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RECONSTRUCTION OF THE BOUNDARY CONDITION IN THE PROBLEM OF THE BINARY ALLOY SOLIDIFICATION

ODTWORZENIE WARUNKU BRZEGOWEGO W ZAGADNIENIU KRZEPNIĘCIA STOPU DWUSKŁADNIKOWEGO

The solution of the inverse problem involving the designation of the boundary condition in the problem of the binary
alloy solidification for known temperature measurements at a selected point of the cast is presented. In the discussed model, the
temperature distribution is described by means of the Stefan problem with varying in time temperature corresponding to the
beginning of solidification and depending on the concentration of the alloy component. Whereas to describe the concentration,
the Scheil model was used.
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W pracy przedstawiono rozwiązanie zagadnienia odwrotnego polegającego na określeniu warunku brzegowego w zagad-
nieniu krzepnięcia stopu dwuskładnikowego, gdy znane są pomiary temperatury w wybranym punkcie odlewu. W rozważanym
modelu rozkład temperatury opisany został zagadnieniem Stefana ze zmienną w czasie temperaturą odpowiadającą początkowi
procesu krzepnięcia, zależną od stężenia składnika stopowego. Do opisu stężenia wykorzystano model Scheila.

1. Introduction

The inverse problem provides a very useful tool for
analyses of various processes [8, 9, 17, 28, 30]. Inverse
problems are used, when the causes of the described
phenomenon are unknown or not completely defined.
An explicit solution of such problem requires additional
information, for example, the temperature measurements
at given points of the domain.

The Stefan problem poses an important case of
heat transfer processes, involving mathematical mod-
els describing heat processes characterized by the
phase changes. For example: metal solidification, crys-
tal growth, food freezing, ice melting, etc. The Stefan
problem consists in the simultaneous designation of the
temperature distribution in the investigated domain and
the location of the phase change boundary, separating
the given domain to the sub-domains occupied by the
liquid and solid phases. In the inverse Stefan problem
it is usually assumed that the additional information,
compensating the absence of the input data, is partial
knowledge of the location of the phase change boundary,
its velocity towards the normal direction or the temper-
ature at selected points of the domain. The direct and
inverse Stefan problems are nonlinear problems. Their

non-linearity is the consequence of the Stefan condition
[18].

The inverse Stefan problem was discussed in nu-
merous works [6, 19, 22, 26, 34, 35]. For example, in
papers [6, 22, 26] application of the Adomian decom-
position method, the variation iteration method and the
homotopy perturbation method to the approximate so-
lution of one-phase inverse Stefan problem were dis-
cussed. Whereas, in [5,23-25] numerical algorithms en-
abling the approximate solution of the multi-dimensional
and multi-phase inverse Stefan problem were presented.

The issues of macrosegregation and the solidifica-
tion of binary alloy were considered in [10, 12-14, 16,
20, 21, 27, 29, 31, 32]. The majority of available pub-
lications are focused on direct problems. The inverse
problem is discussed in [3, 4, 21, 33].

In the model analyzed in the current paper the tem-
perature distribution is described by the Stefan problem
[2, 7, 15], where the solidification temperature depends
on the concentration of the alloy component. To describe
the concentration of the alloy component the Scheil mod-
el was used [1, 14]. This model is derived by assuming
the limiting form of the real course of the macroseg-
regation process. In the solidifying material the diffu-
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sion occurs both in the liquid phase, as well as in the
solid one. Because of diffusion coefficient in the solid
phase (D2) is considerably smaller than the one in the
liquid phase (D1), it is assumed in the Scheil’s model
that D2 = 0, whereas, D1 → ∞. The discussed problem
entails the designation of the heat transfer coefficient on
the boundary of the domain, where temperature mea-
surements are known for the selected point of the cast.

Fig. 1. Domain of the problem

2. Formulation of the problem

In domain Ω, occupied by a solidifying material,
two sub-domains changing with time are considered: Ω1
occupied by the liquid phase and Ω2 occupied by the
solid phase (Fig. 1). These domains are separated by the
phase change boundary Γg (moving boundary), which is
determined by varying in time liquidus temperature (or
the, so called, equivalent solidification point [14]). Tem-
perature distribution in each of the phases is determined
by the following heat conduction equation (i =1,2):

ci%i
∂Ti

∂t
(x, t) = λi

∂2Ti

∂x2 (x, t) , (1)

for x ∈ Ωi, t ∈ (0, t∗), where ci, %i and λi are the specific
heat, the mass density and the thermal conductivity in
the liquid phase (i = 1) and solid phase (i = 2), and t

and x refer to time and spatial location, respectively. On
the boundary Γ0 the following initial condition is given
(T0 > T ∗(Z0)):

T1(x, 0) = T0, (2)

where T0 is the initial temperature, T ∗ is the temperature
of solidification, Z0 is the initial concentration of alloy
component.

