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The motion of submicron particles involves the deterministic terms resulting from the aerodynamic 
convection and/or electrostatic attraction, and the stochastic term from the thermal displacement of 
particles. The Langevin equation describes such behavior. The Brownian dynamics algorithm was 
used for integration of the Langevin equation for the calculation of the single fiber deposition 
efficiency. Additionally the deterministic and stochastic of the particle motion were derived, using 
the Lagrangian and Eulerian approaches of particle movement and balance, for the calculation of the 
single fiber deposition efficiency due to both mechanisms separately. Combination of the obtained 
results allows us for calculation of the coupling effect of inertia and interception with the Brownian 
diffusion in a form of correlation. The results of calculation show that the omitting of the coupling 
effect of particular mechanism and using the simple additive rule for determination of the single 
fiber deposition efficiency introduces significant error, especially for particles with diameter below 
300 nm. 

Keywords: nanoparticle, Brownian dynamics, additivity, deposition mechanisms, Lagrangian and 
Eulerian models 

1. INTRODUCTION 

The collection of nanoparticles at particular stages of their production technology, air purification at the 
workplace and the atmosphere environment, requires an efficient separation method of particulate 
matter from the carrier gas. 

Filtration is one of the effective methods for the removal of particles from an aerosol stream. The 
development in the specific fibrous structures promises the construction of highly efficient filters for 
the collection of nanoparticles. A properly designed filter structure defined by the filter porosity, 
diameters of used fibers and filter thickness requires also the knowledge of the key parameter of the 
process filtration i.e. efficiency of the single fiber deposition of aerosol particles. The main mechanism 
of deposition of submicron particles on the filter’s fiber is the Brownian motion in which a particle 
randomly displaces in the carrier gas due to bombardment of the particle by the gas molecules. 
Coupling of this movement with convective displacement determined by the pressure drop forcing the 
aerosol flow, and/or another external force (electrostatic for example) causes the motion and 
deposition, in the consequence, of the nanoparticle to be very complex. The equation of particle 
motion, when the thermal displacement is included, becomes stochastic due to the presence of the 
rapidly fluctuating term of Brownian force. For the Lagrangian simulation of submicron particle 
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deposition the Brownian dynamics algorithm will be used. The recognition of the essence of the matter 
of the particular mechanisms of deposition gives us a better understanding of the phenomena. Recent 
publications, regarding the nanoparticle filtration and deposition, van Gulijk et al. (2009), Huang and 
Tsai (2003), Regan and Raynor (2009) and Kim et al. (2009) indicate the necessity of more precised 
determination of particle deposition efficiency. Using of the Brownian dynamics algorithm we will 
emphasize how significant is an error, if the classical additive method is used for calculation of the 
single fiber filtration efficiency for simultaneously occurring mechanisms of particle deposition.  There 
are different sources for determination of the coupled effect of the particular mechanism of deposition, 
namely particle tracking, which corresponds to the Lagrangian concept of particle motion, or the 
particle balance, related to the Eulerian model. The principles of both approaches will be discussed for 
comparison of the obtained results with those existing in the literature. 

2. MODELING OF PARTICLE DEPOSITION 

There are two major descriptions of the nanoparticle movement: Lagrangian and Eulerian. Continuum 
density ρ(X,t) and velocity U(X,t) are Eulerian fields and they are indexed by the position X in an 
inertial frame. Lagrangian fields are indexed by the position at reference time t0. The common root for 
both descriptions in the case of analysis of the behavior of a diffusional aerosol particle within a 
defined region is the Langevin equation. It was originally proposed as a stochastic model for the 
velocity of a microscopic particle undergoing the Brownian motion. The stochastic process β(t) 
generated by the Langevin equation is called the Ornstein – Uhlenbeck process (Uhlenbeck and 
Ornstein, 1930) and its probability density function evolves by the Fokker – Planck equation. In the 
terminology of stochastic processes β(t) is a diffusion process, and the Langevin equation is a stochastic 
differential equation. Let us consider the relationship between Lagrangian and Eulerian models, using 
the nanoparticles deposition process as an example. 

