are partly trans-
ferred to airborne vibration. It means that part of the informa-
tion contained in vibration can also be obtained from sound 
measurement. The acquisition of the sound can be done easily 
using a microphone. However, the sound pressure sensors (mi-
crophones), are even more susceptible to background [7, 8]. The 
sound measurement in an extended range of frequencies from 
20 kHz to 80 kHz is usually applied [4]. This range is called 
the acoustic emission. The effectiveness of acoustic emission 
sensors in wood industry is still controversial [5, 7].

1. Introduction

One method to achieve higher quality and productivity of ma-
chine tools is applying wear monitoring diagnostic systems, 
especially TCM (tool condition monitoring) and PCM (process 
condition monitoring). The aims of TCM include the identifi-
cation of beginning and end of the cutting process, detection of 
catastrophic tool failure, quality control of cutting process, etc. 
– all realized at low cost [1, 2].

The dynamic development and the increasing use of flexible 
automation in wood production process lead to higher interest 
in automatic monitoring of cutting tools [3‒5]. However, the 
complexity of production process and influence of different 
interferences make existing diagnostic systems not fully sat-
isfactory. There is still need to conduct research directed for 
developing better diagnostic methods of tools used in wood 
industry, especially the drills.

Drill wear results in decreasing the cutting edge proper-
ties, being one of the most important issues in machining sci-
ence [3, 6]. The blunting is caused by mechanical, thermal 
and chemical influence of the work piece, especially when 
wood based materials are machined. Wide abrasion due to the 
existence of hard mineral contaminations in material, glue, 
and friction of wood is observed. Increasing content of glue 
and mineral contaminations in external layers of wood based 
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The signals of the sensors mentioned are correlated with 
the state of the tool, however, they are susceptible to random 
interferences and background noise. Therefore, many types of 
sensors are used in a parallel. In this way the information of the 
tool state is enhanced.

Based on sensor signals the diagnostic features are created 
and used as the input attributes to the final classification system. 
In many publications diagnostic features are defined directly on 
the basis of sensor signals in time domain. Statistical parameters 
such as mean value, root mean squared value, power, energy, 
kurtosis, skewness, etc., are exploited. In some applications 
different threshold levels for signal values are defined. Then 
the number of crossing these levels by the signal, as well as 
the time spent by signal in the areas between different levels, 
is used as the diagnostic features [4]. The features are also 
generated on the basis of Fourier transformation of the sensor 
signals. They are defined in the form of harmonic values, pow-
er spectral density, cepstrum or other statistical descriptions in 
several dominant bands [10]. High correlation of some spectral 
parameters with the state of the cutting edge of the drill was 
demonstrated [1, 2].

Currently wavelet and wavelet packet transformations are 
also used in defining the diagnostic features of the tools [4, 11]. 
Wavelet transformation generates many signal bands, which are 
the basis for creating the statistical diagnostic features.

Application of different methods in feature generation en-
riches the information of the production process and also of the 
tool state. Using them as the input attributes to the final recogni-
tion (classification) units allows for building more sophisticated 
diagnostic systems. Different classifiers have been used in this 
application. The most popular is application of neural networks 
and fuzzy systems [8, 12‒15] or autoregressive model [16].

In this research we apply extended types of diagnostic fea-
tures defined based on five sensor signals registered in a lami-
nated chipboard drilling process. The following physical quan-
tities have been measured and used in generation of the diag-
nostic features:

● feed force (denoted as F),
● cutting torque (denoted as M),
● noise (denoted as C),
● vibration (denoted as V),
● acoustic emission (denoted as AE),

Many features can be generated automatically on the basis of 
these signals. However, some of them may represent no diag-
nostic information. Hence the selection of the most important 
features is an important step in building the efficient diagnostic 
system.

Good feature should differentiate classes of drill states. In 
this research we consider two classes: “useful” (class 1) and 
“useless” (class 2). The first class refers to a tool which is still 
sharp enough to drill holes which are acceptable from the point 
of view of processing quality. The second class denotes unac-
cepted drill state resulting in quality unsatisfactory from the 
point of view of the final product.

