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Introduction

Acquisition of the in-situ data for environment
monitoring is usually a costly and time-consuming
process. In the application area addressed in this pa-
per, which is the monitoring of water quality in large
inland water basins, it involves the design of a da-
ta collection mission executed by using a specially
equipped mobile platform, such as a cruise ship, a
glider or a floating robot. For a mission that guides
the mobile platform to locations of interest in or-
der to collect a particular type of data, the path is
generally planned a priori. Critical to such a mission
are reliable, efficient, and adaptive path generation
strategies that ensure mobile sensor platforms collect
data of greatest value. Large areas covered during the
mission, the cost of fuel and manpower, the required
timeliness and quality of the data, all this makes the
development of optimal navigation path important.

Path finding problem is a well-studied subject.
There are various types of applications involving
solving the sequential ordering problem with prece-
dence constraints. Among the most known are the
Traveller Salesman Problem (TSP) and the Vehi-
cle Routing Problem (VRP), with variants that can
include several types of constraints, such as mini-
mum/maximum distance, load capacity, time win-
dows or pick-up and delivery constraints. The ex-
isting methods to optimize or intelligently gener-
ate navigation paths in monitoring problems include
adaptive sampling [1, 2], complete spatial coverage
[3], and Self-Organizing Maps [4].

Most of these problems are NP-hard, for which
efficient solutions call for the combinatorial optimiza-
tion approach. The approach that has proved effec-
tive in solving combinatorial optimization problems
is the use of Ant Colony Optimization, an example
of artificial swarm intelligence systems. The ACO
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is a probabilistic technique, initially proposed in [5]
for solving computational problems which can be re-
duced to finding sub-optimal paths through graphs.
The method consists in a parallel search over several
local constructive computational threads and a dy-
namic memory used to record information on previ-
ously obtained good solutions. The idea behind find-
ing the best route is based on the ants’ behavior; real
ants use the trace, called the pheromone, left by oth-
er ants while they traverse the paths. The more ants
use a path, the higher concentration of pheromone
will be left. As the path with the minimum distance
will be used more often, its trace will be higher and it
will be preferred by the next ants. Several variants of
the ACO algorithm have been introduced to improve
its overall performance [6–8].

Most of the first ACO applications were devoted
to solve the sequential ordering problem (SOP) with
precedence constraints in such application as produc-
tion planning [9], vehicle routing problems with pick-
up and delivery constraints [10], and transportation
problems [11]. TSP and VRP can be treated as spe-
cial cases of SOP. More recently, the ACO approach-
es began to be proposed also for problems which
are not standard combinatorial optimization applica-
tions. Problems linked to spatial data analysis were
discussed in [12] and [13].

Our study is motivated by the application of
adaptive inland water sampling by mobile platforms
for an autonomous algal blooms detection and pre-
diction system [14]. The objective of this work is to
maximize the total value of all water samples and to
find the optimal planned routing path for the sam-
ple acquisition platform. The value of the sample is
determined based on the concentration of the water
pollutant, which in turn is obtained through process-
ing of multi-spectral satellite imagery. Critical to this
research are reliable, efficient, and adaptive control
strategies that include the generation of an optimal
path using remote sensing data and reactive control
of the acquisition platform.

The optimization problem is defined, as opposed
to, for instance, the TS problem, in a continuous spa-
tial domain. As proposed in [15], the Continuous Ant
Colony System (CACO) divides the search space into
regions of interest that have to be visited by the ants.
The probability to visit a region is proportional to
its pheromone concentration. The ACOR algorithm,
a direct extension of ACO into the spatial domain
by using the Probability Density Function, was pro-
posed in [16]. In [17], a solution archive for the deriva-
tion of the PDFs over the search space is presented.
This archive of k solutions is randomly generated at
the beginning of the algorithm and sorted by the

cost, ascending or descending, depending on a maxi-
mization or minimization aim, respectively. Another
adaptation of the ACO is DACOR, proposed in [18].

In this work, a hybrid model that involves a con-
nection graph in conjunction with a spatial grid is
proposed. The ants in this work can have one of two
roles: explorer or collector. While in the explorer role,
each time an ant has to select the next node in its
route it will check if the corresponding arc already
exists and use its pheromone and heuristic informa-
tion for the calculations. Otherwise, it will create
it. If the ant is in the collector role, it will use the
pheromone and heuristic information stored in the
grids in order to decide about its next move.

The proposed algorithms were verified using in-
formation obtained from in-situ measurements per-
formed for Lake Winnipeg in Canada. The initial in-
formation on the concentration of water pollutants
is obtained in the form of satellite imagery. Each
pixel of the multi-spectral image represents a region
with an associated value of chlorophyll and Total
Suspended Solids sediments (TSS). These values are
combined together to form a single value of the ob-
jective function over the entire lake.