2.1. Single particle trajectory concept (Lagrangian approach) 

The object of our observation is the aerosol particle of diameter dp and density ρ, entering a 
compartment of arbitrary shape at position X0 (Fig. 1). The flow field within the compartment is given 
by vector U, and the particle has velocity V. According to Newton’s law, particle motion is described 
by: 

 ( ) ( )tAt,XFVU
dt
dVStk ++−=  (1) 

Where velocities U and V are related to average gas velocity Uo, and time t is related to the 
characteristic time of the process. 

 
Fig. 1. Limiting trajectory of aerosol particle in the arbitrary compartment 



Brownian dynamics for calculation of the single fiber deposition efficiency of submicron particles 

281 
 

The first term on the right side of Eq. 1 (U-V) represents interaction between the particle and 
surrounding fluid, which is assumed to be governed by Stokes’ law. Stk is Stokes number, and F(X,t) is 
an external force acting on the particle (gravity, electrostatic, etc.). Another force A(t) acting on the 
particle is the result of collisions with molecules of the surrounding gas. F(X,t) and A(t) are both in a 
dimensionless form. These collisions make momentary changes of particle acceleration and A(t) has a 
random pattern with respect to its quantity and direction. The following principal assumptions are made 
for the fluctuating part A(t): 
• A(t) is statistically independent of V(t), 
• A(t) varies extremely rapidly in comparison with the variation of V(t), 
• average in time of V(t) is zero. 

The second assumption implies that time intervals of duration Δt are such that during Δt the variations 
of V expected are very small indeed, while during the same interval A(t) may undergo several 
fluctuations. No correlation between A(t) and A(t + Δt) exists. Equation (1) in its general form is 
stochastic and describes the Brownian motion of an aerosol particle. It is called the Langevin equation 
in its general form (Schuss 1980). 

When the external force field F(X,t) does not exist or can be neglected in comparison to other effects, 
and gas molecules are in a state of disordered motion because of disappearing forced convective 
diffusion, particles interact with the surrounding fluid being in a chaotic state on molecular or turbulent 
levels. For the first case, the Brownian displacement of a particle is the predominant mechanism of 
particle motion. When the fluid is in turbulent disorder, the displacement of a particle also has a 
random form difficult to describe in terms of particle trajectory. The interaction of particles with the 
complex structure of an eddy (fluid particles) of different morphology could be rather described in the 
form of a population balance. When the fluctuation of aerosol particles caused by thermal interaction 
with surrounding molecules has significant influence on the displacement, the process of particle 
motion is a stochastic one. A Langevin equation, which describes the motion of Brownian particles, has 
two terms: deterministic, representing an interaction of particle with surrounding fluid, aV, and 
fluctuating A(t): 

 )(tAaV
dt
dV

+−=  (2) 

But “solving” a stochastic differential equation like Eq. 2 differs from the ordinary procedure of solving 
a deterministic differential equation. It has to be understood rather in the sense of specifying probability 
distribution p(V,t,V0) which describes the probability that velocity has value V at time t, assuming  
V = V0 at t = 0. The function p has the following properties:  

 )(),,( 00 VVVtVp −→δ  when 0→t  (3) 

where δ is Dirac’s function, and p(V,t,V0) tends to Maxwellian distribution for temperature T of the 
surrounding fluid, independently of V0 as ݐ ՜ ∞: 

 ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→

Tk
Vm

exp
Tk

mV,t,Vp
BB 22

2
2
3

0 π
 (4) 

where m is particle mass and k is the Boltzmann constant. The position of a Brownian particle is given 
in the form: 

 ∫+=
t

stat dssAeeXtX
0

),(
0 )()( β  (5) 

The integral in expression Eq. 5 can be calculated as the stochastic integral in the sense of Ito (Schuss, 
1980). The construction of such an integral is a complex procedure so more useful practically as the 
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integration of Eq. 5 is using the Monte Carlo simulation. This procedure is simple and well described in 
the literature, (Kalos and Whitlock 2008). More interesting and important is another property of 
Brownian particle motion described by the Langevin equation. Displacements of a particle obtained 
from the Langevin equation form Markov’s process, which is analogous to the diffusion process, 
(Gradoń and Podgórski, 1996, Marijnissen and Gradoń, 2010). For that process the probability 
distribution function p(V,t,V0) satisfies the Fokker – Planck equation. The evolution of density, σ, of 
system particles is defined in classical mechanics by the Liouville equation: 

 
pq
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H
t ∂
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∂

