
Introduction

Protection of water sources needs prior research on the 
determination of possible sources of pollution. To this purpose, 
using the Frequentist and Bayesian approaches nitrate export 
coeffi cient modeling of the Melen Watershed is dealt with 
during this research. Modelling the export coeffi cients is 
a convenient way to analyze the effects of diffuse pollution in 
a research area. Moreover, refering to Fu (2012), retention of 
nutrients in the water body was also taken into consideration. 
Export coeffi cients are usually determined with help of load 
measurements at an outlet of a subwatershed where there is 
a single dominant land use (Brigault and Ruban 2000, Zobrist 
and Reichert,2006). In order to estimate the export coeffi cients 
it is assumed that the export coeffi cients for the same land use 
category are the same in all subwatersheds. 

Notable researchers regarding the export coeffi cients 
such as Rast and Lee (1983), Dillon and Kirchner (1975) used 
the same/similar approach. They observed concentrations of 
nutrients in streams (e.g. mg/L) then converted that value 
to load by multiplying with discharge (e.g. m3/s). Usually, 
they had daily fl ow rates and monthly or quarterly nutrient 
concentrations that are interpolated to account for days. De 
Klein and Koelmans (2011) calculated inputs to surface 
water and exports for 13 lowland river catchments in Western 
Europe, on a monthly basis. The catchments varied in size (21 
to 486 km2), while annual in-stream retention ranged from 
23 to 84% for N. A novel calculation method is presented 

that quantifi es monthly exports from lowland rivers based on 
an annual load to the river system. The agreement between 
calculated values and calibration data was high (N: r2 = 0.93; 
p < 0.001). Validation of the model also showed good results 
with model effi ciencies for the separate catchments ranging 
from 31 to 95% (average 76%). This indicates that exports of 
nitrogen on a monthly basis can be calculated with few input 
data for a range of West European lowland rivers (De Klein 
et al. 2011). Wickham et al. (2005) found that land cover is 
the main driver of nutrient export, and regional variation is 
insignifi cant. Wickham et al. (2008) noticed that the variances 
of N and P concentrations among different land uses within 
ecological regions were respectively six and three times greater 
than the variance among different ecological regions. Though, 
an effect of different ecological regions is less signifi cant 
compared to different land use compositions. Studies on distinct 
geographical regions defi nitely lead to different results. Most 
of the studies that deal with nutrient export were conducted in 
the USA. Current research could extend it to Europe.

There are also some analytical models to estimate the 
pollutant removal effi ciency for surface waters. Yang et 
al. (2014) successfully applied a screening-level modeling 
approach to estimate nitrogen loading in Tippecanoe River 
watershed. Screening-level is not statistical but an advanced 
analytical model consists of both hydrological and water 
quality parameters. Although screening-level model is a very 
comprehensive approach, it is not very favorable if there is no 
wide range of spatial and temporal observed data for a variety 
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Abstract: Nutrient pollution such as nitrate (NO3
-) can cause water quality degradation in rivers used as a source 

of drinking water. This situation raises the question of how the nutrients have moved depending on many factors 
such as land use and anthropogenic sources. Researchers developed several nutrient export coeffi cient models 
depending on the aforementioned factors. To this purpose, statistical data including a number of factors such 
as historical water quality and land use data for the Melen Watershed were used. Nitrate export coeffi cients are 
estimates of the total load or mass of nitrate (NO3

-) exported from a watershed standardized to unit area and unit 
time (e.g. kg/km2/day). In this study, nitrate export coeffi cients for the Melen Watershed were determined using 
the model that covers the Frequentist and Bayesian approaches. River retention coeffi cient was determined and 
introduced into the model as an important variable.
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of hydrological and water quality parameters. However 
statistical methods may provide reliable results closest to 
analytical ones without needing complicated data. A typical 
example of this situation is the research of Zobrist and Reichert 
(2006) in Swiss Watersheds, where they applied the Bayesian 
approaches successfully to estimate nitrate export coeffi cients. 