The paper will present the process of building an automatic 
diagnostic system, able to assessing the state of the drill with 
the satisfactory accuracy. It starts from acquisition of sensor 

signals, then describes the generation of diagnostic features, 
selection of best set of these features and finally recognition of 
the state of drill (“useful” versus “useless”) based on the pat-
tern represented by the selected set of features. Three different 
classifiers are checked and compared in the role of recognizing 
unit: the ensemble of ordinary decision trees, random forest of 
multivariate decision trees and support vector machine.

2. Measurement methodology

All data used in experiments have been acquired using stan-
dard Buselatto JET 100 CNC vertical machining centre. The 
experiments have been performed on laminated chipboard us-
ing standard drills of 12 mm diameter with tungsten carbide 
tips (“FABA” – Poland). The chipboard and drill chosen are 
depicted in Fig. 1.

Fig. 1. Standard laminated chipboard and drill used in experiments

To measure all required physical quantities special sensors have 
been applied. The experimental set-up was composed of the 
following elements:

● AE-acoustic emission measuring system (Kistler 8152B 
contact sensor, Kistler 5125B amplifier),

● V-mechanical vibration measuring system (Kistler 8141A 
accelerometer, Kistler 5127B amplifier),

● C-noise (sound pressure) measuring system (B&K 4189 
microphone and preamplifier, B&K NEXUS 2690 am-
plifier),

● F and M – dynamometer with Kistler 9345A sensor and 
ICAM5073A amplifier.

The acquisition of sensor signals was done using two data ac-
quisition cards (NI PCI-6111 and NI PCI-6034E) through con-
nection blocks (NI BNC-2110), as shown in Fig. 2.

The use of two acquisition cards was due to different sam-
pling frequencies: 2 MHz for acoustic emission signal and 50 
kHz for vibration and noise signal. LabVIEW National Instru-
ments application has been prepared to register all required 
signals.
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The main goal of research is to create an automatic sys-
tem, which is able to recognize two states of drill: “useful” 
(class 1) and “useless” (class 2). The quality of drilling results 
was controlled manually by a human expert taking into account 
the smoothness of the circumference and tolerance parameters 
specified in furniture manufacturing. Examples of acceptable 
and unacceptable holes drilled in a laminated chipboard are 
shown in Fig. 3.

One drill (No 6) treated as the reference was left without 
blunting and five other (No 1‒5) were subject to gradual blunt-
ing by means of more and more holes drilling. Drills have been 
blunted successively in a multiphase way. After each phase of 
blunting the drilling process was repeated 5 times and signals of 
five sensors were registered as the samples representing class 1 
(“useful”) or class 2 (“useless”) according to the opinion of the 
human expert, who was responsible for dichotomous evalua-
tion of processing quality (acceptable versus unacceptable). The 
reference tool (drill No 6) was used only for 27 holes drilling 
in order to avoid any significant symptoms of blunting. Hence, 
it was the only drill which was “useful” throughout the entire 
experimental study. The size of the registered time samples 
arranged in a vector forms was the same and equal to 1000.

The performed trials created the database used in further 
numerical experiments. Due to different quality of drills the 
structure of the database was formed in the following way.

● Drills Nos 1, 2 and 5  
5 trials at 3 stages of “useful” (sharp enough) drill state 
(3 × 5 = 15 signal registrations belonging to class 1) and 
5 trials at 6 stages of “useless” (excessively worn) drill 
state (5 × 6 = 30 signal registrations belonging to class 2). 
Total number of measurements for 3 above-mentioned 
drills: 3 × 45 = 135.

● Drill No 3  
5 trials at 4 stages of “useful” drill state (5 × 4 = 20 signal 
registrations belonging to class 1) and 5 trials at 4 stag-
es of “useless” drill state (5 × 4 = 20 signal registrations 
belonging to class 2). Total number of measurements for 
this drill: 40.