−
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∂

=
σσ

δ
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where H is the Hamiltonian of the system (entire energy of the system) and p and q are generalized 
coordinates of the position and momentum of the system, respectively. If random effects are introduced 
into the system, then density σ is described by the generalized Liouville equation, called the Fokker – 
Planck or prospective Kolmogoroff equation written in the form of evolution of the transition 
probability p(s,x,t,y), which is the probability of the event that the system being at time s in x will be in 
time t in y: 
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where a(y,t) is the deterministic drift of particles in the system and ( )
2

t,yb  is the diffusion coefficient (in 

the probabilistic sense). 

If we are interested in the distribution of Brownian particles for time intervals Δt, very large in 

comparison with the time of particle relaxation μ
ρτ 18

2
Cpp Cd

= , τΔ >>t , then using the analogy of 

derivation of the Fokker–Planck equation, we receive the diffusion equation (Eq. 8). 

2.2. Eulerian approach 

With this path of transformations we came to the deterministic equation describing diffusional particle 
population balance i.e. the Eulerian approach of a model. The balance equation within a controlled 
differential space has the following form in the dimensionless coordinate system: 

 01 2 =+∇−∇+
∂
∂ BCCPe

t
C

Fo
 (8) 

where t is reduced time with respect to the characteristic time of the process and the space coordinates 
are normalized with respect to the characteristic cross–sectional dimension of compartment d, Fourier 
number 2d

TDFo ⋅= , Peclet number D
dVPe ⋅= , and 

p

CB
d

TCkD πμ3=  is the diffusional coefficient of  

a Brownian particle. C means particle concentration resulting from the integral of a particles probability 
distribution over the particle velocity space. Thus C means the number of particles in the control space 
volume at moment t. The first term in Eq. 8. means the accumulation of particles of a given size. The 
second term means the net transport of particles caused by the ordering effects of forced convection (or 
other acceleration field). The third term means the dispersion of particles due to Brownian and/or 
turbulent diffusion and the fourth term means the sink of particles due to their deposition or due to 
changes in their size caused by coagulation, evaporation or chemical reaction with surrounding gas. 
The last term for the deposition process can be expressed as: 
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where rp – particle diameter, Vn – velocity component of a particle normal to the surface deposition, n – 
direction normal to the surface of deposition. 

The integration of Eq. 8 with appropriate boundary and initial conditions gives us the possibility of 
balancing particles within considered compartments and then calculating the efficiency of deposition. 

3. THE COUPLING OF DETERMINISTIC AND STOCHASTIC MECHANISMS 

The fibrous filter performance i.e. its separation efficiency and the resistance for an aerosol flow is 
determined by the fiber diameter distribution within the filter media of given thickness and also by the 
packing density of fibers. The efficiency of filtration is strongly influenced by the single fiber 
efficiency, E. The efficiency of particle collection depends on particle properties, flow condition and 
the carrier gas temperature. The main mechanisms of submicron particle deposition on the fiber are 
interception, inertia, convective diffusion and electrostatic attraction. 

The fiber-in-cell model is frequently used for the determination of the deposition efficiency, E. For the 
most popular, Kuwabara model, the unit cell is a cylinder of radius RK, coaxial with the fiber. In this 
geometry our simulations are realized. 
 

