
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 4, PP. 311–320
Manuscript received October 10, 2015; revised December, 2015. DOI: 10.1515/eletel-2015-0040

An Android Security Policy Enforcement Tool
Kathryn Cotterell, Ian Welch, and Aaron Chen

Abstract—The Android operating system (OS) has become the
dominant smart phone OS in recent years due to its accessibility,
usability and its open-source philosophy. Consequently, this has
also made it a popular target for attackers who aim to install mal-
ware on Android devices and take advantage of Android’s coarse-
grained, non-revoking permission system. This project designs,
implements and evaluates a security tool named COMBdroid,
which addresses these security concerns in Android by enforc-
ing fine-grained, user-defined policies. COMBdroid modifies an
application before installation, allowing it to override points of
security vulnerabilities at run-time. As a proof of concept we
have implemented three policies in COMBdroid. This paper
documents the development process of COMBdroid, deriving
design decisions from the literature review, detailing the design
and implementation, and proving the program’s effectiveness
through evaluation.

Keywords—mobile computing, Java, Android, security

I. INTRODUCTION

GOOGLE’S Android has dominated smart phone operat-
ing systems (OS) recent years, reaching 79.3% of the

market share in the second quarter of 2013[1]. As Android is
an open-source OS developed for smart phones with extensive
documentation[2] it has been a popular choice among mobile
vendors to customise and distribute on their own hardware.

The open-source philosophy of the Android OS means that
attackers are able to exploit users into downloading malicious
applications in various ways. This may be through social
engineering, phishing emails, or drive-by downloads. The
open-source approach is also reflected in the development and
distribution model adopted by the Android ecosystem. While
iOS requires developers to pay US$99 a year to distribute
applications on the application store, Android Play charges
a one-time fee of US$25 to register a developer account.
Android developers are also not restricted to distributing their
application on Google Play, as there are plenty of unofficial
Android markets that will distribute applications. iOS users
who wish to download applications from outside of the App
store however, must first jailbreak their phone.

Every Android application package file (APK) downloaded
requires user confirmation that the application may use a
certain set of permissions to function correctly, however the
permissions implementation is very coarse-grained [3]. Once
installed on the users phone, the application has no obligation
to inform the user of how, when or why it is accessing these
permissions, and revoking permissions is impossible without
uninstalling the application.

I. Welch and A.Chen are the School of Engineering and Com-
puter Science, Victoria Univeristy of Wellington, New Zealand, (e-mail:
ian.welch@ecs.vuw.ac.nz, aaron.chen@ecs.vuw.ac.nz).

K. Cotterell carried out this work as part of her Bachelor of Engineering
final year project.

We have addressed the problem with too coarse grained
control over Android applications by developing a new se-
curity tool providing greater transparency and control for
users through enforcing fine-grained policies. Unlike previous
approaches, our tool enforces these policies at the application-
level without requiring modifications to the Android OS.

A. Contributions

The main contributions of this paper are:
• A review has been performed on the current state of

Android threats. The review discusses Android malware
and mitigation methods from researchers and commercial
sectors. It was found the most effective detection mecha-
nisms involved modification of the application to permit
run-time monitoring.

• From the review a set of policies and requirements
was designed. The requirements were drawn from the
observations of the strengths and weaknesses of current
solutions.

• A security system named COMBdroid was designed and
integrated these requirements. The tool consisted of two
main parts – classes to insert into the application that
would intercept behaviour at run-time, and an interface
to handle APK instrumentation.

• A security tool named COMBdroid was implemented
and evaluated. Evaluation included verifying the enforce-
ment mechanism for each policy and performance testing
showed minimal impact on the application functionality.
COMBdroid was also tested on closed-source applica-
tions presenting successful policy enforcement.

The name of the security tool that was created, COMBdroid,
was decided as the tool functions as a COvert Malware
Blocker, and the imagery of using a comb to closely inspect
applications and enforce fine-grained policies is appropriate.
The term Droid is also commonly associated with the Android
devices, therefore COMBdroid accurately describes the overall
purpose of the system.

B. Paper Organization

The rest of this paper is organised as follows, Section two
provides a background review is performed which includes
an analysis of previous contributions to this project, common
malware threats and a literature review of previously proposed
approaches. Section three covers the design and implementa-
tion of our tool. Section four presents the evaluation of the
COMBdroid, showing the performance and testing enforce-
ment mechanisms, and discusses the results. Finally, Section
five gives the concluding remarks of the project and discusses
opportunities of future work directions.

312 K. COTTERELL, I. WELCH, A. CHEN

II. BACKGROUND AND RELATED WORK

This Section reviews the state of Android technology and
prior methods proposed by researchers. First, the Android OS
is discussed explaining how permissions and activities play
a role in security concerns. Android malware and examples
of their applications are then reviewed. This is followed by
a comprehensive study of recent research works that have
proposed Android protection tools.

A. Android Architecture

The Android architecture is composed of several layers:
application, Java class frameworks (Android middleware),
native libraries, Dalvik virtual machine and core libraries, to
the Linux kernel. Android applications are installed on the
device and are given their own directory, with the intention
that applications be unable to share data between one an-
other. Applications can circumvent this restriction however,
by using inter-process communication (IPC) where data will
be serialised, sent through the kernel, then sent to the callee
which will de-serialise the data. To invoke such behaviour
the applications use intents, however intent filtering cannot
be relied on as it will not prevent explicit intents[2].