● Drill No 4  
5 trials at 2 stages of “useful” drill state (5 × 2 = 10 signal 
registrations belonging to class 1) and 5 trials at 7 stag-

Fig. 3. Examples of acceptable (upper row) and unacceptable (lower 
row) holes drilled in a laminated chipboard

Fig. 2. The scheme of experimental set-up

3. Database for experiments

The database for numerical experiments was prepared using 6 
drills which were used repeatedly to generate the proper learn-
ing data used in further processing. In the first phase, all new 
drills were used in laminated chipboard drilling process and 
the proper sensor signals (feed force, cutting torque, noise, vi-
bration and acoustic emission) have been registered. Five rep-
etitions of this process have been registered. All these samples 
represented observations belonging to class one.
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es of “useless” drill state (5 × 7 = 35 signal registrations 
belonging to class 2). Total number of measurements for 
this drill: 45.

● Drill No 6 (reference drill)  
27 signal registrations for “useful” drill state.

In this way 102 (3 × 15 + 20 + 10 + 27) measurements of five 
sensor signals referred to class 1 have been registered. On the 
other hand 145 (3 × 30 + 20 + 35) trials referred to class 2 were 
observed and analyzed. It is worth noting, that drill No 3 was 
destroyed earlier than other drills used in the experiments – it 
means less trials than for others.

Typical signals representing 5 physical quantities in abso-
lutely sharp (factory fresh) and extremely worn state of drill are 
presented in Fig. 4. The first four signals have been registered 
at 50 kHz sampling in the measuring window of 1.1 s. The last 
signal representing acoustic emission was acquired at 2 MHz 
sampling in a measuring window of 0.3 s. All signals are ex-
pressed in millivolts.

4. Feature generation

The signals registered in all trials create the basis for generating 
the diagnostic features, which are used in an automatic recog-
nition of drill state. Based on five physical quantities a lot of 
features can be generated. The first set of features was created 
directly on the basis of the time series of signals. The following 
features have been generated in this way (each representing five 
sensor signals):

1. Arithmetic mean of signals (5 features) 
2. Standard deviation of signals (5 features)
3. Variance of signals (5 features)
4. Histogram (50 features)
5. Skewness of signals (5 features)
6. Kurtosis of signals (5 features)
7. RMS of signals (5 features)
8. Ratio of peak magnitude to RMS  of signals (5 features).

The histogram was created by splitting the data into 10 bins. 
The histogram features have been defined as the number of 
samples forming each bin. At 10 bins and 5 sensor signals 50 
features have been generated in this way.

85 diagnostic features based on the time domain description 
have been created. The next set of features was generated on 
the basis of Fourier description of all five signals. Based on fast 
Fourier transformation (FFT) we have generated diagnostic fea-
tures representing the number of frequencies in FFT spectrum, 
which exceeded 10 defined levels of threshold. They have been 
defined in the following way

FFTn = count( f > mean(abs(FFT ) + (1)
+ (n + 2) std (abs(FFT ))

for n = 1, 2, …, 10. The threshold values changed from 3 stan-
dard deviations (std) of spectrum, step one up to 13 standard 
deviations (10 different features for 5 sensor signals resulting 
in 50 additional features).

The next descriptors of the signals have been generated us-
ing the wavelet packet decomposition [17]. The advantage of 
wavelet transformation is analyzing the time series on many 
levels of time scale, which represent different ranges of time 
and frequency. Thanks to this it is possible to capture some 
hidden features contained in the signals in wider range of fre-
quency.

Wavelet packets decompose the analyzed signal into the 
vectors of detail coefficients and approximation coefficients of 
coarser scale. In the subsequent steps the process of splitting 
is repeated on the approximation and detail vectors. Different 
families of discrete wavelet functions have been tried. They 

Fig. 4. The signals of a) noise, b) feed force, c) cutting torque, d) vibration, 
and e) acoustic emission representing the sharp state of drill (left column) 

and worn out state (right column); horizontal axis represents time

a)

b)

c)

d)

e)
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include Daubechies, symlets, coiflets, biorthogonal and Meyer 
functions of different orders [17, 18].

