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The Artificial Immune System Approach for Smart
Air-Conditioning Control

Zenon Chaczko, Shahrzad Aslanzadeh, and Jonathan A. Kuleff

Abstract—Biologically inspired computing that looks to nature
and biology for inspiration is a revolutionary change to our
thinking about solving complex computational problems. It looks
into nature and biology for inspiration rather than conventional
approaches. The Human Immune System with its complex
structure and the capability of performing pattern recognition,
self-learning, immune-memory, generation of diversity, noise
tolerance, variability, distributed detection and optimisation – is
one area that has been of strong interest and inspiration for the
last decade. An air conditioning system is one example where
immune principles can be applied. This paper describes new
computational technique called Artificial Immune System that is
based on immune principles and refined for solving engineering
problems. The presented system solution applies AIS algorithms
to monitor environmental variables in order to determine how
best to reach the desired temperature, learn usage patterns and
predict usage needs. The aim of this paper is to explore the AIS-
based artificial intelligence approach and its impact on energy
efficiency. It will examine, if AIS algorithms can be integrated

within a Smart Air Conditioning System as well as analyse the
impact of such a solution.

Keywords—artificial immune system, biologically inspired com-
puting, evolutionary computation.

I. INTRODUCTION

THE Australian Bureau of Statistics states that 11% of

total energy used in Australia is by Households [1]. It

also states that in 2005 alone, 78% of all households had

some form of room heating. Room heating is seen as a major

contributor to household energy bills, accounting for 39%

of total household energy use and 14% of the residential

sector greenhouse gas emissions. The objective of this paper

is to develop an understanding of the relevant biologically

inspired computing paradigms that may be used to aid the

development of the smart air conditioning system. The above

mentioned objective fits in well with the growing trends for

a “Smart Home” solution, while also addressing the energy and

environmental concerns that plague the concept. Additionally,

it contributes to the current research into viable areas to which

AIS algorithms can be applied.

A. Traditional Air Conditioning System

Fundamentally, an Air Conditioner (A/C) can be viewed as

a refrigerator without the insulated box.
The AC unit uses the evaporation of a refrigerant, like Freon,

to provide cooling. The mechanics of the Freon evaporation
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cycle are the same in a refrigerator as in an air conditioner.

Seen in the figure above the Freon liquid runs through an

expansion valve, and in the process it evaporates to become

cold, low-pressure Freon gas (seen as light blue). This cold

gas runs through a set of coils that allow the gas to absorb

heat and cool down the air inside the building. The compressor

compresses cool Freon gas, causing it to become hot, high-

pressure Freon gas (seen on the left in Fig. 1). This hot gas

runs through a set of coils so it can dissipate its heat, and it

condenses into a liquid. This is the basic concept behind air

conditioning.

Fig. 1. The evaporation cycle in an air conditioner.

Selecting an air condition system for a room or a home is

not an easy task, due to the complexity of thermal dynamics,

room features such as its size, the height of the ceiling, amount

of windows, amount of internal walls, how many users are

generally in the room and many other features can affect

the cooling or heating capacity required. One might wrongly

assume that buying a unit with a higher heating or cooling

capacity is better, as these units would cycle faster making

them less effective while wasting energy.

Others might assume that buying a unit with a lower heating

or cooling capacity would not make a great difference, again

they would be wrong. These units would be on all the time

working at its peak output reducing the lifetime of the appli-

ance faster than normal and again using excessive amounts of

energy. It would then seem that not all air conditioners are

created equal and the Goldilocks Syndrome applies, not too

small, not too large but just right. Scientists around the world

are working on research to calculate the ‘just right’ amount

needed to cool or heat a room, so for the purpose of this paper

we will not look into this further.
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Usage patterns of users are seen as a major contributor to

household energy wastage. A common misconception held is

that by increasing/decreasing the set temperature on the unit,

it will work faster. However, this is incorrect, as units have

a fixed capacity output which means that they would only

work harder and for longer. Other user patterns for energy

wastage include leaving a room for long periods of time and

leaving a unit running while they sleep.

