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Structured Mapping of Petri Net States and Events
for FPGA Implementations

Jacek Tkacz and Marian Adamski

Abstract—The paper presents a new method of structured
encoding of global internal states and events in Reconfigurable
Logic Controllers, which are directly mapped into Field Pro-
grammable Gate Arrays (FPGA). Modular, concurrently de-
composed, colored state machine is chosen as a intermediate
model, before the mapping of Petri net into an array structure
of dedicated but very flexible and reliable digital system. The
initial textual specification in formal Gentzen logic serves both
as a design description for a rapid prototyping, as well as
formal model, suitable for detailed computer-based reasoning
about optimized and synthesized logic controller, implemented
in configurable hardware. Only the selected linear subset from
general, universal propositional Gentzen Logic is necessary to
deduce several properties of the net, such as relations of non-
concurrency among structurally ordered macroplaces. The goal
of this paper is to present the design methodology for modeling
and synthesis of discrete controllers using related Petri net theory,
rule-based theory (mathematical logic), and VHDL.

Keywords—Configurable logic controllers, interpreted Petri net
state space, local and global state encoding, hyperpgraph, logic
design, Gentzen sequents, Petri net coloring, FPGA, VHDL

I. INTRODUCTION

THE behavior and internal structure of logic controller
can be initially modeled in the form Control Interpreted

Petri net, very often related with Sequential Function Charts
[1]–[5] or UML state machine diagrams [6], [7]. As the
next design step, the topological structure of the Petri net,
which can contain structurally ordered macroplaces, places
and transitions, can be formally presented in the textual, rule
based language, suitable for simulation, validation, verification
and a rapid prototyping of reconfigurable logic controllers.
The format of logic expressions is taken from professional
hardware description language VHDL.

The proposed rigorous digital design process starts from
hierarchical concurrent state machine model (HCSM), which
has been formally derived from modular, colored control
interpreted Petri net [1], [2], [8]–[10]. The colored tokens, arcs,
places and transitions separate hierarchically and concurrently
related State Machine components. The rule-based textual
logic description of Petri net in VHDL syntax is accepted
by professional design tools like Acvtive HDL (Aldec, USA)
and Xlinx ISE. The flexible, readable template for Petri net
description is directly recognized by VHDL compiler and
simulator as well as by formal reasoning system. The logic
specification is one-to-one mapped into Field Programmable
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Fig. 1. Control system.

Gate Array macrocells. Combinatorial procedures in formal
design of logic controller are supported by Gentzen sequent
calculus [8], [9] and formal verification of specification by
means of model checking [11].

The rule-based textual description of topological structure of
the Petri net with a logical interpretation of binary inputs and
outputs of controller are treated together as formal assertions
sequents in Gentzen Logic.

II. EXAMPLE OF CONTROL SYSTEM

The example of control system for beverage production and
distribution is given in Fig. 1. The process can be started by
pressing x1 button. Initially, both tanks placed on the carriage
are empty. Valves y10 and y11 are opened and target tanks
are loaded on the carriage y3. The valves are opened until
the containers are filled, and this information is indicated re-
spectively by sensor x5 and x7. Meanwhile, loaded containers
are transported (signal y12) to a proper location indicated by
sensor x13. When the ingredients are ready it is signalized by
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TABLE I
LOGIC CONTROLLER INPUTS AND OUTPUTS DESCRIPTION

INPUTS
Signal Description
x1 start the process
x2 preparation of ingredients in the first container is finished
x3 preparation of ingredients in the second container is finished
x4 preparation of tanks is finished
x5 maximal fluid level in the first container is obtained
x6 minimal fluid level in the first container is obtained
x7 maximal fluid level in the second container is obtained
x8 minimal fluid level in the second container is obtained
x9 preparation of the drink is finished
x10 filling off the first tank is finished
x11 filling off the second tank is finished
x12 the carriage is in its initial location
x13 the carriage is in its target location