The Frequentist and the Bayesian techniques were 
applied in order to estimate export coeffi cients for the Melen 
Watershed in Turkey. Instead of calculating the contributions of 
subwatersheds individually, whole watershed was considered for 
the estimation of total load at the outlet of the Melen Watershed 
using the calculated nutrient export coeffi cients. The frequentist 
approach has the goal of extracting information from data only, 
without relying on the prior knowledge (Ramirez and Sanz, 
2013). In contrast to the Frequentist approach, the Bayesian 
approach has the goal of combining prior knowledge with data 
to optimally use both sources of information. Success of the 
Bayesian approach is directly proportional to the suffi ciency 
of data for acquiring the prior information about estimands 
(Essahale et al. 2010, Lee 2012). The Bayesian analysis was 
conducted using the IBM SPSS AMOS software and posterior 
information about land use based export coeffi cients was 
obtained through the MCMC (Markov Chain Monte Carlo) 
method. Estimated land use based nutrient export coeffi cients 
are in kg/km2/day unit. In addition, monthly river retention 
values of nitrate in all subwatersheds of the Melen Watershed 
were estimated. This information was used in order to predict 
nitrate export coeffi cients appropriately. The results show that 
the frequentist approach gives closer estimates to the observed 
values compared to the Bayesian approach.

Study Area
The Melen Watershed is located in Western Black Sea region of 
Turkey (Figure 1). It has the 2437 km2 area (Ozturk et al. 2008). 
The Melen Watershed is bounded by the Bolu Mountains to the 
east, the Sakarya Province to the west, the Orhan Mountains 
to the north, and the Abant Mountains to the south. The Melen 
Watershed provides fresh drinking water to most of Istanbul. 

According to the Ministry of Forestry and the Water Works of 
Turkey, regarding the pollution status, the Melen River Basin 
should be dealt with primarily.

The Melen River Basin is currently under the threat of land 
based pollution. Sumer et al. (2001) revealed in their research 
that its water can be classifi ed as water class number 2 out of 
4. Since 2001, settlements and the population in the watershed 
have increased. As far as it is known there are no agricultural 
or urban best management practices applied in the region. 
Therefore, a signifi cant decrease in the water quality of the 
river in the future is expected.

Two main rivers are located in the Melen Waterhed. These 
are the Buyuk Melen and the Kucuk Melen rivers (Figure 1). 
The government constructed a water regulator close to the 
outlet of the Buyuk Melen River. Fresh water is pumped to 
Istanbul with a 150 km long pipe. Protection of water quality in 
the Melen Watershed is also vital for Istanbul’s drinking water 
quality.

In Figure 1, red bullets indicate sampling sites for data 
gathered from the State Hydraulic Works of Turkey (DSI, 
2011). This data covers crucial information about the historical 
trend of the pollution in the Melen Watershed. Also, pink bullets 
indicate sampling sites for data measured by İstanbul Technical 
University (Ozturk et al. 2008) from different locations in the 
Melen Watershed, including headwater subwatersheds.

Materials and Methods
The simplest export coeffi cient model assumes that average 
diffuse loads can be estimated by a sum of export coeffi cient 
terms regarding the different specifi c land use types (Zobrist 
and Reichert 2006). Measurements in Melen Watershed were 
conducted weekly, sometimes daily as long as the weather 
conditions were suitable, or twice a month. Hence monthly 
average values were calculated using the mean value of these 
measurements. These values are the “monthly average daily 
values”. Temporally averaged (monthly average daily values) 
loads from a number of subwatersheds can be quantifi ed using 
Equation (1):

 
Fig. 1. The Melen Watershed, its rivers, and coordinates of sampling points in WGS84 Datum UTM coordinate system 36N
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Where j is the index labelling the subwatershed, i is the index 
labelling the land use types (10.66% meadows and pastures, 
0.66% lakes and rivers, 36.02% agricultural area, 51.25% 
forest, and 1.46% urban area), Li,j is the average load at the 
outlet of subwatershed j as predicted by the model, Ei,j is the 
nutrient export coeffi cient of i land use type, Ai,j is the area of 
the i land use in jth subwatershed (Figure 2), R is the percent 
river nutrient retention coeffi cient.