1) Android Permissions: Android applications require the
user to agree to a set of permissions on installation which
cannot be revoked without removing the application. Permis-
sions requested are declared in the APK’s Manifest file such
as CALL_PHONE for making phone calls, or INTERNET for
establishing network connections. Usually, applications will
have legitimate reasons for the permissions they are requesting.
For example, a personalised keyboard application may require
full internet access in order to download modules for other
languages. The coarse-grained permissions however, do not
require an application to declare when or for what purposes
they are using the granted permissions. Usually it will be
obvious to the informed user when not to trust an application,
such as a puzzle game requesting permissions to write and
send SMS messages. Other times, applications with malicious
intent will not be so obvious. If a social network application
requests access to the user’s contacts, there are no restrictions
to stop the application sending the contacts to an untrusted
server without the users knowledge.

Although an application is restricted to permissions outlined
in its manifest file, they are not restricted to call another
application to perform actions who have access to permissions
the offending application does not. Applications taking advan-
tage of this are performing privilege escalation attacks. When
legitimate applications have been hijacked to carrying out tasks
of malicious applications it is known as the confused deputy
attack. While it is possible for an application to protect itself
by including reference monitor checks in each component,
there is no centralised enforcement of permission checking
in the Android OS[4]. As demonstrated by Enck et al.[5] it is
possible for an application to invoke a call to an unprotected
component and request a phone number to dial, without the
user’s knowledge.

2) Dalvik Virtual Machine: APKs are built using Java and
XML, and after being compiled to Java bytecode are converted
into Dalvik[6] executable code (.dex) to run on the Dalvik
virtual machine. Once packaged and signed, the source code
of Android application files will not be accessible to those who
download the applications, however there are tools that will
disassemble the APKs to reveal their Dalvik bytecode. These
tools, such as APKTool[7], are freely available online. Once
the code has been disassembled developers with malicious
intent are able to inject bytecode the reroute calls made to
instrument their own malicious activities. Signing an applica-
tion also does not require any special permissions, meaning
applications originally distributed by a trusted vendor may be
modified, re-signed and distributed as malware to unsuspecting
users. This method that attackers use to modify code through
disassembling tools will be the same approach this project
takes, using APKTool to override targeted system calls.

B. Malware Detection

In recent years there have been several approaches to de-
tecting and mitigating Android malware. These methods range
from anti-virus software, Play-store scanners, and retrofitting
the device to provide run-time monitoring[8][9][10].

1) Play Store Scanners: Google Bouncer[11], scans appli-
cations submitted to the Google Playstore to identify known
malware through signature detection. Bouncer also executes
submitted applications in an emulated environment to at-
tempt to identify phone data being leaked without user input.
Bouncer is not a complete solution however, as it is possible
to buy verified Google play accounts online and update the
application with malicious features. An application could also
act benign until Bouncer has completed the visualisation scan
– which is found to be around five minutes[9].

2) Anti-Virus Software: Anti-virus (AV) software has been
found to be largely ineffective against the vast number of
variants of Android malware. Zhou et al.[8] demonstrated that
four popular AV’s downloaded from the Google Play store
were only able to detect between 20.2% and 79.6% malware
samples out of 1260 given, showing it is not sufficient to rely
solely on AV software.

3) Permission Analysis: Another approach is to analyse ap-
plications before being installed to determine if they might be
malicious because of the types of permissions that they request
(Kirin [12]) or use of external libraries (RiskRanker [13]).
Although promising these approaches generate too many false
positives because it the approach is quite coarse-grained be-
cause it may block applications that are in fact not using the
permissions granted to it.

4) Run-Time Monitoring: Run-time monitoring is where
an application is allowed to execute and is monitored at a
fine-grained level. To perform run-time monitoring, either the
application or firmware must be modified, allowing hooks to
be inserted and altering application behaviour. The following
discusses approaches that have inserted hooks either at the
Android middleware or application level.

CRePe [14], SAINT [10], TaintDroid [15], AppFence [16]
and Quire [17] all allow fine-grained monitoring and control

AN ANDROID SECURITY POLICY ENFORCEMENT TOOL 313

over the execution of Android applications. Both are imple-
mented by modifying the Android middleware and inserting
hooks to control IPC between applications. This allows access
to services such as the phone or SMS features of the phone
be controlled at a fine-grained level. However, all of these
approaches require users to use modified version of Andoid
operating sytem with hooks placed either with the Android
middleware or operating system kernel and this not practical
for widespread use.

Aurasium, developed by Xu et al.[18] presents a solution
to monitoring application permission usage without a need for
make modifications to the Android operating sytem. Aurasium
modifies applications before they are installed on a device
using APKTool to disassemble the APKs and insert their own
java code and native libraries. The authors take advantage of
the fact all functions requiring interaction with the OS must
go through the Bionic libc library, creating a central point
of restraint. This allows interception at the lowest possible
boundary during run-time as applications make library calls,
for example making a socket connection or initiating SMS
requiring interaction with the libc.so library.

Aurasium meets our requirements of portability and our
initial work looked at extending their approach. However, we
decided to take a different approach which is avoid requiring
changes to low level libraries. Instead our approach is a Java-
only solution.

III. DESIGN AND IMPLEMENTATION

A. Design Requirements

We defined the following set of requirements based upon
our original goals and the findings from our literature review.

1) Modified applications that are not violating enforced
policies should function as expected. We do not want the
tool to inconvenience users when the application is not
violating policies, as this will result in user reluctance
to use the tool, leading to compromised systems when
malicious APKs are installed.

2) Instrumentation of the application should rely purely on
having access to the APK and no assumptions should
be in place of the source code. In commercial, closed-
source projects there is currently no method of reverse
engineering the class files to a higher level language. It is
therefore not wise to presume the program’s intentions.

