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A SIMPLE ANALYTICAL MODEL OF ASYMMETRIC ROLLING

PROSTY MODEL ANALITYCZNY ASYMETRYCZNAGO WALCOWANIA

An original analytical method is proposed for modeling asymmetric rolling (ASR) of metal sheet. It is based on a uniform
strain field depending on a single optimization parameter, viz. the entry velocity of the sheet. The shear and normal strains
associated with an ASR pass are derived analytically. Moreover, it is shown that the entry velocity almost coincides with
the outer linear velocity of the slower roll, as far as ASR is sufficiently asymmetric. In that case, closed form formulae are
available for the main rolling parameters such as the overall power dissipated and the two rolling torques. These results can
be straighforwardly used for practical applications.
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Zaproponowano oryginalną metodę analityczną do modelowania asymetrycznego walcowania blachy. Model jest oparty
na jednolitym obszarze odkształcenia zależnym od jednego parametru optymalizacji tj. prędkości wejścia arkusza. Napręże-
nia ścinanające i normalne związane z przebiegiem asymetrycznego walcowania wyprowadzone są analitycznie. Co więcej,
pokazano, że prędkość wejścia niemal zbiega się z zewnętrzną prędkością liniową wolniejszego walca, o ile asymetryczne
walcowanie jest wystarczająco asymetryczne. W takim przypadku zamknięte równania są dostępne dla głównych parametrów
walcowania takich jak całkowita moc rozpraszania i dwa momenty obrotowe walcowania. Wyniki te mogą być bezpośrednio
wykorzystywane do zastosowań praktycznych.

C1, C2 Rolling torque of the upper and lower rolls, respectively
2he,2hf Initial and final sheet thicknesses
h1, h2 Upper and lower material thicknesses with respect to the horizontal axis, respectively
L Roll gap length
m1, m2 Tresca friction coefficients of the upper and lower rolls, respectively
R1, R2 Radius of the upper and lower rolls, respectively
u̇e Material velocity at entrance of the roll gap
u̇f Material (final) velocity at exit of the roll gap
u̇1, u̇2 Material velocity at the top and bottom exit points, respectively
Vr Roll rotation velocity ratio
WP,WF,WD Plastic, friction, and discontinuity power, respectively
λ Reduction ratio
Ω̇1, Ω̇2 Angular velocities of the upper and lower rolls, respectively
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1. Introduction

Asymmetric rolling (ASR) is a new promising
process for the manufacturing of metal sheets and strips.
It can be achieved by using rolls of unequal diameters,
by prescribing different speeds of rotation to the rolls,
by imposing different friction coefficients between the
two rolls and the sheet, or else by a combination of
these various factors. In cold working, the major effect
of asymmetry is to impose an additional shear strain to
the material, which in turn modifies the final microstruc-
ture and texture. In particular, it may lead to considerable
grain refinement after subsequent heat treatment [1]. In
the field of hot working, this process has also been used
to counterbalance local shears close to the skin of the
sheet and avoid sheet bending [2].

Early analytical studies of ASR have been performed
by Sachs and Klinger [3], where the slab method was
used to develop a homogenous deformation model. This
model has been extended by Holbrook and Zorowski
[4], including dissymmetry of the roll pressure distri-
bution. Their model can predict the output strip cur-
vature. Boxton and Browning [5] rolled strips of plas-
ticine, and Chekmarev and Nefedov [6] conducted tests
with lead, steel and aluminium. Their results showed
that under some conditions, a 40% reduction of the
rolling force is possible. Ghobrial [7] used the technique
of photo-elasticimetry and an experimental method to
measure contact stresses, during plane strain ASR. He
concluded that the asymmetry due to difference in roll
radii had no significant effect on the size of the cross
shear zone. Hwang et al. [8], have proposed an analyt-
ical model for asymmetric cold rolling of sheet using
the stream function method and the upper bound theo-
rem, to investigate the plastic behaviour of the sheet at
the roll-gap. In parallel, experiments on ASR were also
conducted on aluminium, copper, and steel. Moreover,
analytical modeling and experimental investigations of
ASR have been performed by Hwang and Tzou [9, 10].
They developed a model based on the slab method for
ASR, assuming constant shear friction between the rolls
and the sheet. In another paper, Tzou [11] studied the
relationship between the Tresca and Coulomb friction
coefficients. Moreover, the effects of rolling conditions
on this relationship were investigated.