The watershed is delineated into discrete subwatersheds 
for enabling the modeling to represent the spatial heterogeneity 
in the catchment. The delineation of the Melen Watershed was 
carried out based on a Digital Elevation Model (DEM) created 
in 10 m. × 10 m. resolution by both digitizing topographical 

map sheets and modifi ying the available vector maps. Created 
DEM was imported to Arcview grid format with proper 
projection (UTM – Zone 36 N – WGS84 Datum).

Each subwatershed has a contribution on the total load at 
the outlet of the Melen Watershed. In order to quantify their 
contribution, fl ow path of the whole watershed has to be 
specifi ed. Figure 3 shows the fl ow path or the direction of the 
fl ow at the watershed. 

The retention and loss of nutrients in river systems can have 
signifi cant detrimental consequences on downstream water 
quality (Donohue et al. 2005, Hogan et al. 2012, Vsetickova et 
al. 2012, Izagirre et al. 2013). Peterson et al. (2001) examined 
the nitrogen removal effi ciencies of headwater streams from 
all over the United States. They found that the smaller the 
stream (lower the order), the higher the effi ciency for removal 
of nitrogen (N) is. This is because the water is in greater 
contact with various biofi lm surfaces in smaller streams. On 

Fig. 2. Land use map for the Melen Watershed

 
Fig. 3. Subwatersheds, rivers, and fl ow path of the Melen Watershed
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average, dissolved inorganic nitrogen (both NH4
+ and NO3

−) is 
removed at a rate of 64% per kilometer of a stream. The small 
size of the stream ensures a large amount of water-sediment 
contact, which removes nitrogen from runoff via nitrifi cation 
and denitrifi cation by bacteria in the sediments (Peterson et al. 
2001). 

According to De Klein and Koelmans (2011), monthly 
retention of nitrogen is estimated from surface water area 
specifi c runoff (Equation (2)). Nitrate retention was calculated 
using the Equation (2) assuming that percent retention of NO3

- 
is almost equal to percent retention of total N in the rivers of 
Melen Watershed. 
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Where Qi is the average (monthly) discharge (m3/s), SW is 
the total area of surface water in the catchment (ha), Ri is the 
retention fraction (-), i is the index for month (-).

Statistical methods are used to do predictions that are 
as close as possible to the observed values. One of the most 
preferred methods of parameter estimation for distribution 
fi tting is the Maximum Likelihood Method (Law and Kelton 
1991). Maximum Likelihood Estimation (MLE) seeks the 
parameter values that are most likely to produce the observed 
distribution (Gardner 2012, Meer et al. 2013, Nichols et 
al. 2013). The basic goal of using MLE is to determine the 
parameters that maximize the probability or likelihood of the 
sample data.

MLE consists of three steps. These are: specifying the 
likelihood function, taking derivatives of likelihood with 
respect to the parameters, setting the derivatives equal to zero 
and solving for the parameters. 

When assuming normally and independently distributed 
stochastic errors that add to the results of the deterministic 
function given by the Equation (1), the likelihood functions of 
the export coeffi cient model for loads become (Equation (3)):
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Where x = (x1, ... , xn) is the vector of loads of the watershed, 
σx is the standard deviation of the normal distribution of loads 
or concentrations around the deterministic model results, and 
Lj is the average load at the outlet of the watershed according 
to the Equation (1).

In the frequentist approach, the parameter estimates are 
determined by maximization of the likelihood function shown 
in the Equation (3) into which measurements are substituted 
for the argument describing the outcomes (Equation (4)):
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Where argmax stands for the argument of the maximum, that 
is to say, the set of points of the given argument for which the 
value of the given expression attains its maximum value. In 
this equation, Ê  are the estimates of the export coeffi cients E 

as introduced in Equation (1), 2ˆ xσ  is the estimate of the variance 
of the additive stochastic error term 2

Xσ  , fx is the likelihood 
function of the model, and x values are the measured loads at 
the watershed outlet.