 

Fig. 2. Limiting particle trajectory in the Kuwabara cell 

The single fiber deposition efficiency was simulated using the Brownian dynamics algorithm derived 
by Podgorski (2002) derived from Chandrasekhar’s (1943) method. The integration of Eq. (1) yields to 
normal bivariate probability distribution φi(Δvi, ΔLi) that during time interval Δt the particle will 
experience the change of its ith component of velocity by Δvi and it will travel the distance ΔLi in ith 
direction, so we can calculate the expected values <Δvi>, <ΔLi> and standard deviations σvi, σLi as well 
as coefficient of correlation ρci. Next we generate two independent random numbers GLi, Gvi, both 
having Gaussian distribution with zero mean and unit variance. Finally we calculate Δvi and ΔLi: 

 viviii Gvv σΔΔ +=  (10) 

 LiLiciLiviciii GGLL σρσρΔΔ 21−++=  (11) 

The detailed derivation of Eq. (10) - (11) as well as formulas for the probability distribution functions, 
expected values and coefficient of correlation were described by Podgórski (2002). 

The algorithm described above allows particle motion to be studied accounting simultaneously for 
coupling between the Brownian random walk, particle inertia, convection in a moving fluid and 
external forces. 

RK 
RF 

y0i 
θ 
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Firstly, the entire inlet to the Kuwabara cell was divided into 40 subintervals of the same height. From 
each subinterval 40 particles were released and solving the Langevin equation (Eq. 1), their random 
trajectory was traced. The location of the starting particle at the inlet to the Kuwabara cell above, for 
which no deposition on the fiber occurred, was determined. This point, y0cr, defined the new height of 
the entrance window, which afterwards was enlarged 2.5 times, y0max. The calculations were now made 
only for that part of the inlet to the Kuwabara cell. New 40 subintervals, i, were set and 500 particles, 
NGEN, were released from each one. Their random trajectory was traced and the number of particles 
deposited on the fiber, NDEPi, was counted. Then, the deposition probability, PDi, as a function of the 
initial particle position was calculated: 

 ( )
GEN

DEPi
oiDi N

N
yP =  (12) 

The calculations were accepted only if the deposition probability was zero for at least three points 
located most distantly from the stagnation line y0 = 0. Otherwise, the height of the entrance control 
window was increased to assure that the deposition probability for particles entering the Kuwabara cell 
above y0max was really negligible. Having the final PDi(y0i) determined, the cell deposition efficiency 
was calculated as: 
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where 50.
FR

KR
α

=  is the radius of the Kuwabara cell, RF is the fiber radius and α is the filter packing 

density. Finally, the single fiber deposition efficiency, E, was determined using previously calculated 
cell deposition efficiency, Ecell, as: 

 
F
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R
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Such simulations were repeated 10 times and the average efficiency was calculated. 

The single fiber efficiency of deposition due to only deterministic movement was simulated using the 
limiting trajectory concept. The major idea of it was to examine the individual particle trajectory, 
contrary to the above mentioned Brownian dynamics algorithm. The equation that was solved to obtain 
the trajectory was the Lagrangian equation of motion (Eq. 1), neglecting the stochastic force A(t) acting 
on the particle as the result of collisions with molecules of the surrounding gas. The starting point of 
the particle, y0cr, was initially equal to double the fiber diameter and then decreased if the deposition did 
not occur. For the definitive starting location y0i the single fiber collection efficiency due to 
deterministic mechanism, ED, was calculated as follows: 

 
F

i
D R

y
E 0=  (15) 

According to the Eq. 15, the ED includes the effect of inertia and interception through the definition of 
the boundary condition for calculation of the particle limiting trajectory. 

The single fiber efficiency of deposition due to only stochastic movement was determined by solving 
Eulerian equation of motion (Eq. 8) for a weightless particle using the second order upwind scheme 
method. Boundary conditions were assumed to be: 
• dimensionless concentration was equal to zero on the fiber surface, 
• dimensionless concentration was equal to one on the entrance to the Kuwabara cell. 
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Based on the received concentration distribution, the concentration gradient on the fiber surface 
( )

FRrdr
dC

=
 was calculated and finally the single fiber collection efficiency due to Brownian movement: 
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where D is coefficient of Brownian diffusion, U0 superficial gas velocity and C0 concentration on the 
entrance to the Kuwabara cell. 