After a presentation of the objectives and
specifics of the sample acquisition mission in the
next section, the procedure for path generation is dis-
cussed. That section is followed by a more detailed
description of the proposed ACO algorithm. In its fi-
nal part the paper presents experimental results and
conclusions.

Data acquisition mission

Information sources

The core approach to the pollutant detection in
this paper is automatic analysis of multi-temporal
multi-spectral satellite image sequences. The satel-
lite systems used for inland water monitoring was
a medium resolution imaging instruments, such as
MERIS (Medium Resolution Imaging Spectrometer)
carried aboard the ESA’s Envisat satellite. This sys-
tem has 15 spectral bands with center wavelengths
ranging from the 390–1040 nm which represent the
visible and near infrared part of the electromagnet-
ic spectral. Table 1 represent MERIS lists spectral
bands and its potential applications.

The remote sensing data can be complemented
by meteorological information, such as temperature
and wind speed. Given that those additional data do
not change the methodological approach, our study
relates to the detection of the level of concentration
of chlorophyll-a and TSS only [19].
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Table 1
MERIS spectral bands.

Band Band centre
[nm]

Potential Applications

1 412.5 Yellow substance, turbidity

2 442.5 Chlorophyll absorption maximum

3 490 Chlorophyll, other pigments

4 510 Turbidity, suspended sediment, red
tides

5 560 Chlorophyll reference, suspended
sediment

6 620 Suspended sediment

7 665 Chlorophyll absorption

8 681.25 Chlorophyll fluorescence

9 705 Atmospheric correction, red edge

10 753.75 Oxygen absorption reference

11 760 Oxygen absorption R-branch

12 775 Aerosols, vegetation

13 865 Aerosols corrections over ocean

14 890 Water vapour absorption reference

15 900 Water vapour absorption, vegeta-
tion

Pollution indices

Calculation of the chlorophyll-a concentration
can be performed using the MCI index or a similar
Fluorescent Line Height (FLH) index. These indices
are based on MERIS bands 8, 9 and 10 (681, 709
and 753 nm respectively) and use a linear baseline
interpolation between the radiance values at 681 nm
and 753 nm [20]. The following equation represents
a MCI calculation based on [21]

MCI = L709 − L681 − 0.389(L753 − L681), (1)

where Lxxx is the radiance value of the respective
band. The factor 0.389 is calculated as the wave-
length ratio (709–681)/(753–681). The MCI is then
used to determine the concentration of chlorophyll-
a. An example of the distribution of chlorophyll-a in
Lake Winnipeg as shown in Fig. 1.
There is currently no uniform remote sensing

model to estimate TSS. It is impossible to select
a specific wavelength to evaluate the TSS since in
practice clear and turbid waters are often combined
together, and TSS size variations affect the choice of
the most appropriate wavelength. Many models have
been proposed based on the combination of MERIS
red and near-infrared bands. A robust quantification
of TSS was proposed in [22], where the following
equation is used to measure TSS

TSS = 53.7

[

L709

L560 − L665

]

− 17.0. (2)

This equation was used in our study.

Fig. 1. MCI map for Lake Winnipeg.

Multi-layer maps

The spatial information used in mission planning
is combined in the form of a multi-layer map [23].
The map consists of the measured pollutants layers
and a bathymetric data layer BM. Figure 2 depicts
the place of the multi-layer map in the remote sens-
ing data processing flow chart that leads to the de-
termination of the value of each pixel from the stand
point of the optimization strategy. Different strate-
gies produce different map coverage scenarios, which
best fit the data acquisition mission goal.

Fig. 2. Remote sensing flow chart.
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Acquisition strategies

The acquisition mission can be varied depending
on the strategy which applied to collect the samples.
The goal is that maximizing the number and the val-
ue (weight) of the collected samples. According to a
specific strategy the samples weight can vary. The
strategies can be classified according to two char-
acteristics, the relationship with the concentration
distribution and the acquisition time window which
imposes constrain on the acquisition mission. In the
first group, the sampling strategies include uniform
coverage of high-concentration areas, sampling at lo-
cal concentration maxima, and sampling along max-
imum gradient lines. In the second group, one strat-
egy considers the fact that specific samples should
be collected within a certain time window. Those
samples can be treated as more valuable than the
others. The path planning designs a trajectory to
collect as many valuable samples as possible. An-
other strategy assumes that a specific patch con-
tains valuable samples and no time constrains are
imposed on sample collection. In the third strate-
gy, time constraint is imposed and a certain num-
ber of samples have to be collected in a patch be-
fore heading to another patch. The path planning
maximizes the collection of the valuable sample ac-
cording to a specific path which fits the time con-
strain.
Any strategy can be represented by an objective

function which is responsible to evaluate and select
the optimal path from the start point to the target
point.