3) An application violating one or more policies should be
halted in execution until it has conferred with the user.
Failure to consult the user will result in loss of user
control, and reduce the user’s confidence in the tool.

4) Users of the application should be conferred with on de-
cisions of whether to permit or deny methods intercepted
by policies (Section III-B), unless they have given a
preference prior to the fact. The tool must also remember
the policy preferences, so it will not intrude on trusted
or untrusted connections during future interactions.

5) The design should make no assumptions about the
user’s technical knowledge other than the fact they are
able to download and install Android applications. The

requirement stems from the fact that users of all back-
grounds own and operate Android devices. It therefore is
potentially isolating to user groups if they are assumed
to have high technical knowledge.

B. Policies

In order to evaluate our system a set of policies must be
outlined, which will be used to ensure our system correctly
intercepts the desired activities. The following policies have
been chosen as they address operations that are commonly
used without permission by malware[8][19][20][21].

1) Prevent applications sending SMS messages to unau-
thorised numbers. Applications attempting to send SMS
messages should be intercepted, with the recipient’s
number displayed to the user. This allows the user to
make informed decisions on whether they want the SMS
to proceed.

2) Prevent phone calls to unauthorised numbers. Appli-
cations attempting to initiate phone calls should be
intercepted, with the recipient’s number displayed to the
user.

3) Restricting the application from making connections via
a web browser. A user should be made aware when
an application is attempting connections to a particular
domain, and should be given the option to permit or
deny a URL.

C. Design and Implementation Decisions

The following key design and implementation decisions
were made in order to satisfy the design requirements.

1) Hooking Methods to Intercept APK at Run-time: To
intercept an application during run-time, the most effective
approach appears to be actual modification of the application
before it is installed on the device. Existing approaches such
as CRePe[14], TaintDroid[15], Apex[22] and Aurasium[18]
either require modification of the Android firmware, or the
Android application. As stated in the requirements we do not
want to make assumptions of the user’s technical knowledge,
therefore deploying new firmware onto the Android device is
not a desirable option. Our design is based upon programmatic
modification of the application, in particular overriding meth-
ods that could act as entry points for malicious behaviour.
This design came from the observation that many of the
methods we were trying to intercept made calls to the same
class, such as Activity, and it was possible to override this
class and intercept the methods from a centralised manager.
This approach involved disassembling the APK, inserting the
custom interceptor class, and changing class paths where ap-
propriate to direct the Activity class to the custom MyActivity
class, before resuming to the normal task flow.

With this hooking approach we change the superclass Ac-
tivity, which is used by all Android applications, to point to
MyActivity. Our provided class MyActivity contains custom
policy check methods that depend on the user policies.

This is a simpler approach than taken by exisiting ap-
proaches because our bytecode modification does not require
modification of method bytecode.

314 K. COTTERELL, I. WELCH, A. CHEN

2) User Interface: One of the design requirements out-
lines that there should be no assumptions made about the
user’s technical knowledge, and given that disassembling and
reassembling applications recruits the help of apktool,
keytool and jarsigner it seems sensible to implement a
user interface to complement the hooking methods.

3) Policy Configuration File: One of the requirements of
the security tool is that if it has conferred with a user
about a connection, and the user indicates a preference on
how to handle the connection, it must be able to store and
recollect this information for future interactions. To allow
fine-grained policies, it is ideal to give users a choice per
number or URL whether they trust the recipient or not. For
example, an application may be trying to send a message
to a user contact. COMBdroid should be able to establish
whether this is permitted or not based on past behaviour –
if the number can be retrieved from a “Whitelist” then the
connection should go through uninterrupted, however if the
number has been previously flagged as a “Blacklist” number
it should be automatically stopped. If COMBdroid cannot find
any previous interaction with the number, it should first consult
the user.

Storing persistent, dynamic information about past choices
from the users cannot be implemented within the application.
By the nature of Java-based applications, any parameters
created at run-time and residing in the device’s memory will
be cleared once the application is killed, or the Android device
is reset. For these reasons the policy configurations should be
kept in a file that the COMBdroid application can refer back
to every time an application is initiated.

We store the policy information within a file accessi-
ble only to the modified application. To achieve this, the
SecurityManager will read from the PolicyConfig file
when first started, or create a PolicyConfig file if one does
not already exist.

D. System Overview

First, we present a complete overview of COMBdroid.
Figure 1 shows a high level flow of events of instrumenting
the application before installing it and injecting the classes that
will provide run-time interception. The step-by-step process is
as follows:

1) From the beginning, we assume a user has an APK file
which they want to secure. Using a GUI, the user will
select the APK and choose to disassemble it.

2) Disassembling will be performed with APKTool, re-
vealing the .smali files which are then open to
modification. Each .smali file will be searched
line for line, looking for the specific pattern of
android/app/Activity, which indicates the Ac-
tivity class is being called. This string will be erased,
and replaced with combdroid/SecurityManager,
which means every time an Activity is called it will
instead call the SecurityManager class.

3) The custom files which will provide interception at run-
time – SecurityManager and Policy manager – will then

Fig. 1. Flow of instrumentation for COMBdroid

be inserted into the smali directory, under their own
folder named combdroid.

4) Finally, the application is reassembled, signed, and in-
stalled onto the device.