B. Energy Efficiency

In our current global climate and ever increasing trend

to ‘go green’, energy efficiency is increasingly on the mind

of consumers. Governments around the world have created

systems for comparing the energy efficiency of household

appliances. The U.S. Environmental Protection Agency and

the U.S. Department of Energy have estimated with the help

of the ENERGY STAR program, that in 2007 alone the U.S.A.

avoided greenhouse gas emission equivalent to those from 27

million cars, an estimated saving of $16 billion in utility costs.

In Australia air conditioning units are one of many appliances

that are regulated for energy efficiency in the Energy Label

system. Figure 2 depicts an example of the label found on

a reverse cycle air conditioner. The label allows consumers

to compare units at a glance. The more stars it has, the

more energy efficient the unit is. It is estimated that hundreds

of dollars can be saved over the lifetime of a unit by only

selecting a more efficient unit, even though they are generally

much more expensive. The star rating for air conditioners is

determined by the Energy Efficiency Ratio (EER) tests for

cooling and the Coefficient of Performance (COP) for heating.

The EER and COP are defined as:

EER = rated cooling capacity output (kW)/cooling input

power (kW)

COP = rated heating capacity output (kW)/heating input

power (kW)

Fig. 2. Example of the energy rating label.

Typically, the EER and COP are in the range 2.0 to 3.5

(meaning that the cooling or heating output is 2 to 3.5 times

greater than the power input and with the efficiency between

200% to 350%).

II. ARTIFICIAL IMMUNE SYSTEM

A. The Human Immune System (HIS)

Traditional methods used to create systems with artificial

intelligence currently have many issues and not always are

able to produce the desired results. Over the years, biological

inspired alternatives have emerged; one of the more recent

paradigms is the Artificial Immune System (AIS), inspired by

the principles and processes of the Human Immune System

(HIS). The concept of AIS has been developing and gain-

ing momentum since the mid 90’s in solving computational

problems from mathematics, engineering, and information

technology. In computer science terms, and compared to other

biological inspired paradigms, AIS is still in its infancy with

much still to be discovered, however showing some good

prospects [2].

Understanding how HIS works is an important step towards

developing an artificial immune system and determining its

application areas. The basic HIS concepts will be presented in

brief but relevant to the purpose of this paper.

B. The Immune System

Immunity is defined as “resistance to disease, specifically

infectious disease”. The immune system is a collection of

cells, tissues and molecules that help resist infections. Their

coordinated reaction to infectious microbes is the immune

response. The HIS is a complex defensive network, comprising

of multiple levels, each employs different techniques for

defense. At a non-cellular level, the first line of defense is

provided by skin; a physical barrier to pathogens. Chemically,

skin pH17 levels are maintained below seven (acidic), which

inhibits bacterial growth. The Second technique is the use

of biochemical barriers such as fluids (tears, perspiration),

enzymes (saliva, stomach chemicals) and mucous (nasal se-

cretions) produced by the body. Biochemical substances are

combined with mechanical actions such as sensing, coughing

and emesis (vomiting) to eject objects from the body [3]. It can

be said that the physiologic function of the immune system is

to prevent infections and to eradicate established infections. If

the intruder bypasses the previous defenses, the HIS deals with

it on a cellular level initially with the innate immune system.

If the intruder still poses a threat the adaptive immune system

represents the last line of defense. My focus will be directed

towards the innate and adaptive immune and in the following

sections I shall look at its properties and mechanisms.

1) Innate and Adaptive Immune System: The term innate

immunity, refers to the fact that this type of host defense mech-

anism is always present in healthy individuals, prepared to

block the entry of microbes and to rapidly eliminate microbes

that do succeed in entering host tissues. It provides a non-

specific defensive barrier to pathogens, i.e. all pathogens are

attacked equally. The innate immune system remains the same

throughout our lifetime and does not change with experience

or age, it is inherited from our parents and is genetically based.

