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MATHEMATICAL KINETIC MODELLING AND REPRESENTING 

DESIGN EQUATION FOR A PACKED PHOTOREACTOR WITH 

IMMOBILISED TiO2-P25 NANOPARTICLES ON GLASS BEADS 

IN THE REMOVAL OF C.I. ACID ORANGE 7 
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In this work, a design equation was presented for a batch-recirculated photoreactor composed of a 
packed bed reactor (PBR) with immobilised TiO2-P25 nanoparticle thin films on glass beads, and a 
continuous-flow stirred tank (CFST). The photoreactor was studied in order to remove C.I. Acid 
Orange 7 (AO7), a monoazo anionic dye from textile industry, by means of UV/TiO2 process. The 
effect of different operational parameters such as the initial concentration of contaminant, the 
volume of solution in CFST, the volumetric flow rate of liquid, and the power of light source in the 
removal efficiency were examined. A rate equation for the removal of AO7 is obtained by 
mathematical kinetic modelling. The results of reaction kinetic analysis indicate the conformity of 
removal kinetics with Langmuir-Hinshelwood model (kL-H = 0.74 mg L-1 min-1, Kads = 0.081 mg-1 L). 
The represented design equation obtained from mathematical kinetic modelling can properly predict 
the removal rate constant of the contaminant under different operational conditions (R2 = 0.963). 
Thus the calculated and experimental results are in good agreement with each other. 

Keywords: heterogeneous photocatalysis, batch-recirculated photoreactor, design equation, 
mathematical kinetic modelling, TiO2-P25 nanoparticles, C.I. Acid Orange 7

1. INTRODUCTION 

Coloured wastewater generated by textile industries is an important source of environmental 
contaminations (Behnajady and Modirshahla, 2006; Daneshvar et al., 2007; Gupta et al., 2011; Sauer et 
al., 2002). It is estimated that about 1-20% of the total world production of dyes is lost during the 
dyeing process and is released into wastewater (Akpan and Hameed, 2009; Konstantinou and Albanis, 
2004). Colour removal from wastewater is often more important than its removal from other colourless 
organic substances (Grzechulska and Morawski, 2002). Heterogeneous photocatalysis seems to be an 
interesting treatment method for the removal of toxic pollutants from industrial wastewaters due to its 
ability to convert them into innocuous end products such as CO2, H2O and mineral acids (Damodar and 
Swaminathan, 2008). A variety of semiconductors such as TiO2, ZnO, CdS, and WO3 have been 
studied as photocatalysts (Gupta et al., 2007; Gupta et al., 2012; Ismail et al., 2011; Lin et al., 2005; Liu 
et al., 1998). TiO2 is the most extensively used effective photocatalyst, owing to its high efficiency, 
photochemical stability, non-toxic nature, and low cost (Ismail et al., 2011). In most cases, TiO2 is 
applied in the form of suspension or slurry (Behnajady et al., 2007a). From a practical point of view, 
using slurry systems involves several major problems such as: (a) separation of the catalyst from the 
slurry is difficult, (b) suspended particles especially in high concentrations tend to aggregate, (c) using 
the suspensions in systems with continuous flow is difficult, and (d) due to the high absorption by TiO2
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1. INTRODUCTION

In recent years, drying processes have been performed in closed systems such as infrared dryers in order 
to increase the drying efficiency and also to decrease product quality losses. Infrared drying technique can 
supply higher energy efficiency, shorter drying time and superior product quality compared to conventional 
drying methods. Strumillo and Kudra (1986) and Lewis (1996) reported that various infrared heat sources 
could be effectively used for drying of the biomaterials. According to the findings of Sandu (1986) and 
Chua and Chou (2003), infrared drying is a low-cost drying method that can be easily employed in rural 
farming areas. Moreover, it has some advantages, such as versatility, simplicity in terms of the equipment 
required, high rates in heating and drying, easy installation and low capital cost (Fernandes et al., 2004; 
Kocabiyik and Tezer, 2009).

Some researhers have used infrared application for drying of food materials; Nowak and Lewicki (2004) 
for apple, Sharma et al. (2005) and Kumar et al. (2006) for onion, Shi et al. (2008) for blueberry, Kocabiyik 
and Tezer (2009) for carrot, Ruiz-Celma et al. (2009) for grape by-products, and Doymaz (2011) for sweet 
potato. However, there is no data found in literature on infrared drying of spinach which is one of the most 
important vegetables since it is popularly used for culinary purposes, and it is eaten raw, dried, boiled or 
baked into various dishes. It is low in calories and is a good source of vitamin C which is a hydro-soluble 
vitamin and sensitive to heat, oxygen, light and considered to be highly sensitive to quality losses during 
drying (Soysal & Soylemez, 2005).
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Since dried fruits and vegetables have long been regarded as alternative fat-free snacks for health-conscious 
consumers, not only their nutritional changes, but also other changes such as physical and microstructural 
changes during and also at the end of the drying process are of importance (Devahastin and Niamnuy, 2010).