1) COMBdroid Instrumentation: The first part of the design
requires creating an instrumentation tool which is able to
manipulate the APK and insert the files that will intercept
the application’s behaviour at run-time. A step-by-step process
of achieving this is outlined below. The disassembling and re-
assembling process has been designed from the documentation
of the APKTool authors[7], and the modification steps derived
from the hooking mechanism discussed in Section III-C1.

1) Ask the user to select an APK which they want to
modify.

2) Disassemble the APK using apktool into assembly code
.smali files.

3) Recursively replace the pattern
android/app/Activity with
combdroid/SecurityManager

4) Create a new directory named combdroid under the
smail directory

5) Insert SecurityManager.smali and
PolicyManager.smali into the combdroid
directory

6) Reassemble the APK with apktool.
7) Sign APK with jarsigner using a key provided by

ourselves so it will be accepted at loadtime.
8) Install signed APK onto device, using adb tool.
2) COMBdroid Run-time Flow: The files which will be

inserted into the disassembled APK are the key factor behind
intercepting and correctly handling undesired method calls at
run-time. To handle interception, two files will be inserted –
the SecurityManager class and the PolicyManager class. An

AN ANDROID SECURITY POLICY ENFORCEMENT TOOL 315

overview of the flow structure between the two classes can be
seen in Figure 2.

The SecurityManager is the first point of contact when
the startActivity method is called, and handles the
extraction of intent information to pass to the PolicyManager.
The SecurityManager should wait until the PolicyManager
has assessed the information and returned a policy report. If
the action is benign the SecurityManager should resume the
application and if the action recipient has been blacklisted
it should block the action. If the PolicyManager returns a
report that indicates it has not seen this number before, the
SecurityManager should raise an alert notifying the user of
new behaviour from the application.

The PolicyManager is called from the SecurityManager
for one of two reasons. Either the SecurityManager has been
called for the first time and has PolicyConfig data to pass
to the PolicyManager, or it requires the PolicyManager to
evaluate potentially harmful intent data. If PolicyConfig data
is passed in, the PolicyManager should store the information
in a black or white list that it can use later for checking
policies. If the SecurityManager is asking the PolicyManager
to check a policy it should use the black and white listed data
to determine the threat level, along with analysing whether the
action is potentially an SMS, phone call or URL.

The PolicyConfig file is not inserted during APK instru-
mentation. Instead, it will be created by the SecurityManager
during run-time. The SecurityManager will first check if the
PolicyConfig file already exists, if it does not it will create one
and if it does exist it will append new information to it. The
PolicyConfig will be used to store blacklisted and whitelisted
numbers that can be retrieved each time the application is
used, as discussed in Section III-C3. The format of the stored
file will be simple so that it may be read quickly from the
SecurityManager on start-up. The file will use a new line for
every whitelisted and blacklisted number, with each number
preceded by the pattern Whitelist: or Blacklist:. Any
comments may be inserted using the ’#’ character to indicate
the text should not be parsed.

After both the SecurityManager and PolicyManager have
been implemented each class will then be disassembled using
APKTool so that the .smali version of each file may be
inserted and recompiled with the modified APK. The following
Section will explain the flow of events in greater detail with
respect to Figure 2.

a) Run-time flow of Events: The following Section out-
lines the behaviour expected during run-time as a result of
inserting the classes SecurityManager and PolicyManager. The
steps followed correlate directly with Figure 2.

Step 1: The SecurityManager is called when an “original”
class calls the startActivity method. If it is the first time
the SecurityManager has been called it should first read in the
PolicyConfig file, so that it may extract the blacklisted and
whitelisted data defined by the user from previous uses of the
application.

Step 2: The SecurityManager will then extract information
about the activity intercepted and pass the activity data over
to PolicyManager. The PolicyManager checks the activity data

Fig. 2. Run-time flow SecurityManager, PolicyManager and PolicyConfig

passed in, to determine whether the activity is likely a call,
SMS or URL. If the activity is identified as a likely phone call,
SMS or web browser activity, the activity will then be passed
into a policy specific method, where the data is inspected at a
more detailed level. Here, the PolicyManager will try match
the recipient information to data stored in the black or whitelist
it has, and create a notification accordingly to pass back to the
SecurityManager.

Step 3: After the PolicyManager has performed its checks
it will return a policy report to the SecurityManager.

Step 4-A: The SecurityManager will read in the information
from the PolicyManager to determine whether the PolicyMan-
ager has identified a threat or not. If there are no threats found,
or the recipient has been whitelisted, the SecurityManager will
continue the application.

Step 4-B: If the PolicyManager has returned a report (from
Step 3) indicating the number has already been blacklisted the
activity is blocked and the application resumed.

Step 4-C: If the number returned from Step 3 is unknown
it is assumed COMBdroid couldn’t find any pre-existing
numbers that matched the PolicyConfig file. This does not
mean however that the number has not been alerted to the
user before, it means that last time the number was alerted
to the user they choose to simply “Deny” or “Allow” it. An
alert is then raised presenting options to “Allow”, “Deny” or
“Manager Number”.

Step 5-A: If the user “Allows” the activity the activity is
permitted to proceed.

Step 5-B: If the user chooses to “Deny” the number the
activity is blocked.

Step 5-C: If “Manage number” is selected another Dialogue
Box presents itself, titled “Manage Number”.

Step 6: Manage number presents options that will perma-
nently store the user’s preferences. “Whitelist” or “Blacklist”
will update the number in the PolicyConfig file, and “Return”
will continue the activity.

316 K. COTTERELL, I. WELCH, A. CHEN

Step 7: If the user does choose to blacklist or whitelist
the number from step 6, the PolicyManager is notified of the
changes and the user preferences are persistently stored.