After decomposing signals into wavelet representation, the 
next features have been defined on the basis of energy of sig-
nals in all terminal nodes of the best level of decomposition. 
Second level wavelet packet decomposition was identified as 
the best for all applied wavelet functions. The experiments have 
been performed using Matlab [19]. In such case each j-th node 
( j = 1, 2, 3, 4) on this level was characterized by the energy, 
according to the formula

4 

a) 

b) 

d) 

e) 
Fig. 4. The signals of a) noise, b) feed force, c) cutting torque, d) 
vibration, and e) acoustic emission representing the sharp state of drill 
(left column) and worn out state (right column). Horizontal axis 
represents time 

4. Feature generation 

The signals registered in all trials create the basis for 
generating the diagnostic features, which are used in an 
automatic recognition of drill state. Based on five physical 
quantities a lot of features can be generated. The first set 
of features was created directly on the basis of the time 
series of signals. The following features have been 
generated in this way (each representing five sensor 
signals). 

1. Arithmetic mean of signals (5 features)  
2. Standard deviation of signals (5 features) 
3. Variance of signals (5 features) 
4. Histogram (50 features) 

5. Skewness of signals (5 features) 
6. Kurtosis of signals (5 features) 
7. RMS of signals (5 features) 
8. Ratio of peak magnitude to RMS  of signals 

(5 features) 
The histogram was created by splitting the data into 10 
bins. The histogram features have been defined as the 
number of samples forming each bin. At 10 bins and 5 
sensor signals 50 features have been generated in this 
way. 

85 diagnostic features based on the time domain 
description have been created. The next set of features 
was generated on the basis of Fourier description of all 
five signals. Based on fast Fourier transformation (FFT) 
we have generated diagnostic features representing the 
number of frequencies in FFT spectrum, which exceeded 
10 defined levels of threshold. They have been defined in 
the following way 

( )))(()2())(( FFTabsstdnFFTabsmeanfcountFFTn ++>=
       (1) 
for n=1, 2,…,10. The threshold values changed from 3 
standard deviations (std) of spectrum, step one up to 13 
standard deviations (10 different features for 5 sensor 
signals resulting in 50 additional features).  

The next descriptors of the signals have been 
generated using the wavelet packet decomposition [17]. 
The advantage of wavelet transformation is analyzing the 
time series on many levels of time scale, which represent 
different ranges of time and frequency. Thanks of this it is 
possible to capture some hidden features contained in the 
signals in wider range of frequency. 

Wavelet packets decompose the analyzed signal into 
the vectors of detail coefficients and approximation 
coefficients of coarser scale. In the subsequent steps the 
process of splitting is repeated on the approximation and 
detail vectors. Different families of discrete wavelet 
functions have been tried. They include Daubechies, 
symlets, coiflets, biorthogonal and Meyer functions of 
different orders [17],[18]. 

After decomposing signals into wavelet representation 
the next features have been defined on the basis of energy 
of signals in all terminal nodes of the best level of 
decomposition. Second level wavelet packet 
decomposition was found as the best for all applied 
wavelet functions. The experiments have been performed 
using Matlab [19]. In such case each j-th node (j=1, 2, 3, 
4) on this level was characterized by the energy, 
according to the formula 

∑
=
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where Sjk is the coefficient of discrete wavelet packet 
transformation on the chosen (second) level, representing 
jth node. Nj is the length of coefficient vector in jth node. 
It means that for one signal 4 values of energy are 

 (2)

where Sjk is the coefficient of discrete wavelet packet trans-
formation on the chosen (second) level, representing jth node. 
Nj is the length of coefficient vector in jth node. It means that 
for one signal 4 values of energy are defined. In the case of 5 
signals (5 sensors) 20 features have been generated in this way.

We have verified 18 various wavelet functions combined 
with time and frequency descriptors of the signals. Each set 
consisted of the same subset of variables generated on the ba-
sis of time and frequency representations and only the wavelet 
family was changed. In this way 18 different sets of potential 
diagnostic features have been generated. From these sets we 
have selected 7 sets which were most efficient in class recog-
nition, depicted in Table 1.

Summarizing, 85 features were derived from time domain, 
50 features generated from frequency domain and 20 features 
from wavelet representation. Overall, in this research we have 
investigated 155 descriptors, representing potential features 
used in class recognition.

The next step is to choose the optimal (reduced) set of fea-
tures, selected from the mentioned above, which can separate 
two classes of drill state: sharp and worn out with the high-
est accuracy. From the set of 155 potential features we had 
to choose the best subsets characterizing classes in the most 
distinctive way.