Path generation

In many monitoring applications, especially in
agriculture or public security [24], the path gen-
eration problem is defined in terms of planning
covering paths over the monitoring area [25]. The
methods presented in literature rely on the sensor
footprint, and aim at complete environment cover-
age. The mobile platform, in our application usu-
ally a ship equipped with onboard in situ sen-
sors and sample acquisition instruments, takes on-
ly point measurements. Therefore, a complete spa-
tial coverage is infeasible. Our problem implies a
combination of spatial coverage and a dynamic
TSP.
Generally path planning deals with obstacle

avoidance problem. The obstacles are divided into
three categories:

• Hard obstacles in the form of islands, coastal ar-
eas, ships, and other floating objects.

• Soft obstacles, such as haze, wind and fog. They
can affect both local and global navigation.

• Virtual obstacle, such as cloud zones in the satel-
lite image. They can affect both path planning and
local navigation.

Problem parameters

Given the description of our problem, Table 2
presents the parameters to be used in our implemen-
tation.

Table 2

Parameters of the path generation problem.

Parameter Description

n Number of sample locations

Clx,y Chlorophyll concentration at location
x, y

TSSx,y TSS concentration at location x, y

ix,y Location i, that corresponds to coordi-
nate x, y in the area of study, is a collec-
tion location in the trip

aij Arc segment joining locations i and j

dij Distance from i to j

tij Time of travel between location i and j

si Sample collection time

D The maximum allowed distance to be
travelled by the vehicle

T The maximum mission duration time

Objective function

Each pixel that represents a region in the real
area has an associated value of chlorophyll and a val-
ue of Total Suspended Solids (TSS); we have com-
bined these values together to assign a single value
to each region using:

Vx,y = ωclClx,y + ωTSSTSSs,y, (3)

where ωcl and ωTSS are the weight coefficients for the
chlorophyll and TSS concentration (for the purposes
of this work we selected ωcl = 0.5 and ωTSS = 0.5).

As we want to maximize the value of the collect-
ed samples, our objective function is defined over the
spatial domain as:

V = max
(

∑

x,y
Vx,y

)

. (4)

This objective function is subject to constraints sum-
marized in Table 3.
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Table 3

Constraints for the path generation problem.

Constraint Description

tij ≥ 0∀(i, j) Time must be positive

si ≥ 0∀(i) Sample collection time in loca-
tion imust be positiveP

x,y ix,y ≤ 1,∀i\{0} Restricts to at most one visit
to each location. Could be zero,
with the exception of the loca-
tion of the departure point.P

x,y,z ix,y − iy,z = 0 Flow conservation equation.P
x ix,0 = 1 Establishes that the vehicle

must arrive to the starting node.P
y i0,y = 1 Establishes that the vehicles

must depart from the node 0.P
i,j dij · aij ≤ D Restricts the travelled distance

to its maximum value.P
i,j tij · aij +

P
i

si · i ≤ T Restricts the travelled time to
the maximum allowed.

Ant Colony Optimization

Ant behavior

In the standard ACO problem ants traverse arcs
connecting nodes in a graph and, depending on the
problem, the basic idea is to visit all nodes (or most
of them) while minimizing the total cost of the trip
(in terms of distance or time). Since in our problem
we do not have a graph but a continuous space of
coordinates, each point is able to connect to any
other point in the space. Thus, creating a graph of
all the possible connections is not feasible. Instead,
we have opted for using a hybrid model involving a
graph and a grid.

Consequently, as the objective is to find a path
for a mobile platform that visits several zones in a
constrained area to collect samples, the ants have
one of two roles, either the collector or the explor-
er. While in the explorer role, each time an ant has
to select the next node in its route it will check if
the corresponding arc already exists and will use its
pheromone and heuristic information for the calcu-
lations, if not, it will create a new node. If the ant is
in the collector role, it will use the pheromone and
heuristic information stored in the grids in order to
decide on its next move.

The collector ant will take small steps (limited by
∆coll) in order to visit near points and collect sam-
ples; the collecting process will continue until the
product of the collected samples (or visited nodes)
and a “load” parameter is over a certain random
number (5); if the relation is over the threshold, the
ant will change its role from the collector to the ex-
plorer and ∆expl will be used as the maximum step
size.

role =







coll if
csk

chgRole
< r0

exxpl otherwise

(5)

The list of variables and parameters used is shown
in Table 4.

Table 4

Parameters used in the ACO implementation.

Parameter Description

role Indicates if the ant is collecting or ex-
ploring. An ant will dynamically change
its role during its search.

chgRole Load parameter that indicates the maxi-
mum number of samples to collect while
in the collecting role.

r0 Uniformly generated random number
used to stochastically control for how
long the ant will be in the collecting role.

csk Number of samples collected by the ant
k during the current collecting role.

∆expl Maximum length of the movement of the
ant in the continuous space while it is in
the explorer role.