The frequentist approach requires a well-defi ned maximum 
of the likelihood function in order to provide unique results 
(Cowan 2012). For the normal distribution; N(μ,σ2) or N(E,σ2) 
has probability density function and the likelihood as seen in 
Equations (5)-(6) respectively. In Equation (6) x  is the sample 
mean.
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This distribution has two parameters (E, σ2), so 
we can maximize the likelihood over both parameters,

( ) ),|,...,(, 1 σσ ExxfEL n= . Logarithm is continuously 
increasing function over the range of likelihood. The values 
which maximize the likelihood will also maximize its logarithm 
(Cowan 2012). Maximizing logarithm requires less algebra. 
Log likelihood is differentiated with respect to E and equated 
to zero as follows (Equation (7)). Similarly we differentiate 
the log likelihood with respect to σ and equate to zero 
(Equation (8)).

(7)

( ) ( )( )

( ) ( )( )
0

22
1ln

2
exp

2
1ln

2
1

22
2/

2

2
1

22
2/

2

=
−+−

−+
∂
∂=

−+−
−

∂
∂

=

=

σπσ

σπσ

n

i
in

n

i
in

ELxnxx

E

ELxnxx

E

(8)

( ) ( )( )

( ) ( )( )

( ) ( )( )
0

22
1ln

2
exp

2
1ln

3
1

22

2
1

22

2

2

2
1

22
2/

2

=
−+−

+−=

−+−
−+

∂
∂=

−+−
−

∂
∂

=

=

=

σσ

σπσσ

σπσσ

n

i
i

n

i
i

n

n

i
in

ELxnxx
n

ELxnxx

ELxnxx

 



48 M.E. Akiner, A. Akkoyunlu

Maximum likelihood estimator calculated from the 
above two derivatives for θ=(E,σ2) is symbolized as seen in 
Equation (9): 

 ( )2ˆ,ˆˆ σθ E=   (9)

In contrast to the Frequentist approach, the Bayesian 
approach has the goal of combining prior knowledge with 
data to use both sources of information optimally (O’Reilly 
et al., 2012). Prior knowledge on parameter values has to be 
formulated as a prior probability density, ( )2, xprior Ef σ  , and is 
then updated to the posterior density by applying Equation (10). 
The constant of proportionality is calculated by normalization 
of the posterior density. This technique has the advantage of 
still being applicable if the parameters are not identifi able from 
data. In the case of poor identifi ability, the posterior distribution 
is not much different from the prior (Gelman 2006, Morris et 
al. 2012). In the case of high information content of data, it is 
typically much narrower. The disadvantage of this technique is 
that use of prior information introduces a subjective element 
into data evaluation procedure.

 ( ) ( ) ( )222 ,,, xpriorXxxpost EfExfxEf σσσ ⋅∝   (10)

In the Frequentist inference, any given experiment is 
considered as one of an infi nite sequence of possible repetitions 
of the same experiment with statistically independent results 
(Everitt, 2006). The independent and identically distributed 
observations (x1,…, xn) come from the sampling distribution 
f(X | θ) where θ is the fi xed parameter value. 

The MCMC is a simulation technique that computes 
posterior values of interest by sampling from posterior 
distributions (Huang and Yu 2010, Konomi et al. 2013). The 
Bayesian posterior distribution is obtained by the MCMC 
method. This is benefi cial for multi-parameter models where 
it is hard to have algebraic solution. The MCMC algorithms 
are computational tools that allow for the generation of 
random numbers from the posterior distribution ( )Xθπ *  
using the numerator of the expression in Equation (11) without 
calculating the integral in the denominator (Lele et al. 2007).
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Where f (x1, x2,…, xn| θ) is the likelihood, ( )Xθπ *  is the 
posterior, and π(θ) is the prior distribution.