OUTPUTS
Signal Description
y1 preparation of the first ingredient
y2 preparation of the second ingredient
y3 loading containers
y4 mixing ingredients
y5 valve for emptying the first container
y6 valve for emptying the second container
y7 valve for filling the first tank
y8 valve for filling the second tank
y9 carriage movement to the initial location (right)
y10 valve for filling the first container
y11 valve for filling the second container
y12 carriage movement to the target location (left)

the sensors x2 (first container), x3 (second container) and x4

(the carriage). After that, the ingredients from both containers
are dropped into main tank (signal y5 and y6), where they are
mixed (active signal y4). When the drink is well mixed, it is
indicated by the sensor x9. When one of the tanks is ready, it
is independenty filled and closed (signals x10 and x11). After
finishing of both processes, the carriage with tanks moves to
its initial position (signal y9). The sensor x12 is active when
the carriage reached starting position. A detailed description
of the input and output signals are included in Tab. I.

Petri net places (P1 − P20) stand for the local states of
concurrent state machine (Fig. 2). The transitions (t1−t18) de-
scribe partial states changes in terms of local state changes of
Petri net space. Boolean expressions called guards (x1−x13)
describe the external conditions for transitions to be enable.
The Moore type outputs (y1 − y12) are attached to places. In
such a way events are related with transitions of the net and
inputs of controller.

III. MODULAR STRUCTURED PETRI NET

Usually Petri net places represent local states of Concurrent
State Machine, whereas maximal sets of such concurrent
Petri net places are assigned to its global states. Very often
controller output signals are directly assigned to selected
places in the Petri net (Fig. 2), and controller input signals
are attached to guards related with particular transitions of the
net. The registered outputs can be efficiently used for one-
hot encoding of places, which are nested inside recognized
macroplaces MP1 −MP11.

In formal description of the Petri net, capital letters stand
for the symbols from sequent propositional logic.
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Fig. 2. Modular control interpreted Petri net.

In the new version of the experimental reasoning system
Gentzen symbol ` describes entailed assertion. Symbol (and)
denotes conjunction symbol (or) denotes disjunction, symbol
(not) – negation symbol ⇐ backward implication, symbol
(xor) – exclusive or. Capital letters X0 − X13 describe con-
troller inputs and letters Y1−Y12 – controller outputs. Symbols
MP1 −MP11 are the names of macroplaces (Fig. 2, Fig. 2).
Petri net places p1-p16 are related to capital letters denoting
single bit memory elements: P1 − P16. The name of guarded
transition ti is Ti. If it is necessary next values of registered
signals are recognized by a linear temporal logic operator next,
denoted as @. In general the current value of a registered signal
is presented as Q, but its next value is written as @Q [1], [3],
[4].
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The rule-based description of partial state changes in se-
quent logic for one-hot encoding with direct using of registered
outputs Y1 . . . Y11 in hierarchial modular array structure can
be as follows [12]:

` @Y1 ⇐ (MP1 and Y1) xor (T2 xor T5) : P5

` @Y2 ⇐ (MP2 and Y2) xor (T7 xor T6) : P6

` @Y3 ⇐ (MP3 and Y3) xor (T1 xor T4) : P4

` @Y4 ⇐ (MP4 and Y4) xor (T8 xor T9) : P10

` @Y5 ⇐ (MP4 and Y5) xor (T8 xor T10) : P21

` @Y6 ⇐ (MP4 and Y6) xor (T8 xor T11) : P22

` @Y7 ⇐ (MP9 and Y7) xor (T13 xor T15) : P16

` @Y8 ⇐ (MP10 and Y8) xor (T14 xor T16) : P17

` @Y9 ⇐ (MP11 and Y9) xor (T8 xor T10) : P20

` @Y10⇐ (MP1 and Y10) xor (T1 xor T2) : P2

` @Y11⇐ (MP2 and Y11) xor (T1 xor T3) : P3

@Yi describe the next value of controller registered output Yi.
Some places such as for example P5, P6, . . . , P3 are encoded
inside macroplaces as conjunctions of registered signals (MPj

and Yi):