The objectives of this work were twofold:
 • to determine the effects of microwave power output and sample amount on drying behaviour and 

some quality parameters of the dried products, 
 • to model the experimental drying data by using artificial neural network (ANN) methodology.

2. MATERIALS AND METHODS

Fresh spinach samples were obtained from a local market in Malatya, Turkey. Before the experimental 
studies, the samples were washed and stored at 4°C. In order to determine the initial water content of the 
samples, AOAC method number 950.46 was applied, and a value of 85.71% was recorded.

The drying studies were carried out using an infrared dryer with dimensions of 53´54´57 cm. The drying 
chamber was equipped with three near infrared heat lamps (GE, 37771 R40 Heat Lamp), each having 
a power of 250 W. In order to gather the experimental drying data for spinach leaves, power output of 
the heat lamps was varied within the range of 300–500 W by adjusting the power output values through 
a dimmer. The material was placed on the drying plate in monolayer at all experimental conditions. On-line 
measurement of the amount of the weight changes in the samples during the drying process was determined 
directly from digital balance (Kern, PCB 2500-2) attached to the equipment. Each drying process was 
applied until the initial moisture ratio was reduced to 0.1 (±0.01) g water/g dry base.

Effect of infrared radiation on the color parameters of the dried samples was determined with a colorimeter 
(Minolta Chroma, CR-100, Japan). Its display was set to CIE L a b colour coordinates. Ten random 
readings for each sample on the drying tray were recorded and an average value for each colour parameter 
with a standard deviation was calculated. The parameter, L has a range of 0–100 and is the measure of 
the lightness value, the chromaticity coordinate, a measures red and green when positive and negative 
respectively, on the other hand, chromaticity coordinate, b measures yellow and blue when positive and 
negative, respectively.

Rehydration experiments were carried out in distilled water at 20, 40, 60 and 80°C using a water bath 
(Nuve, NB9). Approximately 2 g of the dried sample was soaked into 200 ml distilled water for 5 hours. 
At the end of the rehydration period, the samples were taken out, drained carefully on a sieve and then 
weighed. The following calculations were then made for each sample in order to determine rehydration 
capacity (RC):

 Mass of rehydrated sample
Mass of dried sample

RC =   (1)

The ascorbic acid content was measured in both fresh and dried spinach samples according to the AOAC 
method number 967.21 based on the oxidation of ascorbic acid by titration with 2.6 dichlorophenol-
indophenol solution. The extraction solution used was metaphosphoric acid-acetic acid solution.

Sensory evaluation of the dried products was carried out by 10 trained sensory panelists. Samples were 
evaluated for liking on the 9 point Hedonic scale, where 1 corresponded to dislike extremely, 5 to neither 
like nor dislike, and 9 to like extremely.

Statistical analysis was performed by the statistical method of analysis of variance (ANOVA) using SPSS 
software program for windows (Trial version 15.0) with 95% confidence interval, in order to find the 
significance differences among the experimental data sets.
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3. THEORETICAL APPROACH

In order to determine the moisture ratio (MR) and drying rate (DR) the following equations were used:

 
0

iM
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M
=   (2)

 t dt tM M
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=   (3)

where Mi is the moisture content at a specific time (kg/kg dry base), M0 is the initial moisture content 
(kg/kg dry base), Mt and Mt+ dt are the moisture content at t and moisture content at t+dt (kg/kg dry base), 
respectively, and t is drying time (min).

Artificial Neural Network (ANN) is an information processing system that imitates the behaviour of 
a human brain by emulating the operations and connectivity of biological neurons (Golden, 1996). 
It performs a human–like reasoning, learns the attitude and stores the relationship of the processes based 
on a representative data set. The neural networks do not need much of a detailed description or formulation 
of the underlying process. Therefore, appeal to practicing engineers who tend to rely on their own data 
(Haykin, 1999). In recent years, ANNs have been successfully applied to process modelling (Cakmak 
and Boyaci, 2011; Ferreira et. al., 2011; Karadurmus et. al., 2012; Khataee et al., 2011; Siripatrawan and 
Jantawat, 2009; Yuceer, 2010).