Salimi and co-workers analyzed ASR with different
methods. First of all, they used the slab method [12]. The
authors also proposed two possible physical methods to
ensure horizontal entrance of the plate [13]. In another
paper, simulation of ASR was carried out using the finite
element method for predicting the sheet curvature due
to the inequality in roll speeds and interface frictions,
in the case of isotropic work-hardening material [14].

Furthermore, slab analysis and genetic algorithms were
also used for modeling ASR [15].

Finally, several researchers have selected the finite
element method for modeling ASR. Richelsen [15] con-
cluded that curvature increases with the reduction ra-
tio for ratios less than about 30%, while it decreas-
es for larger ratios. Lu et al. [17] studied the ef-
fects of the roll speeds and roll diameters on cur-
vature, using an elastic-plastic finite element analy-
sis. Three-dimensional numerical analysis was also per-
formed by Akbari Mousavi and co-workers [18]. The
authors concluded that increasing the rotation velocity
ratio, increases the length of the shear zone.

In this paper, an analytical method based on uniform
strain field depending on one unique parameter is pro-
posed to determine the overall quantities relevant to a
single pass of ASR, viz. the normal and shear strains, as
well as the required powers and torques. It mainly leads
to closed form equations that can be straightforwardly
used for ASR practice.

2. Mathematical model

The development of a simple mathematical model
for asymmetric hot rolling requires the most general fol-
lowing assumptions:
(i) The rolls are considered to be rigid bodies, and the

rolled material rigid-perfectly plastic, possibly tem-
perature dependent.

(ii) Plane strain deformation is applied.
(iii) The flow directions of the strip at the entrance and

exit of the roll gap are both horizontal. Bending ef-
fects of the rolled sheet are therefore neglected.

(iv) The total roll contact arc is much smaller than the
circumference of the roll.
The approach proposed in this paper is also referred

to as the method of uniform energy. It first consists to
estimate the average values of the mechanical parame-
ters as a function of the entrance velocity u̇e of the sheet,
then to derive the value of u̇e which minimizes the total
power dissipated by the system. It has already been used
for conventional rolling [19].

2.1. Geometry and kinematics

Let Ω̇1 and Ω̇2 denote the rotation rates of the up-
per and lower cylinders, of respective radii R1 and R2
(Fig. 1; see also Fig. A1 in Appendix A). The exit (final)
velocity u̇f is assumed to vary linearly from u̇1 at the top
to u̇2 at the bottom of the sheet, with u̇1 = u̇e+ηΩ̇1R1 and
u̇2 = u̇e +ηΩ̇2R2, respectively, where Ω̇1R1 and Ω̇2R2 are
the outer tangential velocities of the cylinders. Because
of volume conservation, the average velocity (u̇1 + u̇2) /2
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must equal λu̇e, where λ = he/hf is the reduction ratio
(he and hf are the entrance and final half-thicknesses,
respectively). Combining these equations determines the
value of η, hence leading to:

u̇1 =
(2λ − 1) Ω̇1R1 + Ω̇2R2

Ω̇1R1 + Ω̇2R2
u̇e

u̇2 =
Ω̇1R1 + (2λ − 1) Ω̇2R2

Ω̇1R1 + Ω̇2R2
u̇e

(1)

The average length L of a material trajectory
between the cylinders can be derived from geomet-
rical considerations (Appendix A). When the cylin-
der diameters are similar, a rough estimation gives
L2 =

(
he − h f

) [
2R −

(
he − h f

)]
, where R stands for the

Fig. 1. Schematic representation of the asymmetric rolling geometry

average cylinder radius. For the average velocity is
(λ + 1) u̇e/2, the associated time interval is:

∆t =
2

λ + 1
L
u̇e

(2)

2.2. Strains and strain rates

To a first approximation, εxx = −εyy = ln he
hf

= ln λ,
whence:

ε̇xx = −ε̇yy =
εxx

∆t
=
λ + 1

2
ln λ

u̇e

L
(3)