This flow of events means that the user does not have to
commit to a permanent solution every time, especially if they
are making one-off transactions to supervised numbers that
they may not usually contact. It also allows for quick dismissal
of a number if the user is unsure whether they should permit
the call, and may choose at a later time to whitelist or blacklist
the number.

E. COMBdroid Trust Assumptions

When designing a security-based tool there are certain
assumptions that must be in place about the environment the
tool is being deployed in, and how the user will interact with
the environment after the tool deployment. These assumptions
are the conditions COMBdroid holds while in operation, and
will keep the system secure as long as the conditions are
met before and after the application is installed. This Section
discusses these conditions that are assumed of the environment
COMBdroid will perform in, and presents reasoning of how
COMBdroid will effectively secure a system if these condi-
tions are kept.

The first assumption is that the environment COMBdroid
is being deployed on has not been compromised already
by a malicious application. If the Android device is already
infected, this infected mechanism may have gained access
to permissions that overrides COMBdroid’s jurisdiction. For
example, if there is a malicious rootkit already installed on
the device the rootkit may override COMBdroid’s alert which
prevents applications from sending data[23].

As COMBdroid was designed to intercept malware by
overriding potentially threatening methods in the Dalvik byte-
code, it is assumed that the attacker can only deliver their
attacks through the APK byte code, and we have correctly
identified the entry points. If the user has permitted the APK
to install extra information after COMBdroid has modified
the application and been installed on the Android device, it is
not possible for COMBdroid to intercept APK behaviour as
a result. Furthermore, we assume the attacker cannot change
or remove new subclasses at run-time. This situation should
not occur however, as the Java language should prevent such
actions occurring.

The PolicyConfig file created by the SecurityManager
should be protected by the Android OS if the file per-
missions state only the creator of the file has to access and
modify it. Therefore, we assume private files created will not
be granted access from other applications by the OS, meaning
malicious applications may not modify the PolicyConfig file
to benefit malicious intentions. An example of how this may
benefit attackers is if they are able to insert their own number
as a whitelisted party, COMBdroid will then allow the activity
to continue flagging the number as trusted by the user.

Finally, we assume that COMBdroid will always run
prior to execution of an activity. If the user has modified
the application after applying COMBdroid to the APK which

overrides COMBdroid’s authority to check the activity at run-
time, there is no guarantee that COMBdroid will succeed in
intercepting the application.

IV. EVALUATION

This Section presents and discusses the results obtained
from testing COMBdroid. First, the evaluation environment
where COMBdroid was tested is outlined, followed by func-
tional testing of COMBdroid. The functional testing is used
to verify that COMBdroid is able to successfully intercept
unknown recipients in activities and raise an alert to the
user. The user preference should be stored, so that next time
an activity is initiated with that recipient COMBdroid will
remember that user’s preference.

The enforcement testing showed it was successfully able to
do this for each of it’s call, SMS and URL policies. Next,
the performance of COMBdroid is evaluated by testing the
latency of the APKs from policy checking, the time taken
to instrument the APKs using COMBdroid, and the size
comparisons of an uninstrumented versus instrumented APK.
Finally, COMBdroid is tested on Google Play applications to
test its effectiveness on a closed-source application.

A. Evaluation Environment

The evaluation of COMBdroid was done on one PC using an
Intel Core i7-3770 CPU processor running at 3.40GHz, with
8GB of RAM. The 3.7.5-1-ARCH kernel was used with the
GNU desktop environment. The device used was a Samsung
Galaxy Nexus running Android version 4.2.1, using a 1.2 GHz
dual-core ARM Cortex-A9 CPU with 1GB of memory and 307
MHz PowerVR SGX540 GPU. The evaluation was performed
in the School of Engineering and Computer Science at Victoria
University of Wellington.

B. Functional Testing

We tested that policies were enforced correctly against
misbehaving or malicious applications. This functional testing
was implemented by creating our own test applications.

1) Phone Policy Enforcement: In order to test the phone
policy enforcement mechanism an application has been man-
ufactured that will make phone calls to predefined numbers
without the user’s intervention. Once the application initiates
a call COMBdroid should raise an alert if the number that is
being called is not found on the whitelist, or block the number
if it is found to be blacklisted.

The testing will assume the PolicyConfig file to have
no prior information on any numbers, meaning any call
initiated should raise an alert. Two numbers will be di-
alled – the first call we will opt to blacklist the number
(08001234567), and the second call we will opt to whitelist the
number(08007654321). The two number will then be dialled
again in the same order, the first time we expect to see
a toast notification raised to indicate the number has been
blacklisted and COMBdroid is blocking the call sequence.
The second number dialled should be permitted to initiate a

AN ANDROID SECURITY POLICY ENFORCEMENT TOOL 317

Fig. 3. COMBdroid intercepts an unfamilar number

Fig. 4. COMBdroid prevents a blacklisted number initiating a call

call without interference from COMBdroid. After testing the
PolicyConfig file will be inspected, where we will see the
black and whitelisted numbers.

Phone Policy Enforcement Results. The first number,
08001234567, is dialled. COMBdroid succeeds in recognising
it is an unknown number, and alerts the user as shown in
Figure 3. The blacklist option is chosen, and the activity
returns to the prior screen. The same is done for number
08007654321, and again a COMBdroid alert appears – this
number is whitelisted.

When the number 08001234567 is dialled again only a toast
message appears this time, shown in Figure 4. This shows
COMBdroid has been successful in storing 08001234567 as
a blacklisted number after the first call sequence and is now
preventing further action.