5. Feature selection

To choose the best class discriminative set of features we have 
applied sequential feature selection. This approach detects 
a subset of features that predicts the classes by selecting se-
quentially features until there is no further improvement in class 
prediction accuracy [19]. Any solution of the classifier may be 
applied in this prediction process. Starting from an empty fea-
ture set, the feature selection creates candidate feature subsets 
by sequentially adding and removing each of the features not 
yet chosen. Each candidate feature subset is checked in 10-fold 
cross-validation by repeating the prediction process with differ-
ent training and testing subsets of observations.

In general two types of operations are made within this pro-
cess:
● forward selection, starting with no variables in the model, 

testing the significance of addition of each variable, adding 
the variable which improves model the most, and repeating 

this process until none variable improves the built model 
according to the assumed criterion.

● backward elimination, starting with some candidate set of 
variables, testing the deletion of each variable by using 
a chosen criterion of model quality, deleting the variable 
which improves the model to the highest extend by being 
deleted, and repeating this process until no further improve-
ment is possible.

Both operations interlace each other. In each stage of the process, 
after a new variable is added, a test is made to check if some 
variables from the actual set can be deleted without increasing 
the error of regression. The procedure terminates when the qual-
ity measure of the classification model is maximized, or when 
the actual improvement is below some assumed tolerance value.

The entering and removing the particular variable from the 
actual feature set is controlled by two parameters: penter and 
premove [19]. The penter specifies the maximum p-value for 
a variable to be recommended for adding to the model. The 
premove specifies the minimum p-value for a variable to be 

Table 1 
The feature selection results based on time, frequency and wavelet 

representations of signals

No Wavelet Features

1 db1 FFT7_M  FFT2_F  FFT3_V  FFT5_V  FFT3_C 
FFT6_C  Mean_F  VarAE  VarF  HistAE3  HistAE7 
HistAE10  HistM1  HistM6  HistF3  HistF7  HistF9 
HistV7  KurtosisM  RMS_AE  EnergyAE1  EnergyV1

2 db5 FFT4_AE  FFT7_M  FFT2_F  FFT3_F  FFT4_F  
FFT5_F  FFT3_  VcFFT4_V  FFT1_C  FFT3_C 
FFT6_C  FFT10_C  Mean_F  Mean_V  VarAE  VarF 
VarC  HistAE4  HistAE7  HistAE10  HistF3  HistF7 
HistF8  HistF9  HistV7 KurtosisM  KurtosisC 
RMS_AE  RMS_C  EnergyAE1  EnergyV1  EnergyC4

3 db20 FFT4_AE  FFT4_M  FFT5_M  FFT7_M  FFT2_F  
FFT4_F  FFT5_F  FFT3_V  FFT4_V  FFT1_C  FFT3_C 
FFT6_C  Mean_F  VarAE  VarF  HistAE6  HistAE7 
HistAE10  HistF3  HistF7  HistF8  HistF9  HistV7 
HistV8  KurtosisM  KurtosisC  RMS_AE  EnergyAE1 
EnergyV1 

4 coif4 FFT4_AE  FFT7_M  FFT2_F  FFT3_V  FFT4_V 
FFT10_C  Mean_F  VarF  VarC  HistAE7  HistF3 
HistF7  HistF9  HistV7  KurtosisM  RMS_AE 
RMS_C  EnergyV1

5 sym2 FFT4_AE  FFT7_M  FFT2_F  FFT3_V  FFT4_V 
FFT10_C  Mean_F  VarF  VarC  HistAE7  HistF3 
HistF7  HistF9  HistV7   KurtosisM  RMS_AE 
RMS_C  EnergyV1

6 discrete 
Meyer

FFT4_AE  FFT7_M  FFT2_F  FFT3_V  FFT5_V 
FFT10_C  Mean_F  VarF  VarC  HistAE7  HistF2 
HistF3  HistF9  HistV7  KurtosisM  RMS_AE 
RMS_C  EnergyV1

7 rbio1.3 FFT2_F  FFT3_V  FFT5_V  FFT3_C  FFT6_C 
Mean_M  Mean_F  VarAE  VarF  HistAE6  HistAE10 
HistM1  HistM10  HistF3  HistF7  HistF9  HistV7 
RMS_AE  peak2RMS_M  EnergyAE1  EnergyV1 
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removed from the set. The result of the method is a logical 
vector indicating the finally chosen features.