(Note that, although for given u̇e this formula does not
differ from classical rolling, asymmetry is accounted for
by the specific value of u̇e, as will be seen below). The
average shear strain rate γ̇ = 2ε̇xy can be estimated in
turn by:

γ̇ =
[(u̇e + u̇1) /2] − [(u̇e + u̇2) /2]

he + hf
=
λ (λ − 1)
λ + 1

∆
u̇e

he
(4)

in which ∆ = Ω̇1R1−Ω̇2R2

Ω̇1R1+Ω̇2R2
. Accordingly, the total shear

applied to the material is:

γ = γ̇∆t =
2λ (λ − 1)
(λ + 1)2

∆
L
he

(5)

For estimating the degree of asymmetry, it is usual to
introduce a parameter a = γ̇/ε̇xx (=γ/εxx in the present
model), which takes the value:

a =
2λ (λ − 1)

(λ + 1)2 ln λ
∆

L
he

(6)

From Eqs (3) and (4) it is easy to derive the average
von Mises equivalent strain rate in asymmetric rolling:

˙̄ε =
2√
3

√
ε̇2

xx + γ̇2/4 =
2√
3
ε̇xx

√
1 + a2/4 (7)
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and the associated von Mises equivalent strain:

ε̄ =
2√
3

ln λ
√

1 + a2/4 (8)

Another relevant and easily measurable parameter is the
apparent shear strain γapp: if a straight line initially par-
allel to the y-axis makes an angle θ with the latter after
rolling, γapp - tan θ. In view of the present assumptions:

γapp =
(u̇1 − u̇2) ∆t

4h f
=
λ (λ − 1)
λ + 1

∆
L
he

(9)

Using Eqs (6) and (9), the equivalent strain can be re-
formulated in the form:

ε̄ =
2√
3

ln λ

√
1 +

[
γapp

(λ + 1) ln λ

]2
(10)

The above equation can be compared with the expression
proposed by Saito et al. [20] and used by Cui and Ohori
[21] (Appendix B):

γapp = a
r (2 − r)

2 (1 − r)2
(11)

in which r=1−hf /he=1−1/λ, and a is still defined by
a=γ̇/ε̇xx. Hence for these authors:

ε̄ =
2√
3

ln
1

1 − r

√
1 +

[
(1 − r)2

r (2 − r)
γapp

]2
(12)

which can be written in the equivalent form:

ε̄ =
2√
3

ln λ

√
1 +

[ γapp

λ2 − 1

]2
(13)

It is easy to check that Eqs (10) and (13) are equivalent
for low reduction ratios.

Finally, it is interesting to note that the above strains
εxx, εxy = γ/2, and ε̄ do not depend on the entrance ve-
locity u̇e.

2.3. Power dissipated

The plastic power is given by Ẇp = σ0̇̄εV , where
σ0 is the material flow stress and V the volume of the
plastic zone, i.e. V ≈

(
he + h f

)
L = he (1 + 1/λ) L.

The power dissipated by friction ẆF at the contact
surfaces between the material sheet and the cylinders is
more difficult to estimate. For that purpose, the Tresca
friction model will be used, in which:

ẆF =
m̄σ0√

3

∫ L

0
|∆u̇| dx (14)

in which m̄ is the Tresca friction coefficient
(0 6 m̄ 6 1) ,∆u̇ = Ω̇R − u̇ is the difference between the
cylinder outer tangential velocity and the local velocity
of the material element in contact. In consistency with
the above assumptions, the latter is assumed to increase
linearly with x:

u̇ = u̇e + (u̇f − u̇e) (x/L) (15)

in which u̇f = u̇1 or u̇2 for the upper and lower cylinders,
respectively. The point where ∆u̇ = 0 is known as the
neutral point of coordinate xN. For a cylinder of radius R
and rotation rate Ω̇, three cases must then be considered:
(a) u̇e < u̇f < Ω̇R: the sheet is driven by the roll at any
point and there is therefore no neutral point (xN >L).
Then |∆u̇| = Ω̇R − u̇e − (u̇f − u̇e) (x/L) and:

ẆF =
m̄σ0√

3

(
Ω̇R − u̇e + u̇ f

2

)
L (16)

(b) u̇e < Ω̇R < u̇f : there is a neutral point given by:

xN =
Ω̇R − u̇e

u̇ f − u̇e
L (17)