Fig. 5. COMBdroid raises alerts for unknown websites, and prevents a
blacklisted website

The whitelisted number, 08007654321, is called once more.
COMBdroid does not intervene this time, and instead the user
is taken directly to the dialler screen.

To check COMBdroid has successfully stored both these
numbers the PolicyConfig file is checked in the applica-
tions /data/data/files/ folder, here the PolicyConfig
file has been successfully created and has stored the black
and whitelisted numbers as expected.

2) Web Browser Policy Enforcement: The second policy
enforcement testing mechanism will test the web browser
activity. The testing performed will be similar to testing the
phone application, except COMBdroid will be testing intents
to check whether a valid URL is included in the intent
information. An application has been created of which the
user will automatically be taken to a certain website when a
button is clicked, which COMBdroid should intercept. The
application will be installed fresh into the device with no
PolicyConfig file, from there the first website chosen will
be blacklisted and the second will be whitelisted. Connection
to both websites will then be attempted again, where we should
expect to see COMBdroid raise a toast and block the first
one, and allow the second website to be displayed without
interference.

Web Browser Policy Enforcement Results. The resulting
actions from COMBdroid can be seen in Figure 5. The
first run-through blacklisted blacklistsite.com and whitelisted
whitelistsite.com. The second run-through attempted these
websites again, where as expected COMBdroid raised a toast
for blacklistsite.com (also shown in Figure 5) and performed
no actions other than proceeding to the website when whitelist-
site.com was called.

After testing the PolicyConfig file was checked, to see
if the user choices had been updated correctly.

3) SMS Policy Enforcement: The SMS policy was the
final policy that had been implemented. Similarly to the web
browser and phone enforcement checks, two numbers were
input to an SMS with a predefined number and text message
body. The first number entered (0211234567) will be marked
as a number to blacklist, and the second number (0217654321)
will be whitelisted. Both numbers will be used again to create
an SMS, where the first SMS should be blocked by COMB-
droid and the second should be sent without COMBdroid

318 K. COTTERELL, I. WELCH, A. CHEN

interfering. Again, the PolicyConfig file will not exist
before testing, and will be checked to ensure COMBdroid has
correctly stored the black and whitelisted numbers.

SMS Policy Enforcement Results. Similarly to sections
IV-B1 and IV-B2 the enforcement mechanism for SMS worked
as expected (raising similar alerts as shown in Figure 3). The
PolicyConfig file also was updated correctly.

C. Performance Testing

The Section describes how we tested the performance
impact of how applications behave prior and post modification
from COMBdroid. Metrics that will be analysed are as follows:

• The latency of an application as it consults the policy
manager during activity initiation, to determine whether
an application’s performance is noticeably impacted by
COMBdroid’s security checks.

• The time it takes to practically modify an application
with the COMBdroid GUI. This testing was performed
on both a single application and a group of applications.

• The size differences of an unmodified and modified
application. Although the capacity of an Android device
is growing with each product version released, many
devices still have reduced capacity, forcing users to be
resource conscious.

Performance metrics are critical to evaluation as our appli-
cation is based on a mobile, resource conscience device. Users
will be deterred from applying COMBdroid to applications if
it noticeably affects their application’s performance, or drains
the device energy at an increased rate.

1) Application Latency: Whenever an application initiates
an activity that the Security Manager flags as potentially
unsafe it must pass this information to the Policy Manager
to perform checks on the data. This injected behaviour takes
time, and the objective of this test is to evaluate whether the
checks are resulting in acceptable latency.

The applications used to test the enforcement mechanisms
in Section IV-B will be modified so that 20 intents are called in
a row, of either phone calls, SMS, or URL calls. The time will
be measured from when startActivity is called (where
Security Manager takes over) to when the activity is cleared.
As the objective is to measure intrusion when the user is
content with the data they have blocked and allowed, all data
will assume to be whitelisted so time taken for user input does
not interfere with testing results.

Table I shows 20 tests performed each on the phone, browser
and SMS latency caused from consulting the policy manager,
Figure 6 shows the data in a graphed format. For each, the
initial overhead is comparatively higher – likely caused by
COMBdroid having the read in the PolicyConfig file when
it is first called. From there, the latency overhead subsides to
1-2 milliseconds per call. These results are satisfactory as a
delay time of 1-2ms is unlikely to go noticed by the user,
meaning the usability of the application during run-time is
not degraded.

TABLE I
STATISTICS GAINED FROM LATENCY INDUCED THROUGH POLICY

CHECKS

Attempt Phone Browse (ms) SMS)
Number Latency (ms) Latency (ms) Latency (ms)
1 13 9 11
2 1 3 4
3 2 3 2
4 1 2 1
5 2 2 1
6 1 1 1
7 1 7 2
8 1 1 3
9 2 1 3
10 1 1 2
11 1 3 1
12 2 2 1
13 1 2 1
14 1 2 1
15 1 1 2
16 2 1 2
17 2 2 1
18 1 1 1
19 1 1 1
20 1 2 1

Fig. 6. Latency in application from policy check overhead

V. CONCLUSION AND FUTURE WORK

The Android operating system has quickly risen in popu-
larity in recent years, consequently drawing the attention of
attackers who wish to exploit users. Commonly this exploita-
tion is through sending premium SMS or phone calls without
the user’s knowledge[24][25][19]. The permission system of
Android makes these attacks easy to orchestrate, as once a
user gives an application permissions such as CALL_PHONE
or INTERNET the application may use these permissions
however they please, regardless of whether user consent has
been given. To address these issues, we looked to develop
a security tool that would enforce fine-grained policies on
applications, providing greater transparency between user and
application. It was found through the related works that run-
time instrumentation tools that were most effective at miti-
gating unwanted behaviour, and from there a system named
COMBdroid was developed.