4. THE COUPLING OF DETERMINISTIC AND STOCHASTIC MECHANISMS OF PARTICLE 
DEPOSITION. CALCULATION OF THE CORRECTION TERM. 

As an example of the process analysis, the presented computations for illustration of the problem were 
performed for the following physiochemical and operational conditions of the process: 
• properties of the filter: filter packing density α = 0.01, 

fiber radius RF = 5 μm, 
• properties of the gas:  superficial gas velocity U0 = 0.2 ୫

ୱ
, 

density ρ = 1.203 ୩
୫య, 

viscosity μ = 1.83 · 10-5 Pas, 
temperature T = 298 K, 
mean free path λG = 62 · 10-9 m, 

• the spherical aerosol particle of density ρP = 1000 ୩
୫య, 

• deposition occurs when the particle was not further than 4 · 10-10 m from the fiber, 
• the time step was fixed for all particle diameters and was equal to 5 · 10-7 s, 
• particle diameter range from 20 nm to 900 nm. 

The term defining the coupling of deterministic and stochastic mechanisms, EDB, was determined using 
a simple rule for determination of the single fiber deposition efficiency: 

 ( )( )BD EEE −−−= 111  (17) 

 DBBD EEEE ++=  (18) 

Fig. 3 represents an example of calculation of the deposition efficiencies for particular effects of 
deposition. Calculations were performed for RF = 5 μm and α = 0.01. Discrepancies between values of 
E and ED+EB become significant for particles with diameters dp < 0.3 μm. This effect is confirmed in 
our calculations for the range of Reynolds number 102 <= μ

ρFRURe  (Stokes regime). 

The single fiber collection efficiency, E, calculated assuming that all mechanisms act independently, 
should be equal to the single fiber collection efficiency obtained from the Eq. 14. Hence, the correlation 
representing the coupling of stochastic and deterministic movement was determined as follows: 

 ( )BDDB EEEE +−=  (19) 

For the calculation of the deposition of nanoparticles for wide range of their diameters, the coupling 
term of single fiber efficiency, EBD, can be determined in the form of useful correlation. The correlation 
involves three dimensionless numbers that emphasize the deposition mechanisms, namely Stokes 

number 
F

Cpp

d
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0=  for inertial movement, Peclet number D

dU FPe 0=  which means the ratio of 



E. Sztuk, R. Przekop, L. Gradoń, Chem. Process Eng., 2012, 33 (2), 279-290 

286 
 

convective and diffusional motion of particle, and interception parameter NR that is the ratio of particle 
and fiber diameter. The correlation in its more general form should include the Kuwabara number 
which is defined by the packing density of fibers α in the filter, 75025050 2 ..ln.Ku −−+−= ααα . It 
has a meaning of the scaling parameter of the gas velocity in the definition of the Pe. Formally the 
Kuwabara number does not change the functional form of the correlation. Results of calculation of EBD 
for conditions defined above, Eq. 19, are shown in Fig. 4. The values of EBD are shown as a function of 
Peclet number, Pe, and interception parameter, NR, for three different values of Stokes number, Stk, 
that correspond to the particles diameter of 100, 300 and 900 nm. The correlation that is valid for the 
wide range of Pe and the interception parameter has the following form: 

 58.0648.0

255.0909.0
NRPe
StkEDB

−
=  (20) 

A similar correlation was reported by Hinds (1993) and Davies (1973). 

 
( )2

1

3
2

24.1

PeKu

NREDB
⋅

−
=  (21) 

The mentioned correlation was derived from the simplified particle balance equation. The empirical 
formula was fitted to the curves which broke the numerical solution down into three terms:  
the efficiency of deposition due to diffusion, and interception with extraction of the term of 
combination of both mechanisms. 

 

 

Fig. 3. Contribution of particular effects of single fiber particle deposition efficiencies,  
E – overall efficiency, ED – deterministic efficiency, EB – Brownian efficiency 
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Fig. 4. Effect of the Peclet number and the interception parameter on the correlation representing the coupling of 
deterministic and stochastic mechanism for three different values of Stokes number.  