For 06x6xN, the sheet movement is driven by the
roll, whereas for xN6x6L, it is restrained by the lat-
ter; then |∆u̇| = Ω̇R − u̇e − (u̇f − u̇e) (x/L) and |∆u̇| =

u̇e + (u̇f − u̇e) (x/L) − Ω̇R, respectively and:

ẆF =
m̄σ0√

3

u̇2
e + u̇2

f − 2Ω̇R
(
u̇e + u̇ f

)
+ 2Ω̇2R2

2
(
u̇ f − u̇e

) L (18)

(c) Ω̇R < u̇e < u̇f : the roll opposes the sheet movement
at any point. There is therefore again no neutral point
(xN60). Then |∆u̇| = u̇e + (u̇f − u̇e) (x/L) − Ω̇R and:

ẆF =
m̄σ0√

3

(
u̇e + u̇ f

2
− Ω̇R

)
L (19)

The last power term is associated with the velocity dis-
continuity ∆u̇e occurring at the entrance of the sheet.
The latter takes a maximum value at the sheet sur-
face, which can be roughly estimated as ∆u̇e max=u̇e sin
θ ≈ u̇eθ ≈ u̇eL/R (R is the average cylinder radius).
Assuming that ∆u̇e varies linearly along the sheet depth,
this gives:

ẆD =
2σ0√

3

∫ he

0
|∆u̇e|dy =

σ0√
3

u̇eheL
R

(20)

Finally, the total power dissipated can be written in
the form:

Ẇ = Ẇp + ẆF1 + ẆF2 + ẆD (21)

and the entrance velocity u̇e is determined by minimiza-
tion of Ẇ.
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2.4. Rolling torques

Another expression of the total power is:

Ẇ = C1Ω̇1 + C2Ω̇2 (22)

in which C1 and C2 are the torques prescribed by the
upper and lower cylinder, respectively. Therefore:

C1 =
∂Ẇ

∂Ω̇1
and C2 =

∂Ẇ

∂Ω̇2
(23)

3. Results

In the following, the two rolls are assumed to have
same radius R1 = R2 = 100 mm, the speed of revolution
of the upper roll, Ω̇1= 15 tr.mn−1, is constant, he=10 mm,
and m̄1 = m̄2=1 (sticking contact between the cylinders
and the sheet). The various quantities are plotted in func-

Fig. 2. Influence of the roll rotation velocity ratio on the normal,
shear, and von Mises equivalent strains for two reductions ratios: (a)
λ = 1.11 (r = 0.1), and (b) λ = 1.25 (r = 0.2)

tion of the ratio Vr = Ω̇2/Ω̇1, which varies between 0
(the lower cylinder is stuck) up to 1 (symmetric rolling).
Two rolling reductions are used, i.e. r = 0.1 (λ = 1.11),
and r = 0.2 (λ = 1.25). This leads to L = 14.11 and
19.85 mm, respectively.

For the above two test cases, Figures 2a and b show
the dependence of the strains εxx, εxy, and ε̄ on Vr.
As expected, the shear strain εxy increases when the
process departs from symmetric rolling, but it remains
much lower than the main component εxx. The various
components of power dissipated, i.e. ẆP, ẆF1, ẆF2, and
ẆD, as well as the total power Ẇ, are displayed in Fig. 3
for r = 0.2 and the associated velocities u̇e, u̇1, and u̇2 are
shown in Fig. 4a and b for r = 0.2 and 0.1, respectively.
For each value of Vr, u̇e was numerically determined
by minimization of Ẇ. For weakly asymmetric rolling
(0.8 < Vr < 1) , Ẇ is not much affected by Vr. By
contrast, it appears that for strongly asymmetric rolling
(Vr <0.8), W grows continuously due to the dramatic in-
crease of Ẇf1, while the speed of rolling (and the plastic
power) tends to zero.