P5 =(MP1 and Y1)
P6 =(MP2 and Y2)

. . .
P3 =(MP2 and Y11)

The other places, for example P1, P8, . . . P18 are encoded by
means of using negated values of registered outputs signals:

P1 =(MP11 and not Y9)
P8 =(MP1 and not Y10 and not Y1)

. . .
P19= (MP10 and Y8)

The preconditions of common border transitions for
macroplaces MP1 −MP11 includes symbolic names of their
encoded input places and attached guards:

` T1 ⇐MP11 and not Y9 and X1 and not X4

` T7 ⇐MP3 and Y12 and X13

` T8 ⇐ (MP1 and not Y10 and not Y1) and
(MP2 and not Y11 and not Y2)

` T12⇐MP4 and not Y4 and not Y5 and not Y6

` T13⇐MP6 and MP5

` T14⇐MP7 and MP8

` T17⇐MP9 and not Y7 and MP10 and not Y8

The preconditions of local transitions is built from symbolic
names of encoded places and guards:

` T2 ⇐MP1 and Y10 and X5

` T3 ⇐MP2 and Y11 and X7

. . .
` T18⇐MP11 and Y 9 and X12

The excitations for macroplaces are as follows:

` @MP1 ⇐MP1 xor (T1 xor T8)
` @MP2 ⇐MP2 xor (T1 xor T8)
` @MP3 ⇐MP3 xor (T1 xor T7)
` @MP4 ⇐MP4 xor (T8 xor T12)
` @MP5 ⇐MP5 xor (T7 xor T13)
` @MP6 ⇐MP6 xor 4(T12 xor T13)
` @MP7 ⇐MP7 xor (T2 xor T14)

. . .
` @MP11⇐MP11 xor (T17 xor T1)

In previous designs the macroplaces would be one-hot coded
by means of using 11 additional state variables (Q1 −Q11).

MP1 =Q1; MP2 = Q2; . . . ; MP11 = Q11

Several optimization techniques could be used for getting
smaller number of macrocells [1], [2], [4], [13]. One of them
is decomposition of the net into coordinated state machine
components, presented in this paper.In that case the number
of registered cells (extended T Flip-Flops) could be reduced
to nine or even more (Sections VIII, IX).

IV. COLORED MACRONET

During reduction a Petri net can be converted into a more
compact hierarchical description. Two reduction procedures
are the most useful: Fusion of Series Places (FSP) and Fusion
of Parallel Places (FPP) [5], [9], [14]. Starting from FSP both
techniques are used recursively until the macronet becomes
irreducible.

Figure 3 shows a macronet related with a control interpreted
Petri net from Fig. 2, which describes production management
system of milk beverages (Fig. 1). The reachability graph of
the macronet is shown in Fig. 4.

A Petri net is enhanced by assigning colors
{C1, C2, C3, C4} to places and transitions. Such kind
of net is called colored interpreted Petri net [1], [5], [15].
These colors help to intuitively and formally validate the
consistency of sequential processes in the considered Petri
net. Each color recognizes one state machine module. The
rules for Petri net coloring can be found in [2], [3], [5], [15].

The colored second order macronet, which is presented in
Fig. 3, can be generated by means of using an experimental
computer program (ICPN) developed by team from Institute of
Computer Engineering and Electronics, University of Zielona
Góra, Poland. The novel effective version is written in C#
and it is based on searching and selecting proper state space
transversals directly from topological structure of the net. As
a result colored structured net from Fig. 2 has been obtained.
Another option, which is presented in the next part of the paper
(Sections VI, VII), uses automatic reasoning about Petri net
space in Gentzen logic systems (Gentzen6 and GentzenDB).