Although, the innate immunity can effectively combat many

infections, microbes pathogenic for humans (i.e. capable of

causing disease) have evolved to resist it. Defense against
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these infectious microbes is the task of the adaptive immune

response.
Adaptive immunity is a form of host defense mechanism

that is stimulated by microbes that invade tissues, that is, it

adapts to the presence of microbial invaders. Whereas, the

mechanism of innate immunity recognizes structures shared

by classes of microbes, the cells of adaptive immunity, namely

lymphocytes, express receptors that specifically recognize

different substances produces by microbes as well as non-

infectious molecules. These substances are called antigens

[4]. However, there are many millions of other lymphocytes

each carrying different types of receptors and does not limit

response to different antigens. Upon biding with an antigen,

the lymphocyte is activated to divide and produce clones. The

clones secrete antibodies which contain the preceptors that

will bind to the original antigen that spawned the cloning

process. This process of cloning ensures that a large number

of lymphocytes with a specific response are created puts the

maturation of lymphocytes process into perspective.
There are two types of adaptive immunity, called humeral

immunity and cell-mediated immunity that are mediated by

different cells and molecules and are designed to provide de-

fense against extracellular microbes and intracellular microbes,

respectively.
Proteins called antibodies, which are produces by cells

called B-lymphocytes, mediate humeral immunity. One of the

more important functions of the antibodies is to stop microbes

that are present at mucosal surfaces and in the blood from

gaining access to and colonizing host cells and connective

tissues. In this way Antibodies prevent infections from ever

getting established. Antibodies do not have access to microbes

that live and divide inside infected cells. Defense against

such intracellular microbes is called cell-mediated immunity

because cells called T-lymphocytes mediate it. Antibodies

produced by B-lymphocytes are designed to specifically rec-

ognize extracellular microbial antigens, whereas the role of

T-lymphocytes is to recognize antigens produced by intracel-

lular microbes. Another important difference between B and

T lymphocytes is that most T cells recognize only microbial

protein antigens, whereas antibodies are able to recognize

many different types of microbial molecules, including protein,

carbohydrates, and lipids [5].
2) Properties of the Adaptive Immune Responses: The

HIS is a very resilient mechanism with many desirable and

advantageous properties. These properties are very diverse,

hence somehow transferable to many different computational

problems. The most important properties of the adaptive

immune response include:

• Specificity: The ability to recognize and respond to many

different microbes. This is illustrated by the observation

that prior exposure to an antigen results in heighten

responses to subsequent challenges with that antigen but

not to challenges with other, even quite similar antigens.

It is estimated that the immune system has the potential

for distinguishing at least a billion different antigens or

portions of antigens.

• Memory: Enhances responses to recurrent or persistent

infections. Future infections will invoke the memory cells

allowing for the immune system to mount larger and more

effective responses. These secondary immune responses

are usually more rapid, larger and better able to eliminate

the antigen.

• Clonal Expansion: The ability to keep pace with rapidly

proliferating microbes. The body can only maintain a cer-

tain number of immune cells. It does not keep an endless

supply of immune cells that would not otherwise be used,

wasting the body’s resources. Only after an antibody

binds the antigen, does it produce more antibodies of that

specificity. Hence, HIS can adapt to a changing situation

to utilize resources, as efficiently as possible.

• Specialization: Responses to distinct microbes are opti-

mized for defense against the microbes. The antibody

can recognize the patterns found on the receptors of

antigen. If receptors for a certain antigen cannot be found,

the HIS is able to produce receptors that match them

through mutation or recombination of existing receptor

combinations.

• Non-reactivity of self-antigens: This ability prevents in-

jurious immune responses against host cells and tissues,

by being able to distinguish between self and non-self.

• Autonomy and decentralized (distributed) control: The

ability to function without outside interference or the need

for a central controller. HIS can solve problems such

as maintenance of cell population, repairing/replacing

damaged cells when required and eliminating pathogens.

III. CASE STUDY: THE HEATING SYSTEM CONTROL

A. AIS Model

Michael Mozer [6] undertook the task of controlling the

heating system of an intelligent home system using AIS.

This was inspired his an earlier work that addressed multiple

aspects of the intelligent home control (iHome) using ANN.