Sequential feature selection was applied for different sets 
of features created from statistical time domain descriptors 
and Fourier descriptors, both combined with selected family 
of wavelets. Different wavelet functions have been checked. 
The best results of feature selection for different combinations 
of wavelet families are presented in Table 1. The first symbols 
in these notations refer either to the time domain (Mean, Var, 
RMS, Kurtosis, Skewness, Hist, peak2RMS), Fourier descrip-
tors (FFT followed by the number of threshold level n) or wave-
let descriptors (prefix Energy followed by suffix denoting the 
node number on second level of wavelet packet decomposition) 
of signals. The next symbols refer to the sensor signal (AE, F, 
V, M, and C). For example FFT4_AE means Fourier descriptor 
of AE signal associated with 4th level of threshold (n = 4). The 
selected feature EnergyV1 refers to wavelet descriptor of signal 
V associated with 1st node on the second level of wavelet packet 
decomposition at application of wavelet function shown in the 
second column of Table 1.

As we can see all sensor signals and all methods of de-
scriptor creation take part in the selected sets. Relatively high 
participation is related to FFT representation and histogram of 
the signals. The particular contents of selected features depends 
on the actually used wavelet function applied in wavelet decom-
position (the second column of Table 1).

6. Classifiers

To obtain the best possible results of class recognition we have 
tried different classification systems. Three different solutions 
have been compared: support vector machine (SVM), ensemble 
of classical decision tree (DT) and random forest of multivariate 
decision trees (RF). Nowadays all of them belong to the best 
classification systems [22].

6.1 Support vector machine. The assignment of every drill trial 
to one of two sharp/worn out classes has been done by apply-
ing the support vector machine of the Gaussian kernel [20‒22]. 
SVM is a simple circuit structure of one hidden kernel layer and 
one output unit performing the weighted summation followed by 
sign function (positive summed signal means class 1 and nega-
tive – class 2). The hyperparameters (the regularization constant 
C and Gaussian kernel width) have been adjusted by repeating 
the learning experiments for the set of their predefined values 
and choosing the best one for the validation of data set.

The learning process of SVM network is relatively easy 
and effective since the whole learning task is simplified to the 
solution of the quadratic optimization problem with linear con-
straints. In our experiments we have used the modified Platt algo-
rithm, implementing the modified sequential optimization [21]. 

6.2 Ensemble of decision tree. A decision tree is a classification 
tool that uses a tree-like graph for making decisions [23]. The 
leaves represent class labels and branches represent conjunctions 
of features that lead to these class labels. A tree is learned by 

splitting the source set into two subsets based on an attribute 
value test according to the adjusted threshold value. The process 
is repeated on each derived subset in a recursive manner. The 
process is completed when the subset at a node has all the same 
value of the target. The ensemble of 200 trees have been creat-
ed, all trained on random set of observations. The actual input 
vector was adjusted to the majority class pointed by these trees.

6.3 Random forest. The random forest is an ensemble of many 
multivariate decision trees [23]. In distinction to DT the meth-
od combines ‘‘bagging’’ idea and the random selection of few 
variables (features) in each node to construct a collection of 
decision trees with controlled variation. In this way each tree 
in the forest is constructed in a way providing the highest de-
gree of independence. The decision trees are trained on part of 
the available data and output the class that is the mode of the 
classes indicated by individual decision trees.

7. Numerical results of experiments

Selected diagnostic features representing sets depicted in Ta-
ble 1 were applied to three mentioned above classifiers, respon-
sible for recognition of classes (class 1 – sharp state of drill and 
class 2 – worn out drill). In numerical experiments the leave-
one-out strategy was applied. In this strategy one observation 
is used for testing and the rest in the learning process of the 
classifier. After some introductory experiments with SVM the 
following values of the hyper-parameters C = 100 and σ = 10 of 
the Gaussian kernel have been adjusted. In DT and RF systems 
200 trees have been used.