In the considered coloring, macroplaces and transitions
are flagged with four colors {c1, c2, c3, c4}. Next to each
of the macroplaces, numbers of its internal places are pro-
vided. It should be noted that the macroplaces, which are
painted with disjoint set of colors, for example MP1[C4] and
MP2[C3] and MP3[C1, C2] are concurrent to each other. The
macroplaces sharing the same color, for example MP5[C2] and
MP9[C2, C3] are sequentially related to each other (Fig. 3).



334 J. TKACZ, M. ADAMSKI

V. HIERARCHICAL PETRI NET SPACE

From the colored Petri net it is possible to deduce equivalent
representation of the controller as transition system. It is
obtained from reachability graph (Fig. 4) of Petri net or its
equivalent macronet (Fig. 3). The vertices of reachability graph
describe global states of transition system. If the Petri net is
properly colored then vertices contain all colors. There are not
vertices which contain two different states with the same color.
The number of colors should be minimal and equal to the
maximum number of places which are concurrently marked.
In such a way the transition system could be treated as an
interpreted form of reachability graph (Fig. 4). Its modular
and structured form represents global coordination states and
macrostates from Fig. 2. The transition system can be in ten
global states M0 −M9. There are superposition of maximal
subsets of concurrent local macrostates:

M0 = {MP11};M1 = {MP1,MP2,MP3};
M2 = {MP3,MP4};M3 = {MP1,MP2,MP5,MP8};
M4 = {MP3,MP6,MP7};M5 = {MP4,MP5,MP8};
M6 = {MP5,MP6,MP7,MP8};M7 = {MP5,MP6,MP10};
M8 = {MP7,MP8,MP9};M9 = {MP9,MP10}

The monotone characteristic sequent of the Petri net discrete
space is as follows:

M ` (MP11), (MP1 and MP2 and MP3), (MP3 and MP4),
(MP1 and MP2 and MP5 and MP8),
(MP1 and MP2 and MP5 and MP8),
(MP3 and MP6 and MP7),
(MP4 and MP5 and MP8),
(MP5 and MP6 and MP7 and MP8),
(MP5 and MP6 and MP10),
(MP7 and MP8 and MP9), (MP9 and MP10);

After further substitution it is possible to get partial or full
characteristic functions for any level of hierarchy, even on the
local place level:

` (P1 or P20) and
((P2 or P5 or P8) and
(P3 or P6 or P9) and (P4 or P7)) and
. . .
((P16 or P18) and (P17 or P19));

The distribution of the Petri net tokens among places,
describes the current global state M. New marking M, after the
firing of any enabled transition is the next global state @M.
From the current global state M, the modeled controller goes
to the next internal global state @M, generating the registered
@y output signals.

A. Hypergraphs of Concurency and Sequentiality

In order to determine the SM-subnets covering of the Petri
macronet, formal reasoning using propositional Gentzen cal-
culus was used [12], [16]–[19]. As a result of local and global
state space analysis, state machine subnets are obtained. The
subnets are subsequently marked with different colors. The
subnets are accordingly mapped to markers, places, transitions
and input and output signals.
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Hypergraph of concurrency Fig. 5 represents all the global
states of the discrete system described by the Petri net.
Hyperedges relate concurrent macroplaces belonging to the
same global macrostates and correspond to respective vertices
of reachability graph (Fig. 4).

Hypergraph of non-concurrency, or sequentiality (Fig. 6), is
a complement of hypergraph of concurrency. Its hyperedges
correspond to sets of sequential Petri net places, where only
one place can be marked, from state machine subnets. It could
be calculated as exact transversals of concurrency hypergraph
(Fig. 5) [17], [20].
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`MP11, (MP1 or MP2 or MP3), (MP3 or MP4),
(MP1 or MP2 or MP5 or MP8), . . . , (MP9 or MP10)

The full hypergraph of sequentiality shown in Fig. 6 con-
tains six hyperedges {i1 − i6}. There are two net covers with
exactly four hyperedges: {i3, i4, i1, i2}, {i3, i4, i5, i6}. Both
covers contain essential hyperedges i3 and i4, which are the
only ones to cover macroplaces MP5 and MP8. The first
four sequential subnets i1 − i4 are sufficient to cover all the
macroplaces and places of the net (Fig. 7).