Parameter estimation depends on the frequency distribution 
of data. The main goal is to fi nd which distribution fi ts data 
better. For this aim, the Kolmogorov-Smirnov’s goodness of 
fi t test was performed, since it is applicable even for a sample 
consisting of a small number of observations. According to the 
results of this test, best-fi tting distributions were identifi ed. 
Additionally, there should be a single term (e.g. mean or μ) that 
consists of all desired parameters (Forest EFor, agricultural EAgr, 
meadows EMea and residential area (ERes) export coeffi cients) 
to take its derivative. Hence, it is not necessary to deal with 
a distribution that has complex multiplicative terms. While 
selecting the appropriate distribution for the Frequentist 

Approach, this situation was also taken into consideration. 
Setting the derivative of the likelihood function with respect 
to a single term to zero and solving for the unknown term 
leads to four equations with the aforementioned four unknown 
parameters. In this study, solutions for four linearly independent 
equations for four unknowns were obtained using the Direct 
Search optimization package of the Maple 15 Pro.

Results and Discussion
According to the Kolmogorov-Smirnov’s goodness of fi t test 
and the consideration above, the frequency distribution of the 
nitrate load data at the outlet of the Melen Watershed is defi ned 
as the Inverse Gaussian. The Inverse-Gaussian distribution of xi 
is described by two characteristics, a mean μ > 0 and precision 
λ > 0 . See Equation (12) for the probability density function.
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Where μ > 0 is the mean. λ > 0 is the shape parameter, variance 
is given by μ3/ λ.

Maximum likelihood is the Frequentist but it is also 
a part of the Bayesian inference. Table 1 shows estimations 
for NO3

- export coeffi cients (kg/km2/day) using the Frequentist 
approach as the mean monthly average daily value for 
each year. By applying the procedure shown in Equations 
(5)–(9), considering that the distribution is the inverse Gaussian, 
unknown export coeffi cient parameters can be calculated. For 
each year between 1995 and 2006, export coeffi cients for 
different land use types were calculated.

Estimated nutrient export coeffi cients are in kg/km2/day unit. 
In other words, every day, export coeffi cient times kg of nitrate 
load is emitted per km2. Retention in the water body was taken 
into account for the estimation of export coeffi cients. Briefl y, 
values in Table 1 multiplied by the corresponding land use area 
and (1 – retention coeffi cient) give us the daily nitrate load 
estimation in kg per km2. Overall estimation for nitrate load was 
calculated using mean value of the predicted export coeffi cient 
values (Mea=0.759; Agr=2.749; For=0.606; Res=1.678).

The key issue that differs the Bayesian estimation from 
the Frequentist approach is to use the prior information about 
estimands. Headwater subwatersheds are not affected by 
other subwatersheds. Headwater subwatersheds of the Melen 
Watershed are subwatersheds 2, 5, 6, 8, 9 and 10 (see Figure 
3). It is necessary to use the observed data from headwater 
subwatersheds in order to defi ne prior distributions of the land 
use based export coeffi cients. This prior information helps us 
to see what is the distribution of export coeffi cient frequencies, 
what is their mean, standard deviation, etc. Sometimes use of 
high level prior information is crucial. To this purpose, the usual 
method of getting this prior information is to have sampling 
stations in such an area where a single land use is dominated. 
More precisely, if it is required to observe a prior distribution 
for agricultural area nutrient export coeffi cient (Agr or EAgr), 
we need to sample in an area that is agriculturally dominated. 

First of all, the observed data from headwater subwatershed 
6 were analyzed since forest area is dominated (91.15%) in this 
subwatershed. After getting information for forest area nutrient 
export coeffi cient (EFor), data from headwater subwatersheds 
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10, 2 and 8 were consecutively analyzed in order to specify 
agricultural (EAgr), meadows (EMea) and residential area (ERes) 
nutrient export coeffi cients, respectively. Please notice that 
the observed data available from these subwatersheds were 
in a suffi cient amount only for nitrate parameter. Thus prior 
distributions were created for the nitrate export coeffi cients of 
each type of land use (Mea, Agr, For, Res). Then the Bayesian 
estimation was able to start. 