COMBdroid was able to instrument an application and
inject its own custom classes, so that class methods that were

AN ANDROID SECURITY POLICY ENFORCEMENT TOOL 319

identified as points of vulnerabilities could be overridden and
verified by our own policy checker. COMBdroid was designed
to give users control, so that they may specify trusted and
untrusted recipients, and have their preferences applied each
time the instrumented application was run. Three policies were
implemented for this project; SMS initiation, phone calls, and
URL calls. The enforcement mechanism of each policy was
verified, and performance evaluation showed COMBdroid to
have minimal impact on the user’s application functionality.
COMBdroid was tested on Google Play store applications,
where it shows promising results of intercepting unwanted
behaviour.

Overall, COMBdroid has been a success, however this is
only the beginning of what COMBdroid is capable of accom-
plishing. Potential improvements and alterations are discussed
in the Section.

A. Future Work

Though the evaluation of COMBdroid has shown COMB-
droid to be an effective tool for protecting users against
unwanted activity calls initiated by Android applications.
COMBdroid has potential to grow into an even more powerful
policy checker however, and in this Section we outline areas
of future work.

1) Greater Policy Control for Users: Currently, three poli-
cies that have been implemented for COMBdroid, however
during the background review Section there were more threats
identified which we could incorporate into the PolicyManager
class. Once the appropriate entry points have been identified
(such as an intent using ACTION_CALL with “tel;” in the data
representing a phone call) they would be easy to integrate into
the PolicyManager class. The PolicyManager class separates
its methods for policy checking by defining a new method
for each policy check, meaning new policies would be built
into new methods. Such policies could include searching for
alternate ways of initiating phone calls (for example, telephony
manager), various SMS methods (such as SMSManager), and
more browser policy checks (such as Webview). Completely
new policies could involve subverting calls from foreign
applications, attempting to use permissions from other appli-
cations for their own gain (resulting in privilege escalation) or
restricting access to internal unique identifiers.

This project aims to give users greater control, so it is fitting
that they have fine-grained control over the policies enforced.
Instead of having one class which performs policy checking it
would be possible to separate each policy into its own class,
and have the PolicyManager class act as more of an abstract
class, which each policy inherits. This approach would mean
during instrumentation the COMBdroid interface could use a
check-box method of getting users to decide which policies
they would like to enforce, and only the classes of the policies
chosen would be included when inserting COMBdroid’s files.

2) Global, Centralised Management for COMBdroid:
COMBdroid works on a per-application basis, meaning every
time a user blacklists or whitelists a number their preference
will only be recalled within the scope of that application.

Implementing a global application that other instrumented
applications could call out to would allow the user to allow or
deny a number once, and have confidence that this preference
will be applied across all applications.

The approach would be implemented by creating a custom
application for COMBdroid users to install on their phone,
containing the policy configuration settings for other appli-
cations to call out to. Each application participating would
still require instrumentation for methods interception, however
instead of using a local policy configuration file to determine
policy violations the application would invoke the centralised
COMBdroid application using Intent.ACTION_MAIN, re-
trieving black and whitelisted data. This approach would
also involve notifying the centralised application when user
preferences are defined, such as blacklisting or whitelisting a
new recipient.

Having COMBdroid as its own application would also mean
users would be able to edit the policy configuration file if
they want to add or delete custom numbers. As COMBdroid
currently resides in the background of applications, there has
been no verifiable way to allow users to edit their policy
configuration file. The COMBdroid interface as a standalone
application would make it easy to permit text editing for the
policy configuration file through application context control.

3) Flashback Capabilities in the COMBdroid Interface:
COMBdroid alters an application by injecting custom classes
and modifying the application .smail files. Once an applica-
tion has been transformed there is no way for the user to revert
back to the APK’s original form, unless they uninstrument
the APK manually or source the original APK. Having a
“Flashback” mechanism for COMBdroid would give the user
assurance that if for any reason they are not satisfied with
COMBdroid’s behaviour as a result of the transformation, they
could easily revert back to the original state. This would not be
too difficult to implement, as COMBdroid already has methods
to disassemble and reassemble applications, and there would
be no permission conflicts with removing the custom classes.
There is also a find and replace method already implemented
in the ModifyApp class, meaning it could be reversed to look
for all instances of combdroid/SecurityManager and
replace them with the original android/app/Activity.

REFERENCES

[1] I. C. USA, Apple cedes market share in smartphone operating system
market as android surges and windows phone gains, according to idc,
http://www.idc.com/getdoc.jsp?containerId=prUS24257413. [Online].
Available: http://www.idc.com/getdoc.jsp?containerId=prUS24257413

[2] Google, Android developers, http://developer.android.com/index.html.
[Online]. Available: http://developer. android. com/index. html

[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, Android
permissions demystified, in Proceedings of the 18th ACM conference
on Computer and communications security, ser. CCS 11. New
York, NY, USA: ACM, 2011, pp. 627638. [Online]. Available:
http://doi. acm. org/10. 1145/2046707. 2046779

[4] L. Davi, A. Dmitrienko, A. -R. Sadeghi, and M. Winandy, Privilege
escalation attacks on android, in Proceedings of the 13th interna-
tional conference on Information security, ser. ISC10. Berlin, Hei-
delberg: Springer-Verlag, 2011, pp. 346360. [Online]. Available:
http://dl. acm. org/citation. cfm?id=1949317. 1949356

[5] W. Enck, M. Ongtang, and P. Mcdaniel, Mitigating android software
misuse before it happens, Tech. Rep. , 2008.