Fig. 3. Influence of the roll rotation velocity ratio on the various
components of power dissipated, viz. the plastic ẆP, the friction Ẇ1

and Ẇ2, and the discontinuity power ẆD

Furthermore, Fig. 4a shows that the optimum entry
velocity u̇e is close to Ω̇2R2 within the field of strongly
asymmetric rolling, which becomes even more obvious
when a lower reduction ratio is considered (Fig. 4b).
This means that the lower cylinder opposes the sheet ve-
locity over its total length of contact, whereas the upper
cylinder exerts a positive driving force at any point (Figs
4a and b).
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Fig. 4. Influence of the roll rotation velocity ratio on the entry velocity
u̇e, and the upper and lower exit velocities u̇1, and u̇2, respectively.
The outer linear velocity of the lower (and slower) cylinder Ω̇2R2 is
also shown

Figure 5 shows that u̇e ≈ Ω̇2R2 as long as the friction
coefficient m̄ is sufficiently large: m̄ > m̄c. The critical
value m̄c decreases with the initial sheet thickness. When
m̄ < m̄c, the optimum u̇e value falls to zero, which means
that the friction shear stress is too low to drive the sheet
into the roll gap.

Assuming u̇e=Ω̇2R2, R1 = R2 = R, and m̄1=m̄2=m̄,
closed form expressions can be derived for the power
dissipated and thus for the rolling torques under condi-
tions of strongly asymmetric rolling:

Fig. 5. Influence of the friction coefficient m̄ on the entry velocity
for two degrees of asymmetry Vr = 0.6 and 0.8

Ẇp =
σ0√

3

λ + 1
λ

heLΘ1/2Ω̇2 (24a)

ẆF1 =
m̄σ0R√

3

(
Ω̇1 − Ω̇2

λΩ̇1 + Ω̇2

Ω̇1 + Ω̇2

)
L (24b)

ẆF2 =
m̄σ0R√

3

(
Ω̇2

2
λ − 1

Ω̇1 + Ω̇2

)
L (24c)

ẆD =
σ0√

3
heLΩ̇2 (24d)

in which Θ =

[
λ + 1

L
ln λ

]2
+

[
λ (λ − 1)
(λ + 1) he

∆

]2

From the above expressions, the two torques are readily
derived:

C1 =
σ0√

3

λ (λ − 1)2

(λ + 1) he
RL

2Ω̇2
2(

Ω̇1 + Ω̇2

)2 ∆Θ−1/2+

+
m̄σ0RL√

3

1 − 2Ω̇2
2

λ − 1
(
Ω̇1 + Ω̇2

)2



(25a)

C2 =
σ0√

3

(λ + 1)
λ

heRLΘ1/2

1 − Θ−1


(
λ (λ − 1)
(λ + 1) he

)2 2Ω̇1Ω̇2(
Ω̇1 + Ω̇2

)2 ∆



 + . . .

m̄σ0RL√
3

1 + (λ − 1)
Ω̇2

1 − Ω̇2
2 − 2Ω̇1Ω̇2(

Ω̇1 + Ω̇2

)2

 +
σ0heL√

3
(25b)

It is also easy to derive the equivalent quantities per-
taining to the case of symmetric rolling (Ω̇1 = Ω̇2 = Ω̇).
In that case, there is a neutral point given by Eq. (17)
for the two cylinders, and the friction power is given by
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Eq. (18). Hence, setting ∆= a = 0 in Eqs (9), (18), and
(20) above leads to the following expressions:

Ẇp =
σ0√

3

(λ + 1)2

λ
ln λu̇ehe (26a)

ẆF =
2m̄σ0√

3

(
λ2 + 1

)
u̇2

e − 2Ω̇R (λ + 1) u̇e + 2Ω̇2R2

2 (λ − 1) u̇e
L

(26b)

ẆD =
σ0√

3

u̇eheL
R

(26c)

Minimization of the total power dissipated leads to:

u̇2
e =

2m̄LΩ̇2R2

(λ + 1)2 (λ − 1) ln λ
λ

he + m̄L
(
λ2 + 1

)
+ (λ − 1)

heL
R

=

= α2Ω̇2R2

(27)
and the rolling torque which, in this case, is common to
the two cylinders, can be written in the form:

