
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 3, PP. 241–246

Manuscript received February 21, 2012; revised March, 2012. DOI: 10.2478/v10177-012-0033-3

Dedicated Digital Hardware

for DVB-CSA Encryption
Przemysław M. Szecówka and Patryk W. Marucha

Abstract—DVB-CSA (Digital Video Broadcast – Common
Scrambling Algorithm) is encryption method commonly used to
protect the paid channels of digital television. The paper presents
a study of its implementation in specialized digital hardware.
The algorithm was successfully converted to logic architecture,
coded in hardware description language (VHDL), verified and
synthesized for programmable logic device (FPGA). For Xlinx
Spartan 3 implementation, the expected throughput may be
estimated to 100 Mbps in pipelined mode.

Keywords—DVB-CSA, Digital Video Broadcast, Common
Scrambling Algorithm, encryption, hardware, VHDL, FPGA.

I. INTRODUCTION

D IGITAL Video Broadcast since its introduction has con-

tinued successful expansion to the television market [1].

Nowadays it seems obvious that it will become the common

standard, replacing all the traditional analogue systems as

well as all competitive digital solutions. The key feature

of digital broadcast is transmission of various elements of

several channels in the form of bitstream. This bitstream is

organized in packets of fixed length. On the receiver side the

DVB consists in continuous hunting for packets marked by

specific identifiers. These packets may carry some elements

of the broadcast directly or shall be concatenated with several

others to built up video/audio stream. It may be noted that

the mechanisms of DVB transmission are inspired by the

protocols well known from the internet technology. Specific

proof of this association is quite common practice of utilizing

internet routers for local transmission of digital TV. The cable

TV operators extensively use internet dedicated equipment

because of lower price and higher flexibility.

One of the key advantages of digital broadcast, besides the

guaranteed accuracy of received entertainment, is the natural

possibility to encrypt the transmission [2], [3]. This encryption

secures the income of all the industry involved in production

of television entertainment. Thanks to encryption the TV

broadcast may be distributed freely but the real use of it is

restricted to these end-users or local distributors who paid for

the key. The commonly recognized standard of encryption is

DVB-CSA (Digital Video Broadcast – Common Scrambling

Algorithm). As it will be shown, the cipher algorithm seems

to be (again) inspired by internet technology. DVB-CSA looks

like some AES (Advanced Encryption Standard) cipher, e.g.

Rijndael [4], [5], somewhat reinforced for protection against

P. M. Szecówka is with Faculty of Microsystem Electronics and Photonics,
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370
Wrocław, Poland (e-mail: przemyslaw.szecowka@pwr.wroc.pl).

P. W. Marucha is with Aduma S.A., Klecińska 125, 54-413 Wrocław, Poland
(e-mail: patrykmarucha@gmail.com).

other kind of attacks. Specific policy of paid TV protection is

protection of the DVB-CSA algorithm itself. It is forbidden

to develop and sell software providing decryption without

a license. The official documentation of cipher is not freely

available either. The authors of this project suffered a lot

from misunderstandings of rough specifications, appearing in

the context of cipher reliability investigation [6]–[8]. This

protection however does not cover prospective hardware im-

plementation of DVB-CSA, at this stage anyway. This paper

presents a study of digital architecture dedicated for DVB-

CSA encryption. The design was implemented in VHDL and

verified together with complementary decryption part (to be

published elsewhere). The authors are pretty sure that this

is not the first attempt to implement DVB-CSA in dedicated

hardware, although none scientific paper on this topic was

found.

II. DVB-CSA ENCRYPTION OVERVIEW

DVB Transport Stream consists of packets carrying the

specific data. The packet has a fixed length and consists of

4-byte header and 184 bytes of the payload. The first byte is

the start pattern (01000111), used for the synchronization, i.e.

detecting the start of packet in the bitstream. Another specific

field is the 13-bit packet identifier (PID) which defines the

purpose of the data transported in the payload section (e.g. this

is the video stream for the program X). The 0x1FFF value of

PID denotes the empty packets, which are sometimes inserted

between the others. Usually it happens when the number of

programs delivered is much below the capacity of the stream,

which must flow with the defined speed regardless of the

broadcast real timing

DVB-CSA encryption is a combination of stream and block

ciphers. Both parts use the same 64-bit key. There are also two

64-bit initialization vectors, one delivered from outside and

the other generated internally. In general the encryption may

be applied to data structures not exceeding 184 bytes. These

structures are divided to 8-byte blocks. For the residual data,

smaller than 8-byte, only stream part of algorithm is applied.

