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Abstract 
 
Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for 
controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means 
of detecting correlations between their individual parameters. This paper presents the next part of the study on usefulness of artificial 
neural networks to support rebonding of green moulding sand, using chosen  properties of moulding sands, which can be determined fast. 
The effect of changes in the training set quantity on the quality of the network is presented in this article. It has been shown that a small 
change in the data set would change the quality of the network, and may also make it necessary to change the type of network in order to 
obtain good results. 
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1. Introduction 
 
Artificial neural networks usage is one of the modern methods 

of the production optimisation [1–6]. The networks owe their 
popularity to the fact that they constitute convenient tools of 
investigations. Molding sands and in particular their quality 
control methods significantly affect the quality of castings. The 
use of statistical analysis to support decision making on how to 
provide the required moulding sands properties is more and more 
popular. 

Modern control systems are utilising changes of the selected 
sand properties for controlling its quality, mainly the sand 
compactibility [7]. In addition to control systems, databases that 
provide access to the results of the various parameters of the 
production process of castings have an important role [8-10]. 
Thanks to databases there is possibility to control these processes 
for a long time. You can also use this data to support 
manufacturing processes including using artificial neural 
networks. 

The aim of this research was to obtain an artificial neural 
network which allows predicting green moulding sand moisture 
knowing its permeability, compression strength and 
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compactibility (the moulding sand properties were chosen based 
on previous studies [11-13]). 

 

2. Researches  
 

Analysis covered a set of experimental data collected in the 
Laboratory of Moulding Materials, Faculty of Foundry 
Engineering AGH. Database include up to 360 records for each 
property held for further analysis. 
The Statistica 10.0 program was applied for designing the neural 
network models. 

The learning process was carried out for a MLP network 
(number of hidden neurons 3-10) and RBF (number of hidden 
neurons 12-17), number of networks: 50000. The following 
activation functions were used in hidden neurons: Linear, 
Logistic, Tanh, exponential, moreover output neuron activation 
functions: Linear, Logistic, Tanh, exponential. 
The obtained results allow to state that the smallest value of the 
error was obtained for MLP network, containing from 8 to 10 
neurons in the hidden layer, using the tanh function as the 
activation function of the neurons in the hidden layer and the 
Linear and the logistic function for activation neurons in the 
output layer. Comparison of errors for different networks is 
shown in Figure 1. 
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Fig. 1. Comparison of errors for different networks 

 
 
In the next step, the learning process has been conducted for a 
MLP network (number of neurons 8-10 in hidden layer), the 
number of the networks: 50000, activation function of neurons in 
the hidden layer Tanh, the activation functions of neurons in the 
output layer linear and logistic 
Received networks allow to conclude that the smallest error value 
is obtained for the structure of 3-8-1, using Tanh function as the 
activation function in the hidden layer and while using the logistic 
function in the output layer (Figure 2). 

In the next stage learning MLP networks was carried out, 
where the number of neurons in the hidden layer was 8. Number 
of networks: 50000, Tanh function was used as activation 
function of neurons in the hidden layer and logistic function was 
used as the activation functions of neurons in the output layer. 
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Fig. 2. Comparison of errors for different networks with 8-10 

number of neurons in hidden layer 
 
Table 1. 
The most effective network in generating moisture values with 
given parameters (compactibility, permeability and compressive 
strength) 
Network 
name 

Learning 
quality 

Testing 
quality 

Learning 
error 

Testing 
error 

Learning 
algorithm 

MLP 3-8-1 0,99486 0,99240 0,00583 0,00827 BFGS 157 
MLP 3-8-1 0,99724 0,99737 0,00308 0,00317 BFGS 180 
MLP 3-8-1 0,99592 0,99662 0,00455 0,00448 BFGS 139 
MLP 3-8-1 0,99571 0,99409 0,00491 0,00689 BFGS 126 
MLP 3-8-1 0,99360 0,99144 0,00730 0,00911 BFGS 70 
 
Considering only the accuracy of the obtained results, the most 
effective in generating moisture values with given parameters 
(compactibility, permeability and compressive strength) is 3-8-1 
MLP network, where the BFGS learning algorithm marked 180 
was applied (Table 1) and Figure 3 shows their graphical 
summary. 
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Fig. 3. Graphical summary of data from Table 1 
 
However, the high sensitivity of the network to the input 
parameters (shown in Table 2) particularly  compactibility and 
permeability, may cause errors when generating results. Network 
based on BFGS 131 algorithm provides a relatively good quality 
of the output signal with less sensitivity to measurement 
inaccuracies. 
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Table 2. 
Sensitivity of the network to the input parameters 

Network 
name 

Learning 
algorithm permeability compactibility compressive 

strength 
MLP 3-8-1 BFGS 157 152 95 32 
MLP 3-8-1 BFGS 180 285 226 28 
MLP 3-8-1 BFGS 139 205 131 35 
MLP 3-8-1 BFGS 126 107 102 47 
MLP 3-8-1 BFGS 70 68 70 34 

 
Artificial neural network was generated for the same input and 
output database file diminishing the last ten data. Table 3 shows 
the comparison of the best networks to predict moisture values 
with full and limited database. 
 
Table 3. 
Comparison of the best networks to predict moisture values with 
full and limited database 

Network 
name 

Learning 
error 

Testing 
error 

Learning 
algorithm 

Activation 
function 

in the 
hidden 
layer 

Activation 
function 

in the 
output 
layer 

MLP 
3-8-1 0,00308 0,00317 BFGS 

180 Tanh Logistic 

MLP 
3-6-1 0,00961 0,00253 BFGS 

165 Logistic Linear 

 
 
The network created from the input data decreased by last ten 
measurement results is presented next. Network structure is 
similar to the results presented in the earlier part of the article. 
The only differences are the different types of activation functions 
of neurons that give the best results. In case of the limited 
database, it  is adequately logistic and linear function. Summary 
of test error is comparable for both cases, while in the case of 
learning error there is a noticeable difference.  
This is due to the input data difference of two networks. Removal 
of the last ten measurements results has changed a course of the 
linear regression of input variables and reduced the effectiveness 
of the learning process. 
In the next stage, the training set was reduced of 10 randomly 
selected data. The aim was to determine whether a reduction way 
of database input would affect the accuracy of the obtained neural 
networks. 
Removal of ten randomly selected measurements resulted in a 
total change of the network learning process. The best possible 
result were obtained for the RBF network structure with 25 
neurons in the hidden layer. This is due to the fact that this type of 
network cope better with the input containing any errors. This 
network, by changing the structure, can still fulfill defined 
requirements, despite the deficiencies in the input data. 
 
3. Conclusions 
 
For the full database the best results were obtained with MLP 
networks. In the case of a limitation of the scope of data on 10, it 
was able to get lower value of learning error. This is due to the 
disadvantage of STATISTICA, which compares the variation of 

the data to a linear regression. It is related to formation of local 
extremes, which program can treated as a global extremes. After 
reducing input data randomly by 10, generated MLP network not 
cope with deriving shortages and RBF network become more 
efficient. This demonstrates greater ability of this design to fill 
gaps and measurement errors. 
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