The data set taking part in experiments contained 102 obser-
vations regarding the sharp state of drill and 145 observations 
representing different degrees of blunting (worn out state). All 
of them have been mixed and taken part in learning and testing 
the classification systems by applying leave-one-out mode of 
operation.

The statistical results of numerical experiments concerning 
class recognition at application of different types of wavelet 
families (as presented in Table 1) are presented in Table 2. The 

Table 2 
Comparative results of class recognition in application of  different 

classifiers for the best selected descriptors shown in Table 1

No Applied 
wavelet

Best 
level

Accuracy [%]
DT/SVM/RF

Standard deviation [%]
DT/SVM/RF

1 db1 2 91.10/93.91/95.14 4.16/3.24/1.10

2 db5 2 91.48/94.73/95.12 4.41/2.32/2.34

3 db20 2 89.50/95.13/95.13 7.75/4.46/3.08

4 coif4 2 91.10/93.55/95.15 4.85/3.53/1.78

5 sym2 2 91.10/94.34/ 95.13 4.59/3.83/3.05

6 Meyer 2 91.93/94.31/94.33 6.63/6.01/4.61

7 rbio1.3 2 91.90/93.12/95.96 2.50/2.26/1.39
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results are given for the testing data only in the form of mean 
accuracy and standard deviation. The accuracy and standard 
deviation are given in the following order DT/SVM/RF (first 
DT, then SVM and finally RF).

The best accuracy (95.96%) of class recognition was ob-
tained by RF at application of features corresponding to 
biorthogonal wavelet rbio1.3 in combination with time and fre-
quency domain descriptors shown in the last row of Table 1. 
This set of features has also provided the smallest value of 
standard deviation (1.39%) of classification results in all runs 
of algorithm.

These classification experiments have been performed for 
separate sets of features corresponding to application of dif-
ferent wavelet families. In the next phase we have combined 
all generated features together and performed once again the 
selection process. The aim of the selection was to choose the 
optimal set of features from all generated ones. Application of 
step-wise forward and backward selection procedure has result-
ed in the set of features depicted in Table 3.

Table 3 
Set of feature subeset from all available potential diagnostic features

Selected features

FFT5_AE,  FFT5_M,  FFT7_M,  FFT2_F,  FFT10_C, 
Mean_F,  StdF,  VarAE,  VarF,  HistAE5,  HistAE6, 
HistAE10,  HistM1,  HistF,  HistF7,  HistF9,  HistV5,   
SkewnessC,  KurtosisM,  RMS_AE,  EnergyM2,   
EnergyF,  EnergyM2,  EnergyC2,  EnergyC2,  EnergyC3,   
EnergyC3, EnergyM1

Application of this set of features has resulted in slightly dif-
ferent results, presented in Table 4. The accuracy of class rec-
ognition of the RF classifier has been increased to the value of 
96.35%. This is the best result of recognition achieved.

Table 4 
Result of classification for selected features from all available sets

Accuracy [%]
DT/SVM/RF

Standard deviation [%]
DT/SVM/RF

91.13/ 94.36 /96.35 5.87/ 4.32 / 3.00

8. Conclusions

In the paper an automatic system for assessing the state of the 
drill in a standard laminated chipboard drilling process was 
presented. We have shown that the satisfactory recognition of 
drill state is possible on-line by using sensor signals register-
ing the feed force, cutting torque, noise, vibration and acoustic 
emission. Based on these signals the diagnostic features have 
been defined. The definition is based on time domain, Fouri-
er and wavelet packet descriptions. This diversified approach 
to feature generation allows for describing the drill wear in 
a more effective way. The selection process applying the se-

quential feature algorithm led to choosing the most significant 
features, which were used as the input attributes to the classi-
fication system.

Three different classifiers: SVM, DT and RF have been 
checked in the role of classifier. Based on many performed ex-
periments, we have found that application of the RF classifier 
combined with the proper feature set provides the best recog-
nition of the drill state (the highest accuracy rate). The relative 
testing error of recognition in leave-one-out mode of operation 
was below 4%.
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