Seems like for standard DVB packets, where only the 184-bit

(i.e. 23 bytes) payload is encrypted, there is no problem with

indivisibility. The authors however designed more universal

architecture, able to process data blocks of any size. The whole

process is outlined in Fig. 1.

The encryption starts from block part. At the beginning the

last 8-byte block of data BNn is XORed with initialization

vector WI. The result is sent to the input of block cipher BS.

The result of block encryption is stored in memory P and



242 P. M. SZECÓWKA, P. W. MARUCHA

BZ1 BZ2 BZ3 ... BZn NBZ

P1 P2 P3 ... Pn WI

BN1 BN2 ... BNn -1 BNn NBN

XOR

BS1

XOR

BS2

XOR

BSn

XOR

NBSIS

XOR

SB

XOR

SB

XOR

SB

XOR

SB

Fig. 1. DVB-CSA encryption overview. BN – input data , SB – block cipher operation, P – memory, BS – stream cipher output, BZ – encrypted output, WI
– initialization vector for block cipher, IS – initializatin vector for stream cipher.

simultaneously XORed with the pre-last 8-byte block. The

result of XOR is again block ciphered, sent to memory and

simultaneously XORed with predecessing block of data etc.

All the remaining input data is treated in this manner. The first

8-byte block of data BN1 is processed as the last one and has

specific purpose. It is sent to the output directly, without stream

encryption and simultaneously it is used as initialization vector

IS for the stream cipher applied for the rest of block-encrypted

data.

After initialization phase, the stream cipher generates con-

secutive bits of data which are XORed with consecutive bits

of block encryption output, stored in memory blocks P. The

final stage of DVB-CSA process is stream encryption of the

last portion of original input data which was too small to form

8-byte block and hence omitted in block encryption, as stated

above.

A. Block Encryption

Block encryption process consists of 2 phases initialization

and processing. Initialization consists in extension of 64-bit

key to 448 bits. This extension relies on permutation function,

which moves each bit of a key to another place, strictly defined

in algorithm specification. Permutation is performed 6 times,

the results are XORed in appropriate way and eventually

concatenated to form the extended 448 bit key.

Processing phase of block encryption is shown in Fig. 2. The

central element is register H, coupled with combinatorial logic.

The register contains 8 blocks of 8-bit data. The key parts

of combinatorial logic are XOR with the extended key Kr,

s-box T, permutation U and series of other XOR operations.

The s-box table converts 8-bit vectors to other ones, according

to a look-up table defined in specification. Permutation U is

defined below.

U [0..7] : = S[6], S[2], S[5], S[4], S[0], S[3], S[7], S[1]

H7

H6

XOR

H5

H4

H3

H2

H1

H0

XOR

XOR

XOR

XOR

Kr[8i..8i + 7]

XORT

U

Fig. 2. Schematic of DVB-CSA block encryption; processing phase.

Block encryption starts from presetting the register H with

initialization vector. Then after 56 iterations (updates of H)

the register contains the final block-encrypted data.

B. Stream Encrytpion

Stream encryption consists of 2 phases initialization and

generation. Initialization phase is shown in Fig. 3. The data

is stored in 2 registers − A and B. Each of them contains



DEDICATED DIGITAL HARDWARE FOR DVB-CSA ENCRYPTION 243

ten 4-bit nibbles. At the beginning the first 8 nibbles of each

register are preset with 64-bit key (32 bits for each register).

The last 2 nibbles of A and B are reset. Then all the data is

shifted 32 times, with combinatorial logic T1-T5 involved. T1

transform operates on the first 8-byte block of data encrypted

with block cipher. In consecutive iterations consecutive bytes

are processed in such way that 4 clock cycles are devoted to

each byte. Depending on parity of iteration counter the div and

mod results of division by 16 are directed to the outputs IA and

IB and swapped respectively. T2 transform is a combination of

the s-box transforms applied to seven 5-bit vectors constructed

from permutations of selected bits of register A. The 2-bit

outputs from all s-boxes are concatenated to form 14-bit result

of T2, which is directed to T3, T5 and XORs. These 5-to-

2 s-boxes are special, different from 8-to-8 s-box described

above. T3 is relatively simple operation applied to register B.