For the development of the neural network model the Neural Network Toolbox and MATLAB (The 
Mathworks Inc., 2009) were used. A MATLAB script was written, which loaded the data file, trained and 
validated the network and saved the model architecture. The input and output data were normalised and 
de-normalised before and after the actual application in the network.

To develop an ANN model for the estimation of moisture ratio (MR), the available data set was partitioned 
into a training and a test sets. Seventy percent of the data was used as a training class. The remaining thirty 
percent was used as the test data. 78 data set out of 111 was used for training, and the remaining for testing. 
Two methods were tried as a training method. One of them was Levenberg-Marquardt backpropagation, 
called as trainlm code in Matlab, the other was Bayesian regulation backpropagation, called as trainbr 
code in Matlab. The former is often the fastest backpropagation algorithm, and is highly recommended 
as a first-choice supervised algorithm, although it does require more memory than other algorithms. 
It minimizes a combination of squared errors and weights, and determines the correct combination in order 
to produce a network that generalizes well. While the latter is a network training function that updates 
the values of weight and bias according to Levenberg-Marquardt optimization. In order to randomise the 
drying data, rand code was used in Matlab. The sequence of numbers produced by randperm is determined 
by the internal settings of the uniform random number generator. These data were recorded at workspace 
under the Matlab and both training methods have been implemented on training data and test data. It was 
seen that R-square values for Levenberg-Marquardt method were higher compared to those for Bayesian 
regulation in the training stages. As a result, the Levenberg-Marquardt method is found to give better 
results for available data. The performance function was the sum of the squares of the difference between 
ANN output and experimental analysis results.

A three layer feed-forward neural network was chosen for modelling purposes. The selected network 
structure is shown in Fig.1. The first layer has three logarithmic sigmoid (Eq. 2) neurons, the second layer 
has twenty eight logarithmic sigmoid neurons and the last layer has one linear neuron.
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Fig. 1. The selected artificial neural network structure

The transfer functions called logsig in Matlab is given as follows

 
izi

e
y −+
=

1

1   (4)

where zi is the input of the neuron in hidden layer and yi is the output of neuron while calculating zi. Logsig 
transfer function was calculated for a layer’s output from its net input (The Mathworks Inc., 2009).

The performance function was calculated using the mean squared error. The network was trained for 
a maximum of 5000 epochs. In the course of training, the number of hidden layers, the number of neurons 
in the hidden layer, training accuracy and number of epochs were determined by trial and error.

After generating sets of training patterns, an appropriate ANN architecture and associated parameters must 
be chosen for the particular application. The main design parameters are the number of hidden layers, the 
number of neurons in each layer, and neuron processing functions. The choice of these parameters will 
depend on the complexity of the system being modelled and they will affect the accuracy of the model. 
There is no exact guide for the choice of the numbers.

Statistical values such as mean absolute percentage error (MAPE), Root Mean Squared Error (RMSE) and 
correlation coefficient (R) were determined as follows:
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where ix  is an observed value at the ith time step, iy  is a simulated value at the same moment of time, N 
is the number of time steps, x  is the mean value of observations, and y  is the mean value of simulations.

4. RESULTS AND DISCUSSION

4.1. Drying behaviour

In all cases, the moisture content of the spinach leaves at all experimental conditions was successfully 
decreased from 6.0 to approximately 0.1 (±0.01) g water/g dry base. Effect of power output and sample 
amount on the moisture ratio of the leaves was presented in Figs. 2 and 3 respectively. It can be clearly 
seen that there was a significant decrease in the drying times of the leaves as the infrared power output 
increased from 300 W to 500 W and the drying process took 3.5–10 min depending on the power level 
applied. Similar trends were reported by Sharma et al. (2005) for onion, Kocabiyik and Tezer (2009) for 
carrot and Doymaz (2011) for sweet potato slices. On the other hand, studies carried out to investigate 
the effect of sample amount on drying times showed an opposite trend, i.e., by keeping the power output 
constant at 400 W, drying times increased from 4.5 min to 16.5 min as the sample amount increased from 
15 g to 60 g.