On the boundaries Γ1i(i = 1, 2) the following ho-
mogeneous boundary conditions of the second kind are
given

∂Ti

∂x
(x, t) = 0, (3)

whereas on the boundaries Γ2i(i = 1, 2) the boundary
conditions of the third kind are given

−λi
∂Ti

∂x
(x, t) = α (t) (Ti (x, t) − T∞) , (4)

where α(t) is the heat-transfer coefficient and T∞ is the
ambient temperature.

On the phase change boundary Γg the temperature
continuity condition and the Stefan condition are given

T1 (ξ (t) , t) = T2 (ξ (t) , t) = T ∗ (ZL (t)) , (5)

L%2
dξ (t)
dt

= −λ1
∂T1 (x, t)

∂x

∣∣∣∣∣∣
x=ξ(t)

+λ2
∂T2 (x, t)

∂x

∣∣∣∣∣∣
x=ξ(t)

, (6)

where T ∗ is the temperature of solidification, ZL(t) is
the concentration of the alloy component on the phase
change boundary at the liquid side, L is the latent heat
of fusion, ξ(t) is a function describing the location of
the phase change boundary.

The process of macrosegregation, occurring in the
alloy, is described by the Scheil model [14]. In this
model, because of the diffusion coefficient in the solid
phase is considerably smaller than in the liquid phase,
it is assumed that D2 = 0. On the other hand, the con-
vection occurring in the liquid chase causes the level-
ing of the concentration of the alloy component in this
phase, therefore it is assumed that D1 → ∞. Let us
introduce the discretization of the interasol [0, t∗] with
nodes ti, i = 0, 1, ..., p∗ and assume that the values of
the concentrations at moments ti, for i = 1, 2, ..., p, are
known. Then, on the base of the mass balance of the
alloy component in the cast domain for time tp+1, the
following equation may be derived

m0Z0 = mL

(
tp+1

)
ZL

(
tp+1

)
+

p+1∑

i=1

mS (ti)ZS (ti) , (7)

where m0 is the alloy mass, Z0 is the initial concentration
of the alloy component, ZL(ti) and ZS(ti) are concentra-
tions of the alloy component on the phase change bound-
ary in the liquid and solid phases at moment ti,mL(ti) and
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mS(ti) denote the alloy masses in the solid and liquid
phases at moment ti. Taking advantage of the partition
coefficient k =

ZS(t)
ZL(t)

, the above equation may be trans-
formed into the following form

ZL

(
tp+1

)
=

m0Z0 −
p∑

i=1
mS (ti)ZS (ti)

kmS

(
tp+1

)
+ mL

(
tp+1

) . (8)

The examined domain is divided into control vol-
umes V j with the length of ∆x j, j = 0, ..., n. If the con-
tribution of the solid phase in volume V j at moment t
is designated as f j(t), then the alloy mass at the solid
and liquid states, contained in volume V j at moment t,
is expressed by the equation

mS, j(t) = V j%2 f j(t), (9)

mL, j(t) = V j%1(1 − f j(t)). (10)

Making use of the above dependencies, equation (8) may
be expressed as

ZL

(
tp+1

)
=

=

b%1Z0 − %2

p∑
i=1

ZS (ti)
(

n∑
j=0

(
∆x j

(
f j (ti) − f j (ti−1)

)))

k%2
n∑

j=0

(
∆x j

(
f j

(
tp+1

)
− f j

(
tp
)))

+ %1
n∑

j=0

(
∆x j

(
1 − f j

(
tp+1

))) .

(11)
In the discussed inverse problem for given temper-

ature values ((xi, t j) ∈ Ω × (0, t∗)):

T (xi, t j) = Ui j, i = 1, 2, ...,N1, j = 1, 2, ...,N2, (12)

where N1 denotes the number of sensors, and N2 the
number of measurements taken from each sensor, the
task is to designate the heat-transfer coefficient α(t).
For known values of the heat-transfer coefficient the dis-
cussed problem becomes a direct problem, the solution
of which will make it possible to derive temperatures
Ti j = T (xi, t j). Using the calculated temperatures Ti j
and given temperatures Ui j, a functional determining the
error of the approximate solution may be constructed

J (α) =

N1∑

i=1

N2∑

j=1

(
Ti j − Ui j

)2
. (13)

3. Solution method

To solve a direct Stefan problem (equations (1)–(6)),
the alternating phase truncation method was applied [11,
23]. In this method, in place of temperature T we insert
an enthalpy

H (T ) =

T∫

0

c (u) % (u) du + η (T ) L%2, (14)

where

η (T ) =


1 for T > T ∗ (ZL (t)) ,
0 for T 6 T ∗ (ZL (t)) .