Notice that the non-concurrency graph hyperedges corre-
spond to invariants obtained using ILP linear programming
methods. Alternatively they can be read off the marking
reachability graph (Fig. 4), as transversals of subsets of places
marked in parallel [8], [14].

`MP1,MP4,MP6,MP8,MP10,MP11;
`MP1,MP4,MP6,MP9,MP11; (i1)
`MP1,MP4,MP5,MP7,MP9,MP11;
`MP1,MP4,MP7,MP10,MP11; (i6)
`MP2,MP4,MP6,MP8,MP10,MP11;
`MP2,MP4,MP6,MP9,MP11; (i5)
`MP2,MP4,MP5,MP7,MP9,MP11;
`MP2,MP4,MP7,MP10,MP11; (i2)
`MP3,MP5,MP7,MP10,MP11;
`MP3,MP5,MP9,MP11; (i4)
`MP3,MP6,MP8,MP9,MP11;
`MP3,MP8,MP10,MP11; (i3)

The depicted hypergraphs could be hierarchical. Macroplace
MP4 corresponds to the sub-hypergraph containing vertices
P10, P24, P21, P22, P23, P24. The subnet possible modified
by designer corresponding to this macroplace has boundary
transitions t8 and t12, and internal transitions t9, t10, t11.

Finally selected cover of Petri macronet by state machine
components could be represented only by four transversals of
macronet state space (Fig. 5). It is described as a reduced
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hypergraph of non-concurrency (Fig. 7):

`MP1,MP4,MP6,MP9,MP11

`MP2,MP4,MP7,MP10,MP11

`MP3,MP8,MP10,MP11

`MP3,MP5,MP9,MP11

VI. SYMBOLIC METHOD OF HYPERGRAPH GENERATION

What differentiates sequent calculus from other methods,
e.g. those used in [1], [18], [19], is that the conversion to
clausal form is not required. Moreover, by using cut and
consensus a laborious process of results selection is avoided.
Siphons and traps that are not minimal are eliminated before-
hand.

It is assumed that the Petri net has already been reduced
to a hierarchical macronet (Fig. 3), which will be analyzed in
the next steps. Gentzen sequents, showing in a symbolic way
all the relations of direct transition between input and output
places of all transitions, are determined on the basis of the
topological structure of an uninterpreted Petri net. Using the
method presented in [18], [19] separated sequents of siphons
and traps were created (Tab. II, Tab. III).
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TABLE II
GROUP SEQUENTS OF TRAPS AND SIPHONS

Transitions Traps sequent Siphons sequent
t1 (MP11 → (MP1 +MP2 +MP3)), ((MP1 +MP2 +MP3) → MP11),
t8 ((MP1 +MP2) → MP4), (MP4 → (MP1 +MP2)),
t7 (MP3 → (MP5 +MP8)), ((MP5 +MP8) → MP3),
t12 (MP4 → (MP6 +MP7)), ((MP6 +MP7) → MP4),
t13 ((MP5 +MP6) → MP9), (MP9 → (MP5 +MP6)),
t14 ((MP7 +MP8) → MP10), (MP10 → (MP7 +MP8)),
t17 ((MP9 +MP10) → MP11) `; (MP11 → (MP9 +MP10)) `;