In Mozer’s experiment, a network based AIS was develop to

adapt to varying requirements and to learn on top of the usual

control functions required. Requests to the home would be

monitored and used as training data. Through this training the

system was able to learn the typical user behaviour, but would

still remain flexible to adapt to changes in usage. Lehmann and

Dilger’s [7] adapted the solution originally proposed by Mozer

[6]. The approach involved monitoring user requests (antigens)

and sending responses (antibodies) back to the system. Anti-

bodies were produced according to the bone marrow model

and a version of reinforcement learning mechanism. The

architecture of the AIS for the heating system consists of three

main components: the central control unit, the bone marrow

and the AIS-network (Fig. 3). The central control unit is an

interface to the external subsystems. Accordingly, the Central

Control receives signals and generates from these signals the

antigens, whilst in the opposite direction it transforms the

network outputs into commands to the heating system. The

bone marrow unit generates new B-cells and, if necessary,

adapts them to the needs of the AIS-network. The AIS-network

subsystem when stimulated produces antigens and antibodies

using the operations of selection and mutation that are based

on the affinity between the elements.
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Fig. 3. The architecture of Lehmann and Dilger’s AIS [7].

Lehmann and Dilger [7] examined scenarios specific to

single rooms in the house, certain daytimes, and the weekdays.

In any case, the intelligent home control system has to take into

account the weather conditions outside. The most important

factors that were regarded for the control of the heating system

were the outdoor temperature, indoor temperature, type of

the room, frequency of use, daytime, weekday as well as

ventilation. The results of Lehmann and Dilger’s AIS system

looked very promising as the solution was able to adapt

quickly to spontaneous signals sent from the users and to re-

adapt to the normal behaviour later. Various scenarios explored

regular use with a break of two weeks of no use, regular use

with a change of use after a number of weeks, irregular use

with frequent changes, and the control that involved several

rooms. In reported cases, the system adapted to the changing

requirements well. With its simple concepts, the Lehmann

and Dilger’s model of the AIS-based system is transferable

to other control adaptations like the herein proposed Smart

Air Conditioning System.

IV. SACS SOLUTION

A. Overview of the Architecture

The Smart Air Conditioning System (SACS) consists of

four main components. These four main components include

Network Manager, Bone Marrow and AIS-Network and the

system data storage (Fig. 4). This section describes each of the

SACS components in the context of chosen immune principles.

The SACS architecture is similar to the model proposed by

Lehmann and Wagner; however, it is somewhat simplified for

the purpose of this work. Most noticeable changes relate to

the Central Unit which is replaced with the Network Manger.

In SACS, AIS-Network issues control signals to the Bone

Marrow unit from the Network Manager. The system data

storage component is included to manage data persistency. The

system has been designed with distribution and extensibility

in mind. Multiple instances of the Network Manager can be

produced over a network to share the load or produce multiple

results for antigens to get the best possible solution.

Fig. 4. Architecture of the system.

B. Network Manager

The Network Manager is the interface between the AIS

and the outside world. It also interfaces with the system

data store saving and retrieving configuration and environment

information, measurements from the hardware and regulation

commands from the users (Fig. 5). With respect to the AIS,

when the system timer elapses the Network Manager starts

producing antigens from the measured values and stimuli from

regulation commands and then it initiates the update.

Fig. 5. Structure of network manager.

The Network Manager also decodes the information deliv-

ered by the antibodies. In addition, it controls the AIS-Network

through the use of a number of parameters. Among them are

the initial size of the population, the size of the whole network,

the number of best suited elements to select, the number worst

suit elements to remove, mutation rate controller, suppression

and pruning thresholds.

C. The AIS Network

If the Network Manager is “the brains” of the SACS, then

the AIS-Network is its “heart”. Through cooperation with

the network manager and the bone marrow, it determines
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Fig. 6. Structure of AIS network.

the antibodies that best match the supplied antigens. During

the process of finding the best matching antibodies, the AIS-

Network will ask the Bone Marrow to generate more B-cells,

matching antibodies will be cloned and the clones that are

below the threshold will be eliminated. It should be noted

that the Network Manager periodically tells the AIS-Network

to eliminate B-cells that are considered too old to be of

any value. One of the key methods of the aiNet Class is

Update(). Its procedure is somewhat similar to Lehmann and

Dilger’s, however, it was significantly altered to suit the needs

of SACS solution. The samples immune-computing algorithms

are presented in Fig. 7 and Fig 8.

Fig. 7. AIS network.

Fig. 8. AIS network.