Selected bits of B are coupled to form four 4-bit combinations.

Each 4-bit combination is then XORed and this way 4-bit

result is obtained. T4 block is a combination of muxes, adder

and registers, providing 1 clock cycle delay. In consecutive

iterations E is a copy of F, F is either copy of E or sum of E,

Z and c, depending on q, where c is previous value of carry

output of the adder, stored in register. T5 is a simple shift of

bits obtained from XOR. The whole initialization phase takes

32 clock cycles.

Generation phase is shown in Fig. 4. It is quite similar to

initialization phase described above. The different elements

are: no more T1 transform (and its result no longer directed

to XOR), no more D feedback from the final XOR and T6

transform inserted to the output. T6 involves 2 XOR operations

applied to 4-bit vector D:

W’[0] = D[1] XOR D[0]

W’[1] = D[2] XOR D[3]

W’ is the final result, thus the throughput of stream encryp-

tion is 2 bits per clock cycle.

III. ARCHITECTURE

The device has 131 inputs and 64 outputs. Input vectors

are the 64-bit input data and 64-bit encryption key. The other

inputs are global clock, reset and a strobe signal forcing

start of encryption process. The output is 64-bit vector with

encrypted data. The design is full-synchronous with latch

registers controlling the proper data flow and storing the

appropriate values for the next iteration. Each iteration from

algorithm description is performed in a single clock cycle.

The encryption was partitioned to 3 modules − block cipher,

stream cipher and control.

The architecture of block cipher is inspired by algorithm

schematic shown in Fig. 2. The core of data flow are eight 8-bit

registers. The s-box look-up table was implemented as a huge

combinatorial coder based on multiplexing. Specific element is

the key extension mechanism. It is sequential logic providing

6 iterations. It is enabled at the beginning of encryption

process and then kept running for a few clock cycles. Then the

result − extension key, is latched in a series of registers and

the machine is turned off by disabling all the internal latch

registers.

0 1

Register B

T3

2 3 4 5 6 7 8 9

BZ1

XOR0 1

Register A

T2

2 3 4 5 6 7 8 9XOR

IBIB

IAIA

T5

p'p'

Y'Y'
X'X'

T4

q'q'
Z'Z'

F'F'

c'c'

E'E' XOR

GG

D'D'

T1

Fig. 3. Schematic of DVB-CSA stream encryption; initialization phase.

0 1

Register B

T3

2 3 4 5 6 7 8 9XOR0 1

Register A

T2

2 3 4 5 6 7 8 9XOR

T5

p'p'

Y'Y'
X'X'

Z'Z'

T6 W'W'
output
stream

T4

q'q'

F'F'

c'c'

E'E' XOR

GG

D'D'

Fig. 4. Schematic of DVB-CSA stream encryption; generation phase.

Architecture of stream encryption module is shown in Fig. 5

and Fig. 6. Two schematics show the logic around registers

A and B, appropriate for initialization and generation phases

respectively. In initialization phase some extra logic is used, to

perform T1 transform (Fig. 3). Other differences are: T6 block

bypassed and D signal routed to the XOR gate at register A.

The same circuitry is used for both phases, with appropriate

switching, multiplexing, bypassing. Phase switching process

does not harm A and B registers − their states are preserved,

in accordance with the algorithm.

Block cipher requires 56 cycles to process 64 bit data.