Fig. 2. Effect of infrared drying power output on the moisture ratio of spinach leaves at constant  
sample amount of 15 g

Fig. 3. Effect of sample amount on the moisture ratio of spinach leaves at constant  
infrared drying power output of 400 W
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It can be clearly seen that there was a significant decrease in the drying times of the leaves as the infrared 
power output increased from 300 W to 500 W and the drying process took 3.5–10 min depending on the 
power level applied. Similar trends were reported by Sharma et al. (2005) for onion, Kocabiyik and Tezer 
(2009) for carrot and Doymaz (2011) for sweet potato slices. On the other hand, the studies carried out 
to investigate the effect of sample amount on drying times showed an opposite trend, i.e., by keeping the 
power output constant at 400 W, drying times increased from 4.5 min to 16.5 min as the sample amount 
increased from 15 g to 60 g.

Fig. 4. Effect of drying power output on the drying rate of spinach leaves at constant sample amount of 15 g

Fig. 5. Effect of sample amount on the drying rate of spinach leaves at constant
drying power output of 400 W

The drying rates were calculated from the amount of water removed per unit time and dry base. Therefore, 
the average drying rates of spinach leaves were within the general of range of 0.274–1.93 kg water/(kg dry 
base⋅min) depending on the condition which the drying process was applied. Figs. 4 and 5 show the effect 
of the infrared power output and sample mass on drying rate as a function of moisture content respectively. 
As can be seen, drying rate decreased as the infrared power output and moisture content of the samples 
decreased. At constant power output, increasing the sample amount resulted in decreased drying rates. In 
all cases constant drying rate period was not observed and therefore the drying process occurred in the 
falling rate region. Similar trends were recorded by Nowak and Lewicki (2004) for apple, Sharma et al. 
(2005) and Kumar et al. (2006) for onion, Shi et al. (2008) for blueberry, Kocabiyik and Tezer (2009) for 
carrot, Ruiz-Celma et al. (2009) for grape by-products, and Doymaz (2011) for sweet potato.
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4.2. ANN modeling

The accuracy of ANN models for the learning and the test data were presented in Figs. 6 and 7. As can be 
seen, a very good agreement between the experimental results and the ANN model was recorded. Besides, 
the results of the statistical investigations given in Table 1 also support this good agreement.

Fig. 6. Comparison of the experimental and the predicted data for the test data

Fig. 7. Comparison of the experimental and the predicted data for the learning data

Table 1. Statistical evaluation of learning and test data

Performance Training data Test data
R-square 0.99999 0.99995
MAPE (%) 0.00291 0.95262
RMSE 3.1945×10–6 0.00284

It can be clearly seen from the results that this methodology can accurately predict the drying behaviour 
of spinach leaves. Of course, many empirical and semi-empirical models available in the literature may 
be also suitable for this study. However, the superiority of ANN models over these models is not only 
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their accuracy but also their general better performance. ANN models can describe the whole range of 
experiments while the application of other correlations is only limited to a specific experimental condition. 
As in the case of this study, the ANN model proposed is able to describe the whole range of experimental 
conditions very accurately as discussed above.

4.3. Color measurements

Colour change of fruits and vegetables in a drying process is an important parameter as it directly affect 
consumer acceptance. As reported by Devahastin and Niamnuy (2010), it is the indication of retention of 
the pigment nutrients e.g., carotenoids, flavonoids, phenols, chlorophyll and betalains of dried fruits and 
vegetables. It can be clearly seen from the Tables 2 and 3, the values of L and b decreased while those 
of a increased as the power output and the sample amount increased. Similar trends were observed by 
Demirhan and Ozbek (2009) for microwave drying of basil.

Table 2. Effect of drying power output on the colour parameters of the spinach leaves of 15 g

Drying power 
output [W] L – a b

Fresh 40 (1.50)* 17.11 (1.22) 19.00 (2.50)
300 38.05 (1.33) 16.50 (0.50) 18.5 (0.80)
350 36 (1.25) 15.45 (0.62) 17.95 (0.74)
400 35.55 (1.05) 15.38 (0.55) 17.52 (0.65)
500 35 (0.89) 14.12 (0.58) 16.95 (0.55)

* Values given in the parenthesis indicate the standard deviations.

Table 3. Effect of sample amount on the colour parameters of the spinach leaves at constant drying power output 
of 400 W

Sample  
amount [g] L – a b

Fresh 40 (1.50)* 17.11 (1.22) 19 (2.50)
15 35.55 (1.33) 16.38 (0.50) 18 (0.80)
30 34.30 (1.25) 15.40 (0.62) 17.75 (0.74)
45 32.25 (1.05) 14.65 (0.55) 17.3 (0.65)
60 31.10 (0.89) 14.34 (0.58) 16.89 (0.55)

* Values given in the parenthesis indicate the standard deviations.