TABLE III
TRAPS AND SIPHONS

Traps Siphons Color
i1 MP1,MP4,MP6,MP9,MP11 MP1,MP4,MP6,MP9,MP11 C3

i6 MP1,MP4,MP7,MP10,MP11 MP1,MP4,MP7,MP10,MP11 C5

i5 MP2,MP4,MP6,MP9,MP11 MP2,MP4,MP6,MP9,MP11 C6

i2 MP2,MP4,MP7,MP10,MP11 MP2,MP4,MP7,MP10,MP11 C4

i4 MP3,MP5,MP9,MP11 MP3,MP5,MP9,MP11 C2

i3 MP3,MP8,MP10,MP11 MP3,MP8,MP10,MP11 C1

VII. ANALYSIS OF PETRI NETS USING SYMBOLIC
METHOD

A. Petri Net Decomposition into SM-Components

In order to check if the Petri net is live, traps equal to
siphons (deadlocks) are designed [1], [12], [15]–[17]. Sets of
marked traps contained in siphons determine potential state
machine subnet, present in the Petri net. Each of the subnets
is marked with different color, flagging also its places and
transitions. Traps not equal to siphons indicate potential net
defects. The net is not live, if all the siphons do not contain
traps. We propose the following method of Petri net states
space analysis. We use the macronet depicted in Fig. 3 as an
example:

1) Using the rule-based, symbolic, description of the Petri
net create the group sequent of traps (Tab. II).

2) Reduce the group sequent of traps into single normal-
ized elementary sequents and remove their right sides
(Tab. III).

3) Remove the sequents of traps not containing the marked
place symbol (no such sequents).

4) Using the rule-based, symbolic, description of the Petri
net create the group sequent of siphons (deadlocks)
(Tab. II).

5) Reduce the group sequent of siphons into elementary
sequents and remove their right sides. Apply the consen-
sus rule to the previously selected sequents of traps in
every chosen siphon. If the considered sequent becomes
dominated, move to point number 8 (all sequents are
dominated).

6) The traps which are equal to siphons determine covering
of non-concurrency hypergraph by the hyperegdes corre-
sponding to potential state machine subnets (hyperedges
are assigned colors C1 − C6 (Tab. III).

7) Find the minimal covers of non-concurrency hyper-
graph (these are {C1, C2, C3, C4} or {C1, C2, C5, C6}),
move to point number 9.

8) The Petri net is not live (does not apply to the Petri net
in Fig. 2).

9) End of algorithm.
After removing the right sides of the reduced sequents listed

in the Tab. I and after leaving out only the siphons dominated
by marked traps, we obtained six potential automata subnets.
These sets correspond to the hyperedges of the sequentiality
hypergraph {i1, . . . , i6} (Fig. 4). Following point number 5 in
the above algorithm, we conclude that the Petri net is live,
since each edge of the hypergraph contains a marked trap.
Subsets determining traps and siphons are pairwise identical.
The cover (i3, i4, i1, i2) was chosen for Petri net encoding.
Subnets were assigned colors according to Tab. III. These
colors were placed on the net shown in Fig. 3.

B. Deadlock Detection

The trap and siphon expressions for the net with defect
from Fig. 8 are given in the Tab. IV. The net is not covered
by initially marked traps contained in siphons. It means that
the net is not live. On the other hand it is not fully covered by
marked state machine components. Some siphons described in
bold (Tab. V) are not equal to traps and show defect in the
net.

VIII. PETRI NET MODULAR ENCODING

The macroplaces can be encoded in traditional way inside
state machine components. The components are recognized
by colors {1,2,3,4}:
`MP11[1, 2, 3, 4]⇐ not (Q0 or Q1 or . . . or Q8 or Q9)
`MP1[3]⇐ not Q4 and not Q5 and Q6

`MP2[4]⇐ not Q7 and not Q8 and Q9

`MP3[1, 2]⇐ (not Q0 and Q1) and (not Q2 and Q3)
`MP4[3, 4]⇐ (not Q4 and Q5 and Q6) and
(not Q7 and Q8 and Q9)
`MP5[2]⇐ Q2 and Q3

`MP6[3]⇐ not Q4 and Q5 and not Q6

`MP7[4]⇐ not Q7 and Q8 not Q9

`MP8[1]⇐ Q0 and Q1

`MP9[2, 3]⇐ (Q2 and not Q3) and
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TABLE IV
GROUP SEQUENTS OF TRAPS AND SIPHONS FOR DEFECTED NET