(15)

Function H(T ) is discontinuous in the point given by
the temperature of the phase change T ∗. Its left-hand
and right-hand limits at this point will be denoted as Hs
and Hl:

Hs =

T ∗(ZL(t))∫

0

c (u) % (u) du, (16)

Hl = Hs + L%2. (17)

If we use equation (14) in the Stefan problem, we will
obtain in both phases a heat conduction equation, where
the temperature will be replaced with enthalpy.

The algorithm of the alternating phase truncation
method (for one time’s step) consists of two stages. In
the first stage, we reduce the entire domain to a liq-
uid phase, i.e. to the points at which the value of the
enthalpy is smaller than Hl, we supply (conventionally)
such quantity of heat, that the enthalpy equals to Hl.
The, so obtained, heat transfer problem in a one-phase
domain can be solved by one of the known methods (in
the calculations we use the finite element method), ob-
taining thereby an approximate distribution of enthalpy.
At points to which we have supplied a certain amount
of heat, the same amount must be now deducted. Af-
ter this operation we obtain the distribution of enthalpy,
which is treated as a starting point for the second stage
of calculations.

In the second stage, we reduce the whole domain to
a solid phase, i.e. at those points of the domain, where
the enthalpy value is higher than Hs, we carry away
(symbolically) such amount of heat, that would allow
the enthalpy to adopt a value equal Hs. Like in the first
stage, we find an approximate distribution of enthalpy.
At the end of the second stage, at the points where we
artificially carried away a certain amount of heat, we
add the same amount of heat. This completes the second
stage and, at the same time, one step of the calculations
(transfer from time ti to time ti+1) of the alternating phase
truncation method.

The contribution of the solid phase in volume V j at
moment t is designated from the following relation

f j (t) =
H

(
x j, t

)
− Hs

Hl − Hs
, (18)

where H(x j, t) denotes enthalpy at point x j ∈ V j and at
moment t (it is assumed, that the enthalpy is constant in
the control volumes).
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Next, on the base of (11), the value of the alloy
concentration component ZL(tp+1) at moment tp+1 is cal-
culated, designating, in this way, a new value of tem-
perature solidification T ∗(ZL(tp+1)), and, simultaneously,
new boundary values of enthalpy Hs and Hl.

To find the minimum of the functional (13) a ge-
netic algorithm is used. The calculations involve the use
of real number representations of the chromosome and
tournament selection. The algorithm also includes an
elitist model, in which the best specimen of the pre-
vious population is remembered and, if in the current
population all specimens are worse, the worst specimen
of the current population is replaced by the remembered
best specimen of the previous population. The study al-
so uses arithmetical crossover operator and nonuniform
mutation operator [23, 25]. The calculation were based
on the following values of the genetic algorithm: popu-
lation size npop = 100, number of generations N = 100,
crossover probability pc =0.7 and mutation probability
pm =0.1.

4. Example of computations

In the example the considered alloy was Cu-Zn (10%
Zn) [14]: b =0.08 [m], λ1 = λ2 = 120 [W/(m K)], c1 = c2
= 390 [J/(kg K)], %1 = %2 = 8600 [kg/m3], L = 190000
[J/kg], k =0.855, Z0 =0.1, temperature of solidification
T ∗(ZL) = 1356 – 473.68 ZL [K], the ambient temperature
T∞ = 298 [K] and initial temperature T0 = 1323 [K].

The values of four parameters: αi, i =1,2,3,4, were
designated in the inverse problem (Fig. 2):

α (t) =



α2−α1
t1

t + α1
α3−α2
t2−t1 t +

α2t2−α3t1
t2−t1

α3 exp
(

1
t3−t2 ln

(
α4
α3

)
(t − t2)

)

α3 exp
(

1
t3−t2 ln

(
α4
α3

)
(t∗ − t2)

)

for t ∈ [0, t1] ,
for t ∈ (t1, t2] ,
for t ∈ (t2, t∗] ,
for t > t∗,

(19)
where t1 = 38, t2 = 93, t3 = 350, t∗ = 750 [s]. The exact
values of the heat transfer coefficient were as follows

α1 = 1200, α2 = 800, α3 = 600, α4 = 250[W/(m2K)].

It was assumed, that in the tested domain there is
one thermocouple (N1 = 1) placed at the distance of 10
mm from the domain boundary. Temperature readings
were taken at every 0.1, 0.4, 1 and 4 s. The calcula-
tions were based on the exact values of temperature and
on the values disturbed by random error with normal
distribution and values 1%, 2% as well as 5%.

In Table 1, the results of reconstructing the sought
parameters are compiled. The table contains the re-
sults derived for the exact input data and a variable
number of the measurement points. It also specifies

the mean values of the designated parameters αi (se-
lected from 15 start-ups of the algorithm for different
initial set-ups of the generator of the pseudo-random
numbers), the relative percentage errors of the recon-
struction of the parameters, and the values of standard
deviations. It is clear, that at each time the bound-
ary conditions are reconstructed with minimal errors,
which are a consequence of the assumed criterion of
ending the algorithm. In the case of the exact input
data, the maximal error of the reconstruction of the
sought parameters did not exceed 0.09%. The succes-
sive start-ups of the algorithm rendered similar results,
which is proved by a low value of the standard deviation.