C =
σ0√

3

(λ + 1)2

λ
ln λ

αRhe

2
+

+

(
λ2 + 1

)
α2R/2 − (λ + 1)αR + R

2 (λ − 1)α
L +

σ0√
3

heL
R

αR
2

(28)
The above predictions are illustrated in Figures 6a

and b for r = 0.1 and 0.2, respectively. Note that C1 >
0 and C2 <0, since the upper and lower cylinders are
associated with driving work and resistant work, respec-
tively, as stated above. In the case of symmetric rolling,
the two cylinders are equivalent and exert globally a pos-
itive torque C on the sheet. For the two reduction ratios,
C1 and, to a lesser extent, |C2| are much larger than C.
In fact, the above equations (25a) and (25b) are not ap-
plicable for Vr >0.8, since the assumption u̇e=Ω̇2R2 no
longer holds. In that case, numerical calculations based
on a more detailed velocity field have brought into evi-
dence a smooth transition of C1 and C2 to their common
value C [to be published].

Only a few number of former publications can be
used for comparison with the above results, since they
deal most generally with weakly asymmetric rolling
(0.8<Vr <0.9) of thin sheet (he is small). Nevertheless,
a slab model proposed by Tzou an co-workers [10, 11]
leads to predictions in close agreement with the present
ones, although it is strictly speaking only applicable to
thin sheet since the plastic power is not readily taken into
account. The authors give closed form equations for the
two torques C1 and C2, although the diagrams display
only the total torque C=C1+C2. This quantity does not
appear to be quite significant, in particular because C1
and C2 have opposite signs and similar absolute values

over almost the whole variation range of Vr, such that
C is close to zero (Fig. 6).

Fig. 6. Influence of the roll rotation velocity ratio on the two rolling
torques C1 and C2 for (a) the ASR of a thin sheet (he = 0.5 mm), and
(b) the ASR of a thick sheet (he= 10 mm). Three series of results are
compared: predictions of the present model (circles), predictions as-
suming u̇e=Ω̇2R2 (triangles), and Tzou’s predictions (lozenges). The
total torque C = C1 + C2 is also shown

The individual torques predicted by Tzou et al. [10,
11] were also plotted in Fig. 6 according to their equa-
tions, which shows that the upper one C1 is almost equiv-
alent to the present results for two initial sheet thickness-
es he = 0.5 mm and 10 mm. C2 is also similar for the
thin sheet but the present approach predicts much smaller
absolute values for he = 10 mm. It was checked that the
power dissipated by the velocity discontinuity, which is
neglected by Tzou et al. [10, 11], explains a small part
of the discrepancy. It is thought that the major part of
the latter has to be ascribed to plastic power, which is
not included in the slab approach: in such conditions,
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the lower (and slower) roll must exert larger torque to
oppose the sheet velocity.

In another paper published by Farhat-Nia et al.
[14], elastoplastic finite element simulations of asym-
metric plate rolling have been carried out using an
ALE approach. In the case of weakly asymmetric rolling
(0.93<Vr <1), the authors computed an average rolling
torque, which was assimilated here to the arithmetic
average Cav = (|C1| + |C2|) /2. An alternative definition
could be used as well by taking the average rotation
velocity of the rolls associated with power conservation,
which leads to C′av = (|C1| + |C2|Vr) / (1 + Vr). However,
Cav and C′av are quite similar for values of Vr close to
unity. Since Coulomb friction with µ = 0.1 was assumed,
an equivalent Tresca coefficient was estimated from Tzou
[11], viz. m̄ = 0.25. Finally, an average material flow
stress was determined from the strain hardening equa-
tion used by the authors. Results in fairly good agree-
ment with the present predictions are exhibited in Fig.
7 for three values of the reduction ratio r. It is worth to
emphasize again, however, that the average torque is not
physically meaningful nor practically useful, by contrast
with the separate torques C1 and C2.

Fig. 7. Influence of the roll rotation velocity ratio on the average
rolling torques. Three series of results for different r values are com-
pared with results of Farhat-Nia et al. [14]

Comparison with other models involving strain rate
sensitive materials are left for a next paper, where the
extension of the present model to viscoplasticity will be
proposed.

4. Conclusions

In this work, an original model of asymmetric
rolling was proposed, based on a simple uniform strain
field involving as single parameter the entry velocity
of the sheet u̇e. The model can account for dissimilar
cylinder radii and rotation velocities, as well as differ-
ent friction coefficients between the sheet and the two
rolls. However, the main results are related to the most
common case of equal radius cylinders with maximum
friction coefficient m̄=1:
(i) When the ratio Vr of the rotation rates decreases, i.e.

for larger asymmetry, the shear strain imposed to the
sheet increases, but remains lower than the normal
strain.