Stream cipher delivers 2 bits per clock cycle, which makes

32 cycles for 64 bits. These blocks may operate concurrently

in pipeline providing a throughput of 1 data block (64-bit)



244 P. M. SZECÓWKA, P. W. MARUCHA

B0 B1 B2 B3 B4 B5

B6

B7 B8

B9

B2(3) B5(3) B4(0) B8(1)

B6(1) B2(0) B3(3) B2(2)

B5(2) B7(2) B7(1) B5(0)

B8(0) B3(1) B4(2) B7(3)

0
1
2
3

3
0
1
2

'1'

'0'

BLOK 
DANYCH 
WEJŚCIOWYCH

0..3
4..7
8..11
12..15
16..19
20..23
24..27
28..31
32..35
36..39
40..43
44..47
48..51
52..55
56..59
60..63

0; 2
1; 3
4; 6
5; 7
8; 10
9; 11
12; 14
13; 15
16; 18
17; 19
20; 22
21; 23
24; 26
25; 27
28; 30
29; 31

0..3
4..7
8..11
12..15
16..19
20..23
24..27
28..31
32..35
36..39
40..43
44..47
48..51
52..55
56..59
60..63

1; 3
0; 2
5; 7
4; 6
9; 11
8; 10
13; 15
12; 14
17; 19
16; 18
21; 23
20; 22
25; 27
24; 26
29; 31
28; 30

2

4

+1+1

1

3

nRST

CLK

 
 
 
 

A0 A1 A2 A3 A4 A5 A6 A7 A8

A9

LUT

1

3 4

'1'

'0'

0
1
2
3
4

1
2
3
4

en

nRST

CLK

2

 

INPUT 
DATA 

BLOCK 

Fig. 5. DVB-CSA hardware; stream cipher configured for initialization phase.

per 58 clock cycles (block cipher slice plus 2 cycles for

registers reload). A higher performance could be achieved by

implementation of 2 block cipher units working in parallel and

this way reducing the slice to 32-34 cycles.

IV. IMPLEMENTATION

Presented architecture was implemented in hardware de-

scription language − VHDL. The code was processed with

Xilinx ISE tools and synthesized for Spartan 3 family FPGA.

Synthesis results are summarized in Table I. The amount of

FPGA resources allocated for the design − 1738 registers

and 1645 LUTs mimicking combinational logic let roughly

estimate the overall complexity of proposed architecture to

100k gates.

The design was simulated in Xilinx ISE environment. Ver-

ification plan covered the typical input/output patterns known

from specifications. At the beginning the results were not

matching. It was revealed that the reason was a little mistake

in a document with algorithm description used for the design.

The problem was solved by combination of experimental



DEDICATED DIGITAL HARDWARE FOR DVB-CSA ENCRYPTION 245

Fig. 6. DVB-CSA hardware; stream cipher configured for generation phase.

TABLE I
DVB-CSA ENCRYPTER SYNTHESIS RESULTS (XILINX SPARTAN 3)

Maximum clock frequency 97 MHz

Minimum input arrival time before clock 10.5 ns

Maximum output required time after clock 4.0 ns

Number of Slices 1644

Number of IOs 194

Number of Slice Registers 1738

Number of Slice LUTs 1645

research involving changes of the architecture and reverse

engineering of C code available. Eventually the proper con-

struction was found and successfully verified. Shall be stated

however that the rough verification plan applied does not give

absolute proof of compliance with DVB-CSA mechanisms

used for the real broadcast.

V. STATIC TIMING ANALYSIS

Timing analysis results listed in Table I show that maximum

clock frequency is quite high − very close to 100 MHz. The

minimum input arrival time before clock, slightly above 10

ns, is not great result however. It exceeds the minimum clock

period estimation given above. Thus for the proper operation,

the clock frequency must be decreased e.g twice. Alternative

solution is insertion of additional registers to the critical inputs.

Detailed analysis of timing report revealed that the critical

path of combinatorial logic leads from H0 register in Fig. 2

to H5 register. It contains XORing with the key, T trasnform

(s-box), U transform (permutation) and eventually XOR with

H6 register. Simultaneously the critical path from input to the

register is pretty same – it leads from the key input to H5

register. Thus the bottleneck for both clock frequency and

input arrival time before clock edge is located in the same

part of design. In these circumstances insertion of a register

somewhere between T and U blocks shall improve two timing

parameteres. Such insertion however would destroy the natural

synchronicity of encryption algorithm, based on shift register

H, and would require significant redesign of both hardware and

the algorithm itself. Shall be taken into account that ciphers in

general are somewhat delicate matter and any change in data

flow may impact the resistivity to attacks.

Maximum required time after clock (4 ns) is more rea-

sonable. It may be reduced again by insertion of registers to

the signals coming out from T6 transform logic. Concerning

considerations given above, for decreased clock frequency no

changes are required whilst for the redesign approach the

output logic needs appropriate redesign too.