Fig. 2. Function α(t)

TABLE 1
Results of reconstructing the sought parameters for different

number of the measurement points and exact input data (δ – value
of the relative error, σ – value of the standard deviation)

αi δ[%] σ αi δ[%] σ

0.1 s 0.4 s

1200.051 0.0042 3.4419 1200.184 0.0154 2.8280

799.569 0.0539 3.0172 800.003 0.0003 2.2004

599.752 0.0413 1.1978 599.670 0.0550 0.8294

250.225 0.0899 0.2798 250.116 0.0462 0.2069

1 s 4 s

1199.526 0.0395 1.0013 1200.503 0.0419 2.0637

800.041 0.0052 0.4542 799.918 0.0103 1.1462

600.095 0.0158 0.0887 599.934 0.0111 0.4178

249.972 0.0114 0.0383 250.023 0.0093 0.1774

In Figures 3 and 4, the reconstruction errors of the
sought parameters are shown, for the case in which the
initial data were burdened with disturbance. Figure 3
illustrates the results obtained in the case of temperature
readings taken at every 0.1 s and 4 s for different values
of the disturbances in the input data. Figure 4 shows
the results obtained for the input data burdened by the
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Fig. 3. Errors in the reconstruction of the heat transfer coefficient for
temperature measurements at every 0.1s (a) and 4s (b) and different
errors in the input

Fig. 4. Errors in the reconstruction of the heat transfer coefficient for
different number of temperature measurements (calculations for data
burdened by errors of 2% (a) and 5% (b))

disturbance of 2% and 5% and for different number of
the control points (temperature measurements taken at
every 0.1, 0.4, 1 and 4s). It may be observed, that in
each case the errors in the reconstruction of the boundary
conditions (with disturbed initial data) are smaller than
the initial data errors. In the case of the disturbance of
1% the errors did not exceed 0.62%, for the disturbance
of 2% the errors did not exceed 1.86%; whereas, for
the disturbance of 5% the errors did not exceed 4.96%.
The increase in the number of the control points or the
decrease in the value of the initial data cause more exact
reconstruction of the values of the sought parameters.

In Table 2, the errors of the reconstruction of tem-
perature at the measuring point are compiled at each 1 s
and 4 s. Whereas, in Figure 5, the absolute errors of the
reconstruction of temperature at the measuring point are
compiled for the exact input data and for the data bur-
dened by errors 5% and the temperature measurement at
each 4 s. As seen from the results, the temperature distri-
bution is reconstructed very well every single time. The
biggest discrepancy occurred for the smallest number of
the measurement points and the biggest disturbance of
the initial data. In such case, the absolute reconstruc-
tion error was 7.5741 K, whereas the mean value of the
absolute error was equal to 1.7618 K. The relative er-
rors were 0.5826% and 0.1483%, respectively. For more
measurements or minor input data errors the differences
in the reconstruction of the temperature distribution were
smaller. For example, for temperature readings taken at
every 0.1 s and the exact input data the errors were:
0.0641 K, 0.0354 K, 0.0053% and 0.003 %.

TABLE 2
Errors in the reconstruction of temperature at the measurement
point for temperature measurements taken at every 1 s and 4 s

(∆mean – mean value of the absolute error, ∆max – maximum value
of the absolute error, δmean – mean value of the relative error, δmax –

maximum value of the relative error)

Per 0% 1% 2% 5%

1s

∆mean [K] 0.0063 0.1770 0.3054 1.3676

∆max [K] 0.2786 5.0424 6.8117 6.1970

δmean [%] 0.0005 0.0150 0.0254 0.1155

δmax[%] 0.0215 0.3856 0.5237 0.4739

4s

∆mean [K] 0.0050 0.1935 0.6595 1.7618

∆max [K] 0.2687 5.1121 7.2629 7.5741

δmean [%] 0.0004 0.0163 0.0554 0.1483

δmax[%] 0.0207 0.3910 0.5554 0.5826
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Fig. 5. The absolute errors of the reconstruction of the temperature
at the measurement point for temperature measurements taken at
every 4 s (calculations for the exact input data (a) and the input data
burdened by errors of 5% (b))

5. Conclusions

The presented examples of calculations show a very
good approximation of the exact solution and stability
of the algorithm in terms of the input data errors. Ac-
cording to the results, any increase in the control points
or decrease in the input data errors result in more exact
reconstruction of the values of the parameters, and, at the
same time, better reconstruction of the exact temperature
distribution.
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