Fig. 9. Affinity class diagram.

The polymorphism and inheritance principles are designed

into the system (Fig. 9). The abstract class AffinityBase has

an overridable method called calculateBitAffinity() that deter-

mines the affinity value when comparing 2-bit strings. Should

a new method for calculating the affinity be required one needs

simply to add a new class that inherits from AffinityBase that

implements the required calculation in calculateBitAffinity().

Similarly, if an alternative mutation algorithm is required, the

class Mutator can be extended by overriding the mutate()

method.

The database is implemented in SQLite, a self-contained,

serverless, zero-configuration, transactional SQL database en-

gine that is commonly embedded in many other systems.

Object Relational Model (Fig. 10) is used to access the tables

rather than SQL. This allows a better use of OO principles

and mappings between the objects and tables.

Fig. 10. Relational model.

V. EXPERIMENTATION AND ANALYSIS

A. Affinity Comparison Tests

The affinity matching is crucial for AIS algorithms, as the

selection of a wrong affinity can lead to ineffective detection.

Several experiments using minimal variance scenarios in user

patterns were run to compare various affinity matching mea-

sures and test which perform better in different circumstances.

Although, the Hamming distance is not as linear as Euclidean

distance and not as exponential as Hunt distance, for most

experiments, the Hamming distance was used as the affinity
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measure in all tests it consistently performed well for all its

variation between the lowest and highest values. Findings for

the first set of tests mostly conformed to what was expected.

Some interesting behaviours where observed with various

affinity measure methods. The test that involved changing

the Zone variable resulted in undesirable bias using all the

affinity methods. This could be attributed to automatically

generated id values used in the comparisons, resulting in

a bias towards the zone when it was added to the system.

Similarly, changing the Time-of-the day or Day of the Week

variables showed a bias towards time/days in the week that

were closer to the antigen value. Lastly, changes to Frequency

of use exhibited the expected behaviour with a bias away from

None. Fig. 11 shows how affinity measures performed with the

antigen frequency of use set to one of the possible values from

low (top-left) to high (bottom-right).
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Fig. 11. Comparison of affinity vs. frequency of use.

B. User Pattern Variance Tests

These tests investigated the effectiveness of the AIS algo-

rithm in detecting and adapting to the user’s needs. The aim

was to see how fast the algorithm returns to normal behaviour

once the variance has stopped. For these test, a dedicated GUI

was designed (Fig. 12) to allow monitoring the system usage

for prolonged period of time. The findings for the user pattern

variance tests showed the algorithms behaved as expected

although converging faster than anticipated.

For example, the default temperature for a selected zone

was 27◦C while the sensor reading was 23◦C. There were

no regulations from the defaults and the system operated at

a constant except for early hours (before 8 a.m.). Other tests

included variations in a predefined period of time. In most

cases, the system behaved well adapting to the changes. For

simulations that run for several days, the final days sometimes

did not show any change to the optimal temperature. The early

convergence of the AIS with little changes raises questions

on the global variable values, in particular mutation control

and clone multiplier. By raising the mutation control variable

the system should increase the chances of antibody mutation

Fig. 12. Inputs and outputs GUI showing a user pattern variance test.

to allow for greater variance in the network. The amount of

clones produced may also be too little to reduce the number

of new mutated antibodies added to the system. Lastly, the

suppression threshold may be too high and excluding too many

B-cells from the system. The accuracy of the system was less

than expected which implies that the some variables required

further adjustments to find a better balance between how fast

the system can learn and how accurate it is in matching.

VI. CONCLUSION

The development of AIS did not come without its fair share

of problems. By overcoming these problems, AIS is able to

demonstrate its full potential as an optimisation heuristics.

The effectiveness of these computing paradigms cannot be

measured to their entirety. However, by looking at the example

of genetic algorithms, it is possible to visually encompass the

simplicity and versatility of the algorithms. The main argument

is not ‘if’ AIS models are able to compete against other

optimisation and search problem heuristics, but rather appre-

ciate their ability to integrate with other natural computing

paradigms. Research of these branches of AIS is propelling

its development and is something to watch in the future. As

AIS is coming of age, there is much more understanding and

knowledge and cooperation amongst scholars.
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