320 K. COTTERELL, I. WELCH, A. CHEN

[6] Google, Dalvik technical information, Android open source project,
http://source. android. com/tech/dalvik/. [Online]. Available:
http://source. android. com/tech/dalvik/

[7] B. Alll and C. Tumbleson, A tool for reverse-engineering android
apk files, apktool, https://code. google. com/p/android-apktool/. [On-
line]. Available: https://code. google. com/p/android-apktool/

[8] Y. Zhou and X. Jiang, Dissecting android malware: Characterization
and evolution, in 2012 IEEE Symposium on Security and Privacy
(SP). IEEE, 2012, pp. 95109.

[9] O. Hou, A look at google bouncer j malware blog j trend
micro, http://blog. trendmicro. com/trendlabs-security-intelligence/a-
lookat- google-bouncer/. [Online]. Available: http://blog. trendmi-
cro. com/ trendlabs-security-intelligence/a-look-at-google-bouncer/

[10] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, Semantically
rich application-centric security in android, in Proceedings of the
2009 Annual Computer Security Applications Conference, ser. AC-
SAC 09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 340349. [Online]. Available: http://dx. doi. org/10. 1109/AC-
SAC. 2009. 39

[11] H. Lockheimer, Android and security - official google mobile
blog, http://googlemobile. blogspot. co. nz/2012/02/android-
andsecurity. html. [Online]. Available:
http://googlemobile. blogspot. co. nz/ 2012/02/android-and-
security. html

[12] W. Enck, M. Ongtang, and P. McDaniel, On lightweight mobile phone
application certification, in Proceedings of the 16th ACM conference
on Computer and communications security, ser. CCS 09. New
York, NY, USA: ACM, 2009, pp. 235245. [Online]. Available:
http://doi. acm. org/10. 1145/1653662. 1653691

[13] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, Riskranker:
scalable and accurate zero-day android malware detection, in Pro-
ceedings of the 10th international conference on Mobile sys-
tems, applications, and services, ser. MobiSys 12. New York,
NY, USA: ACM, 2012, pp. 281294. [Online]. Available:
http://doi. acm. org/10. 1145/2307636. 2307663

[14] M. Conti, V. T. N. Nguyen, and B. Crispo, Crepe: contextrelated policy
enforcement for android, in Proceedings of the 13th international confer-
ence on Information security, ser. ISC10. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 331345. [Online]. Available: http://dl. acm. org/ci-
tation. cfm?id=1949317. 1949355

[15] W. Enck, P. Gilbert, B. -G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones, in Proceedings of
the 9th USENIX conference on Operating systems design and im-
plementation, ser. OSDI10. Berkeley, CA, USA: USENIX Associ-

ation, 2010, pp. 16. [Online]. Available: http://dl. acm. org/cita-
tion. cfm?id=1924943. 1924971

[16] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, These
arent the droids youre looking for: retrofitting android to protect data
from imperious applications, in Proceedings of the 18th ACM confer-
ence on Computer and communications security, ser. CCS 11. New
York, NY, USA: ACM, 2011, pp. 639652. [Online]. Available:
http://doi. acm. org/10. 1145/2046707. 2046780

[17] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, Quire:
lightweight provenance for smart phone operating systems, in Proceed-
ings of the 20th USENIX conference on Security, ser. SEC11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 2323. [Online]. Available:
http://dl. acm. org/citation. cfm?id=2028067. 2028090

[18] R. Xu, H. Saidi, and R. Anderson, Aurasium: practical policy enforce-
ment for android applications, in Proceedings of the 21st USENIX
conference on Security symposium, ser. Security12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2727. [Online]. Available:
http://dl. acm. org/citation. cfm?id=2362793. 2362820

[19] H. Pieterse and M. Olivier, Android botnets on the rise: Trends and
characteristics, in Information Security for South Africa (ISSA), 2012,
2012, pp. 15.

[20] T. Wyatt, Security alert: Geinimi, sophisticated new android tro-
jan found in wild j the official lookout blog, https://blog. look-
out. com/blog/2010/12/29/geinimi trojan/. [Online]. Available:
https://blog. lookout. com/blog/2010/12/29/geinimi trojan/

[21] E. Erturk, A case study in open source software security and privacy:
Android adware, in Internet Security (WorldCIS), 2012 World Congress
on, 2012, pp. 189191.

[22] M. Nauman, S. Khan, and X. Zhang, Apex: extending android
permission model and enforcement with user-defined runtime con-
straints, in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS 10. New
York, NY, USA: ACM, 2010, pp. 328332. [Online]. Available:
http://doi. acm. org/10. 1145/1755688. 1755732

[23] J. Bickford, R. OHare, A. Baliga, V. Ganapathy, and L. Iftode, Rootkits
on smart phones: attacks, implications and opportunities, in Proceed-
ings of the Eleventh Workshop on Mobile Computing Systems #38;
Applications, ser. HotMobile 10. New York, NY, USA: ACM,
2010, pp. 4954. [Online]. Available: http://doi. acm. org/10. 1145/
1734583. 1734596

[24] S. S. of Trustwave, Focus stealing vulnerability in android,
https://www. trustwave. com/spiderlabs/. [Online]. Available:
https://www. trustwave. com/spiderlabs/

[25] C. A. Castillo, Android malware past, present, and future,
McAfee,[online], 2010.