4.4. Rehydration capacities

Rehydration capacities can be taken as a measure of damage given to the material by drying process 
(Krokida et al., 1999). Fig. 8 shows that rehydration capacity increased by increasing drying power output 
and water rehydration temperature, because of less structural damage during rapid drying at high power 
outputs. However, increasing the sample amount resulted in lower rehydration capacities as can be seen 
from Fig. 9. This is because of more structural damages occurring during longer exposure times to infrared 
radiation at high sample amounts as reported by Demirhan and Ozbek (2010) for microwave drying of 
basil and Sarimeseli (2011) for microwave drying of coriander.
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Fig. 8. Effect of drying power output on the rehydration capacities of the spinach leaves of 15 g

Fig. 9. Effect of sample amount on the rehydration capacities of the spinach leaves at 400 W

4.5. Ascorbic acid degradation

Ascorbic acid is of interest as it is an essential phytochemical found in many fruits and vegetables and 
exhibits many health benefits. However, ascorbic acid is very susceptible to degradation during drying as 
mentioned previously (Devahastin and Niamnuy, 2010). It was observed that ascorbic acid degradation 
increased as the infrared power output increased at constant sample amount as can be seen in Fig. 10. 
Similar trends were observed by Dadali and Ozbek (2009) for microwave drying of okra and spinach, and 
Kaya et al. (2010) for hot air drying of kiwifruit. Increasing sample amount also caused vitamin C losses 
as shown in Fig. 11. This is because longer exposure times needed for higher amount samples result in 
higher degradation in ascorbic acid content as mentioned previously.
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Fig. 10. Effect of drying power output on the ascorbic acid degradation of the spinach leaves of 15 g

Fig. 11. Effect of sample amount on the ascorbic acid degradation of the spinach leaves at 400 W

4.6. Sensory analysis

Visual appearances of dried fruits and vegetables at the time of sale play a very important role in the quality 
judgement of consumers. Therefore, analysis including colour, texture and taste can be used in maintenance 
of product quality throughout the whole processing (Sarimeseli et al., 2014). Visual appearance, texture, 
flavour and colour evaluation of spinach leaves following infrared radiation were quite acceptable since 
they received scores above 5 out of 9. Both Table  4 and Table 5 show that no significant differences were 
found among the data recorded at various drying infrared power outputs.

Table 4. Effect of infrared drying power output on the sensory scores of the spinach leaves at constant sample 
amount

Drying power 
output [W]

Visual 
appearance Texture Flavour Colour Overall 

acceptance

250 7.15±0.50 7.23±1.58 6.80±1.10 7.10±0.98 7.00±1.15
300 6.98±0.98 6.99±0.95 6.90±0.95 7.05±1.20 6.95±1.23
350 6.51±1.10 7.11±1.20 7.05±1.37 6.75±1.70 6.90±1.20
400 6.48±0.75 7.02±1.23 7.17±0.99 6.90±1.10 6.80±1.52
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Table 5. Effect of sample amount on the sensory scores of the spinach leaves at 400 W

Sample 
amount [g]

Visual 
appearance Texture Flavour Colour Overall 

acceptance

15 6.51±1.10 7.11±1.20 7.05±0.87 6.75±1.73 6.80±1.20
30 6.80±0.99 7.00±1.25 6.08±1.17 7.11±1.22 7.10±1.20
45 6.95±1.53 6.75±1.12 6.35±1.33 7.04±2.05 6.99±1.50
60 6.65±1.15 6.53±1.82 6.29±1.01 6.88±1.81 6.89±0.92

5. CONCLUSIONS

In the present work, modelling infrared drying behaviour of spinach leaves with ANN methodology, 
and determining some quality parameters were carried out. The moisture ratios and drying rates were 
significantly influenced by the infrared power output and the sample amount. Increasing the infrared 
power output from 300 W to 500 W decreased the drying time from 10 min to 3.5 min, while increasing 
the sample amount increased the drying time from 4 to 16.5 min. The whole drying process of the spinach 
leaves occurred in the falling rate period. The experimental results obtained were successfully modelled 
with artificial neural network methodology which has great advantage of generality over the drying models 
suggested in literature. Both drying power outputs and sample amount affected the quality parameters, 
whereas the sensory scores were somewhat similar at all conditions. The values of L and b decreased 
while those of a increased as the power output and the sample amount increased. Rehydration capacity 
increased by increasing drying power output and water rehydration temperature, whereas, increasing the 
sample amount resulted in lower rehydration capacities. Vitamin C losses increased with increasing sample 
amount and power output values.
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