Transitions Traps sequent Siphons sequent
t1 (MP11 → (MP1 +MP2 +MP3)), ((MP1 +MP2 +MP3) → MP11),
t8 ((MP1 +MP2) → MP4), (MP4 → (MP1 +MP2)),
t7 (MP3 → (MP8)), ((MP8) → MP3),
t12 (MP4 → (MP6 +MP7)), ((MP6 +MP7) → MP4),
t13 ((MP6 +MP8) → MP9), (MP9 → (MP6 +MP8)),
t14 ((MP7 +MP8) → MP10), (MP10 → (MP7 +MP8)),
t17 ((MP9 +MP10) → MP11) `; (MP11 → (MP9 +MP10)) `;

TABLE V
TRAPS AND SIPHONS WITH SELECTED DEFECTS

Traps Siphons
MP1,MP4,MP6,MP9,MP11 MP1,MP4,MP6,MP9,MP11

MP1,MP4,MP7,MP10,MP11 MP1,MP4,MP7,MP10,MP11

MP2,MP4,MP6,MP9,MP11 MP2,MP4,MP6,MP9,MP11

MP2,MP4,MP7,MP10,MP11 MP2,MP4,MP7,MP10,MP11

MP3,MP8,MP9,MP10,MP11 MP3,MP8,MP9,MP11

MP3,MP8,MP10,MP11

t1

MP

11

M

P
MP

4

MP

1

MP

2

MP

3

MP

8

MP

6

MP

9

MP

7

MP

10

t17

t8 t7

t12

t13 t14

(2,5,8) (3,6,9) (4,7)

(10,14,21,22

23,24)
(13) (15)

(11) (12)

(16,18)

(20,1)

Fig. 8. Macronet with defect.

(Q4 and Q5 and not Q6)
`MP10[1, 4]⇐ (Q0 and not Q1) and
(Q7 and Q8 and not Q9)

As a result the number of additional encoding variables
which are used for state encoding is reduced to nine:

` @Q0⇐Q0 xor (T7 xor T17)
` @Q1⇐Q1 xor (T1 xor T14)
` @Q2⇐Q2 xor (T7 xorT17)
` @Q3⇐Q3 xor (T1 xor T13)
` @Q4⇐Q4 xor (T13 xor T17)
` @Q5⇐Q5 xor (T8 xor T17)
` @Q6⇐Q6 xor (T1 xor T12)
` @Q7⇐Q7 xor (T14 xor T17)
` @Q8⇐Q8 xor (T8 xor T17)
` @Q9⇐Q9 xor (T8 xor T12)

The names of macroplaces could be used as aliases in hard-
ware description languages. For rapid prototyping is better to
use them as flags to observe both local states and macrostates
during simulation and modifications [6].

IX. SIMULATION AND SYNTHESIS

Obtained equations are a base for creation a Petri net HDL
model in VHDL (Fig. 10). Preconditions of global and local
transitions are described as simple continuous assignments.
The process FF is responsible for generation of codes of next
macro and local states. Because the local states are encoded
with use the output variables there are declared internal copy
of these variables.

The preferable way of controller rapid prototyping is hier-
archical design from a formal assertion-based [21] behavioral
description, using professional HDL syntax. One of the pos-
sible version of general template [3] is presented in Fig. 10.

For pragmatic reasons the controller is realized as syn-
chronous digital system with distributed encoded state register
Q1 . . . Q9 and distributed output register Y1 . . . Y12. In general
state register and output register can be merged. All concur-
rently enable transitions can fire independently, in any order.
It is considered that after animation and classical analysis,
the implemented interpreted Petri net is checked as safe, live,
reversible and without conflicts, which are not solved [10],
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Fig. 9. Simulation results from AHDL tool.