246 P. M. SZECÓWKA, P. W. MARUCHA

VI. CONCLUSIONS

Brief analysis of DVB-CSA algorithm led to conclusion

that it is more complex than popular AES solutions like

Rijndael [4]. Consequently hardware implementation is more

complicated too [5]. This carefulness in protection seems

questionable, taking into account that confidentiality of e.g.

TV broadcast of a sport event is absolutely incomparable with

internet banking money transfer. On the other hand however,

prospective attacks on DVB transmission are performed in

much more convenient conditions, with relatively easy and

legal access to both encrypted and decrypted data of unlimited

size. And the loses for the industry may be much higher

than those associated with bank operation. This may explain

the higher level of algorithm complication and consequently

justify the need for bigger digital circuitry.

Specialized architecture for DVB-CSA encryption algorithm

was proposed. Transfer from mathematical description to RTL

level architecture was difficult because of algorithm complex-

ity and simultaneously quite easy because of sequential nature

of its mechanisms. Several intermediate variables appearing in

DVB-CSA are updated every iteration, sometimes referring to

their own previous values, which fits perfectly to a concept of

register in digital electronics. There are also several operations

which may be performed in parallel which fits to natural

concurrence of hardware. Eventually the cipher makes an

impression of being designed for hardware implementation

rather than software approach. Consequently, the VHDL code

appears to be more clear than C program used for reference.

Timing analysis performed in the context of FPGA technol-

ogy revealed that straightforward transfer of algorithm to the

dedicated hardware leads to serious timing problems. Stack of

operations implemented in a long chain of combinatorial logic

limits clock frequency and induces requirements for external

devices which are hard to meet. More efficient approach

would involve a little redesign of genuine DVB-CSA approach,

perhaps followed by revision of existing knowledge about

its resistivity to attacks. This issue may be very interesting

for further research. For the solution presented in the paper,

correct operation of encypter may require clock frequency

reduced to e.g. 50 MHz.

Successful verification and synthesis proved that design

is functionally correct and may be run on real hardware.

Complexity estimated to 100k gates and clock frequency close

to 100 MHz, gained for the first intuitive trial, show that DVB-

CSA encryption is not a challenge for contemporary FPGA

technology. The expected pipeline throughput is around 100

Mbps. Authors have shown that it may be physically imple-

mented together with appropriate communication mechanisms

and go for competition with existing software solutions.

ACKNOWLEDGMENTS

Authors would like to thank Mr. Mateusz Golicz from

Sileman Ltd., Ruda Ślaska, Poland, for inspiration and help

with presented experimental design.

REFERENCES

[1] “Digital Video Broadcasting (DVB); Specification for Service Information
(SI) in DVB systems,” EN 300 468 V1.3.1, 1998.

[2] S. Bewick, “Descrambling dvb data according to etsi common scrambling
specification,” UK Patent Application GB2 322 994A / GB2 322 995A,
1998.

[3] “ETSI Technical Report 289: Support for use of scrambling and Con-
ditional Access (CA) within digital broadcasting systems,” European
Telecommunications Standards Institute, 1996.

[4] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” in Proc. 1st AES

Conference, Ventura CA, USA, 1998.
[5] P. M. Szecówka and D. Tekla, “Hardware implementation of rijndael

encryption algorithm,” in Proc. 11th International Conference Mixed

Design of Integrated Circuits and Systems, (MIXDES), Szczecin, Poland,
2004, pp. 561–564.

[6] R. P. Weinmann and K. Wirt, “Analysis of the dvb common scrambling
algorithm,” in Proc. Conference on Communications and Multimedia

Security, CMS, Kluwer Academic Publishers, 2004.
[7] W. Li, “Security analysis of dvb common scrambling algorithm,” in Proc.

The First International Symposium on Data, Privacy, and E-Commerce

(ISDPE), 2007, pp. 271–273.
[8] L. Simpson, M. Henricksen, and W. S. Yap, “Improved cryptanalysis

of the common scrambling algorithm stream cipher,” in Proc. 14th

Australasian Conference on Information Security and Privacy, Brisbane,
Australia, Springer-Verlag, 2009.