Using the IBM SPSS AMOS software (Arbuckle 2009), 
the Bayesian analysis was conducted and posterior information 
about land use based nitrate export coeffi cients was obtained 
using the MCMC method. Single value for each land use based 
nitrate export coeffi cients was estimated using whole monthly 
data from January 1995 to December 2006. In the AMOS, 
parameter confi guration for the analysis is important (Chenini 
and Khemiri 2009, Loehlin 2013). During the Bayesian 
analysis, nitrate loads exported from each type of land use (Mea, 
Agr, For, Res) were selected as independent variables and total 
nitrate exported (NO3

-) at the outlet in kg/km2/day was selected 
as a dependent variable. Dagum, Gamma, Kumaraswamy and 
Wakeby distributions were encountered during the Bayesian 
analysis phase of this study. 

Prior information is not always very informative. It is 
a must to have good agreement between the Frequentist 
approach and the Bayesian approach with a non-informative 
prior. Figure 4 shows that the assigned priors are highly 
informative for the Bayesian estimation. The Bayesian 
approach does not give close estimations to the Frequentist 
MLE solution. Posterior distribution is signifi cantly different 
than the prior and the likelihood. The Bayesian approach 
gives different estimates for land use based nitrate export 
coeffi cients. On the other hand, predicted yearly average 
nitrate loads (kg/day) using either the Bayesian approach or 
the Frequentist approach have determination coeffi cient (R2) 
values close to each other (R2=0.75 for the frequentist approach 

and R2=0.74 for the Bayesian approach). Frequentist approach 
gives closer estimates to the observed values with respect to 
the Bayesian approach (Figure 4). A sample application of 
both the Frequentist and the Bayesian approaches for land use 
based nitrate export coeffi cients was shown in detail. Predicted 
nitrate export coeffi cients were tabulated in Table 2.

Conclusion
The primary objective of this research is to create a unique 
nutrient export coeffi cient model for the Melen River Basin, 
which has the wide range of land use characteristics. While 
doing this, retention coeffi cient and also the effect of the 
draining upper subwatershed were considered. Two different 
but related techniques were used for the modeling of nutrient 
export coeffi cients. These are so called the Frequentist 
approach or the maximum likelihood estimation and the 
Bayesian estimation using the MCMC algorithm. For the 
latter technique, the AMOS software was used. The Bayesian 
estimation differs from frequentist approach since it uses the 
prior information about estimands. 

Based on the results, we can conclude that the Frequentist 
approach gives better estimations with respect to the Bayesian 
approach. Reliability of the results depends on the quality of 
the data used. Field works, especially sampling in dominated 
land use areas, helps to specify more reliable prior distribution 
of each land use based nutrient export coeffi cients in order to 
get more precise estimations, particularly through the Bayesian 
approach. The Frequentist approach gives convincing results. 
Results from the Bayesian approach would have been better if 
there could be a suffi ciently large temporal data for headwater 
subwatersheds. Further studies, which take this issue into 
account, will need to be undertaken. This study has important 
fi ndings for developing export coeffi cient models and it is 
intended to guide researchers on the subject.

Table 1. Estimated NO3
- export coeffi cients (kg/km2/day) using frequentist approach

Whole watershed – NO3
- – Export coeffi cient (kg/km2/day). 

Mean “monthly average daily” values for each year

Year Meadows Brush and Pasture Agricultural Forest Residential

1995 0.595 2.687 0.505 1.901

1996 0.508 2.084 0.405 1.206

1997 0.708 3.544 0.612 1.995

1998 0.710 3.140 0.554 1.926

1999 0.608 2.033 0.400 1.257

2000 1.220 3.331 0.950 1.968

2001 0.705 2.117 0.605 1.106

2002 0.826 3.077 0.700 1.966

2003 0.804 3.000 0.615 1.903

2004 1.101 3.125 0.815 1.844

2005 0.603 2.182 0.505 1.410

2006 0.726 2.673 0.600 1.653
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