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity controller is
port (CLK, RESET: in std_logic;

X1, X2, ..., X12, X13: in std_logic;
Y1, Y2, ...,Y12: out std_logic);

end controller;

architecture controller_ort of controller is
signal q0, q1, ..., q9: std_logic;
signal y_0, y_1, y_2, ..., y_12: std_logic;
signal t1, t2, t3, ..., t18: std_logic;

begin
--Precondition of border transitions
t1 <= not y_9 and x1 and ... and not q9;
t7 <= q1 and q3 and y_12 and x13 and not q0

and not q2;
...
t17 <= q2 and q4 and q5 and q0 and q7 and q8

and not y_7 and not y_8 and not q6
and not q6 and not q1 and not q9;

--Precondition of local transitions
t2 <= y_10 and x5;
t3 <= y_11 and x7;
...
t18 <= y_9 and x12;

FF:process (CLK, RESET) -- Transition firing
begin

if RESET = ’1’ then
q0 <= ’0’; ... ; q9 <= ’0’;
y_1 <= ’0’; ...; y_12 <= ’0’;

elsif rising_edge(CLK) then
q0 <= q0 xor (t7 xor t17);
q1 <= q1 xor (t1 xor t14);
...
q9 <= q9 xor (t1 xor t12);

y_1 <= (y_1 and q6) xor (t2 xor t5);
y_2 <= (y_2 and q9) xor (t3 xor t6);
...
y_12 <=(y_12 and q1 and q3) xor (t4 xor t7);

end if;
end process;

-- Outputs
Y1 <= y_1;
Y2 <= y_2;
...
Y12 <= y_12;
end controller_ort;

Fig. 10. Part of VHDL template.

[19]. Anyway if some transitions of net would be in conflicts
or net is not safe (1-bounded), the detected partial state of
the net is frozen (state changes stop). Registered outputs can
be used both for precondition and local states coding. The
simulation results obtained from Active-HDL tool is shown in
Fig. 9.

The macroplace-centered and place-centered decomposition
and encoding of SM-colored Petri net is preferable from FPGA
resources utilization point of view [22], [23]. Additionally it

TABLE VI
DEVICE UTILIZATION SUMMARY

Logic utilization Used Available Utilization
Number of Slices 37 768 4%
Number of FlipFlops 22 1536 1%
Number of LUTs 70 1536 4%
Number of IOBs 27 180 15%
Number of GCLKs 1 4 25%

make possible flexible reusing of previously tested, encoded
Petri net components. Synthesis after classic hierarchical one-
hot state encoding of macroplaces and places needs 35 flip-
flops. In case of economical rapid concurrent one-hot local
encoding of merged places and registered outputs (Fig. 10) it is
necessary to use only 22 shared additional encoding variables.
Synthesis result using Xilinx Vertex V50 are presented in
Tab. VI.

Hierarchical encoding using macroplaces and registered
outputs gives balanced economical synthesis results as well
flexibility during redesign of the controller. The coordination
places serve also as flags during partial reconfiguration of the
net. After modification of the mixing feeder from mechanical
part (Fig. 1) it is easy to find local places P10, P14, P21, P22,
P22 and P24, which are encapsulated in MP4 and replace
them by another subset without destroying the other parts of
previous design.

X. SUMMARY

Hierarchical encoding using macroplaces and registered
outputs gives economical synthesis results as well flexibility
during redesign of the controller. The coordination places serve
also as flags during partial reconfiguration of the net. It is
important to note that the designed system encoded using the
structural (modular) method and described in VDHL hardware
description language - can be easily modified by specifying
locally only the part of it included into macroplaces. In such
a way FPGA implementation, can be easily re-designed [24].

The paper concentrated on behavioral and structural speci-
fication of reconfigurable logic controllers (RLC). The initial
description is given as a hierarchical modular control inter-
preted Petri net. On the abstract level of the logic synthesis
specification is written in propositional sequent language. It
enable us to make all design transformation using formal rea-
soning methods. Rapid modeling and synthesis in FPGA can
be done from expressions written in the hardware description
languages, for example VHDL.
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