A) Stk=6.072·10-4, B) Stk=5.464·10-3, C) Stk=4.918·10-2 
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5. CONCLUSIONS 

The direct comparison of single fiber efficiencies calculated with the additive rule and with the 
regarding of the coupling effect is shown in Fig. 5. The data ensures that indeed, the simple, additive 
method of calculating the single fiber efficiency overestimates the real values. Subtracting the value of 
the correction term, EDB, obtained from the Brownian dynamics algorithm, from the algebraic sum of 
ED and EB approaches the value E to reality. As it was shown, the effect of coupling of stochastic and 
deterministic mechanisms of deposition is important for nanoparticles in particular. The modeling of 
fibrous filters, for which the single fiber deposition efficiency E is a crucial parameter, should take this 
fact into account. At this point, we should mention that the calculated correlation (Eq. 20) is valid for 
relatively porous filters (α < 0.05). It is the result of the assumption of the Kuwabara cell model used 
for our correlation. Filters with lower porosity (higher packing density of fiber) require another model 
of a multi-fiber system. Their essence is that the fluid in a proximity to a fiber embedded in a porous 
media experiences a damping body force in addition to viscous and pressure forces. 

 

Fig. 5. Comparison of single fiber deposition efficiencies for additive rule of calculation and for consideration  
of the coupling effect 

The improved formulae of EDB (Eq. 20) obtained from fundamental theory, comparing to the only 
existing, experimental one (Eq. 21), correctly decreases the overall single fiber efficiency with respect 
to the fact that the capture of some particles might be calculated twice due to the action of different 
forces. It also contains the Stokes number, which introduces to the correlation the third main deposition 
mechanism, inertia. 

Furthermore, with the increase of the particle diameter the value of EDB decreases. The influence of 
coupling of deterministic and stochastic mechanisms tends to zero what proves the fact that the 
Brownian motion applies only to the small aerosol particles. Deterministic mechanisms concerns just 
larger ones and the correction (Eq. 20) is not necessary. The proposed correction could be useful for a 
quick estimation of the single fiber deposition efficiency of nanoparticles. It could be easy extend for 
the presence of the electrostatic effect of particle displacement combined with the aerodynamical 
convection and diffusion. 

This work was supported by the grant ERA-NET/MNT/NFSM/1/2011. 
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SYMBOLS 

a deterministic drift of particles, m·s-1 
A Brownian force, N 
b double value of the diffusion coefficient (in the probabilistic sense), m2·s-1 
C Aarosol concentration, volume fraction 
Cc  Cunningham correction factor, dimensionless 
D Brownian diffusion coefficient, m2·s-1 
dp  particle diameter, m 
E single fibre efficiency, dimensionless 
Ecell single cell deposition efficiency, dimensionless 
ED  single fibre efficiency due to deterministic mechanisms of deposition, dimensionless 
EB  single fibre efficiency due to stochastic mechanism of deposition, dimensionless 
EDB conjugation term of single fiber efficiency, dimensionless 
F  external force, N 
Fo Fourier number, dimensionless 
kB Boltzmann constant, J·K-1 
Ku Kuwabara number, dimensionless 
Gvi, GLi  random Gaussian deviates with zero-mean and unit variance, dimensionless 
ΔLi  linear displacement along ith co-ordinate, m 
m particle mass, kg 
n co-ordinate in the direction normal to the surface of deposition, m 
N number of particles, dimensionless 
NR interception parameter, dimensionless 
p transition probability, dimensionless 
PD deposition probability, dimensionless 
Pe Peclet number, dimensionless 
RF fibre radius, m 
rp aerosol particle radius, m 
Stk Stokes number, dimensionless 
t time, s 
T absolute temperature, K 
U mean gas velocity, m·s-1 
U0 superficial gas velocity, m·s-1 
V particle velocity, m·s-1 
x, y  Cartesian co-ordinates, m 

Greek symbols 
α filter packing density, dimensionless 
β probability density function, dimensionless 

λG gas mean free path, m 
μ gas viscosity, Pa·s 
ρ gas density, kg·m-3 
ρci correlation coefficients of bivariate Gaussian distributions, dimensionless 
ρp aerosol particle density, kg·m-3 
σ density of particles of Hamiltonian system, dimensionless 
σLi  standard deviation of the distribution of random Brownian displacements, m 
σvi standard deviation of the distribution of random velocity, m·s-1 
τ  particle relaxation time, s 
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