(ii) This requires much larger total power, although the
two torques exerted by the cylinders remain almost
constant when Vr is less than about 0.8.

(iii) In the same range of variation of Vr, the entry ve-
locity of the sheet reasonably coincides with the out-
er linear velocity of the slower cylinder. This leads
to closed form formulae for the two torques.

(iv) The above predictions are in good agreement with
former work using the slab method. However, since
the plastic power is readily taken into account, the
present model can be applied to thick sheet and not
only to thin sheet rolling, where friction effects are
by far predominant. Also, the two torques can be
predicted separately.

(v) Finally, due to its simplicity, this model precludes
the determination of strain or stress gradients, as
well as the rolling force. Such problems can be ad-
dressed by a more refined approach using velocity
fields based on the material flow lines which will be
shortly published.
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APPENDIX A

Derivation of the roll gap length

An asymmetric rolling pass is geometrically defined by the two cylinder radii R1 and R2, and the initial (entry)
thickness he and the final thickness hf of the sheet (Figure A1).

Fig. A1. Schematic representation of ASR including the definition of the various geometrical parameters

The two square triangles O1A1H1 and O2A2H2 verify:

L2 = R2
1 − (R1 − h1 + hf )2 (A1a)

L2 = R2
2 − (R2 − h2 + hf )2 (A1b)

where from:

h2 − h1 =
−2

(
he − h f

)
(R2 − R1)

R1 + R2 − 2
(
he − h f

) (A2)

Combining this equation with:
h1 + h2 = 2he (A4)

allows to derive h1 and h2:

h1 =
2heR2 − h f (R2 − R1) − 2he

(
he − h f

)

R1 + R2 − 2
(
he − h f

) (A5a)

h2 =
2heR1 + h f (R2 − R1) − 2he

(
he − h f

)

R1 + R2 − 2
(
he − h f

) (A5b)

Finally, substituting h1 into (A1a) or h2 into (A1b) gives:

L2 =
4δ

[
−δ3 + 2 (R1 + R2) δ2 −

(
R2

1 + R2
2 + 3R1R2

)
δ + R1R2 (R1 + R2)

]

(R1 + R2 − 2δ)2
(A6)

in which δ=he–hf .
In the case where R1 = R2 = R, Eq. (A6) takes the simple form:

L2 = δ (2R − δ) (A7)
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APPENDIX B

Estimation of the equivalent strain in asymmetric rolling

Consider a homogeneous plane strain incompressible deformation path that transforms the square OABC into
the parallelogram OA’B’C’ (Figure B1).

Fig. B1. Schematic illustration showing the transformation of a material element during a pass of ASR

The associated velocity field takes the general form:


ux = ε̇x + γ̇y
uy = −ε̇y (B1)

In the special case of steady state flow, ε̇ and γ̇ are independent of time. The flow lines (trajectories) are derived
by solving the following set of differential equations:



dx
dt

= ε̇x + γ̇y
dy
dt

= −ε̇y
(B2)

The general solution is: 
y = y0 exp(−ε)

x =

(
x0 +

a
2
y0

)
exp (ε) − a

2
y0 exp (−ε) (B3)

in which (x0, y0) denotes the initial position of a material point, and ε = ε̇t . Elimination of the strain ε leads to
the equation of the hyperbolic flow line:

a
2

(
y2 − y2

0

)
+ xy − x0y0 = 0 (B4)

one asymptote of which coincides with the x-axis, the second one being inclined towards the negative x-axis with
slope – 2/a.

The apparent shear strain of a material element is given by the angle between OC′ and the y-axis. The
coordinates of C′ are obtained by setting x0 = 0 in Eqs (B3).
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Hence:
γapp = tan θ =

a
2

[
exp (2ε) − 1

]
(B5)

or, since ε=lnλ:

γapp =
a
2

(
λ2 − 1

)
= a

r (2 − r)

2 (1 − r)2
(B6)

where r=1–1/λ. This equation was proposed by Saito et al. [20].
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