∆coll Maximum length of the movement of the
ant in the continuous space while it is in
the collector role.

Max neigh Max number of neighbors to calculate
for the current ant point.

Ptkx,y (x, y) coordinates of the point currently
visited by ant k.

Rk Route of ant k

Zlength Height (and width) of the squared zone.

ACO ITER Max number of iterations of the ACO
algorithm.

ANTS ITER Max number of iterations of each ant,
used to construct the route.

MAX NO
MORE SOLS

Max number of iterations allowed with-
out an improvement over the best route.

MAX DIST Maximum distance to be traveled by the
vehicle

Vx,y Value of the point (x, y)

τij Pheromone value of the arc connecting
points i and j

τ0 Pheromone initial value

ηij Heuristic value of the arc connecting
points i and j

Clphi Amount of chlorophyll in point i

TSSi Amount of TSS in point i

Zi Set of points inside the same zone of
point i

Zlength Defines the width of the squared zones
into which the map is divided

α Weight parameter of the pheromone in-
formation

β Weight parameter of the heuristic infor-
mation

ρ Percentage of pheromone that remains
after evaporation
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Neighbor generation

Since in our continuous problem there are no pre-
defined connections between the nodes, we have to
generate them. The generation of the neighbors of
the current point for ant k follows equation (6), in
which the neighbor coordinates (x, y) correspond to
a random point that is at the distance ∆ (depending
on the role ∆expl or ∆coll). Following the standard
ACO rule, a neighbor cannot be in the current route
of the ant.

Neighkx,y ∈ (Ptkx − ∆ < Ptkx < Ptkx + ∆,

P tky − ∆ < Ptky < Ptky + ∆) ∧Neighkx,y /∈ Rk.

(6)

The explorer role will lead the ant to one of
the generated neighbors; the parameter∆expl should
have a value that allows the ant to get out of the cur-
rent zone and go to a new one to make new collec-
tions. The ant will change to the collector role once
it has left the zone. The zone is defined as a squared
space of the complete continuous space of the prob-
lem; so, the space is divided into a grid of zones of
dimensions Zlength.

Each point of the space has an associated val-
ue Vx,ywhich is a function of the amount of chloro-
phyll and TSS. As stated before, depending on the
role, the ant will use the information stored in the
arc that departs from the current zone; the heuris-
tic value stored in the arc corresponds to the sum of
the heuristic values of all the cells in the destination
zone:

ηij =
∑

x,y∈j

ωclClphx,y · ωTSSTSSx,y, (7)

where i is the departing zone of the arc, j is the
destination zone of the arc, Clphx,y and TSSx,y are
the chlorophyll and TSS concentrations in cell x, y,
and ωcl and ωTSS are the importance weights for the
chlorophyll and the TSS concentration. The informa-
tion stored in each cell of the grid is given by (8).

ηx,y = ωclClphx,y · ωTSSTSSx,y. (8)

ACO implementation

The implementation of Ant Colony Optimization
follows the procedures explained in the previous sec-
tion. The probability value associated to the arcs
while the ant is in explorer role follows the approach
presented in [15], where the overall pheromone value
of the zone is considered. The selection of the next
arc is done according to parameter q0 which leads the
process of the exploitation of the space or exploration

of the current routes. If the value of a random num-
ber is over q0 then the ant (in any role) will use (9),
otherwise it will use (10).

j = argmax {(τiu)(ηiu)}
β

, for u /∈ Mk, (9)

pij =
(τij)(ηij)

β

∑

u/∈Mk

(τiu)(ηiu)β
,

if j /∈ Mk, otherwise 0,

(10)

where τij is the current pheromone trace in the arc
ij; ηij is the heuristic value of the arc ij. To avoid the
repetition of a location in the route, each ant stores
the location of the visited nodes in a temporal mem-
ory Mk. The pheromone update process is done in
two phases; first, each ant updates its own path, and
later a global process updates the arcs of the best
route, according to (11) and (12), respectively.

τij(t + 1) = (1 − ρ) · τij(t) + ρτ0, (11)

τij(t + 1) = (1 − ρ) · τij(t) + ρ · ∆τij(t). (12)

In order to benefit from the intrinsic parallelism
of ACO, our implementation creates a new process
thread for each ant in the system; they find their
own route in a parallel fashion, and later the main
loop of the algorithm waits for the termination of
all the ants in order to continue iteratively with the
next steps. The pseudocode of our implementation is
presented in two parts. Algorithm 1 shows the ACO
structure and Algorithm 2 shows the find route pro-
cedure performed by each ant.

Fig. 3. Algorithm 1 – ACO pseudocode.
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Fig. 4. Algorithm 2 – find route() function pseudocode.

A local search is made within the best neighbor
and random neighbor procedures. The objective of
this search is to find the best replacement for each
neighbor in the array. In order to accomplish this,
the procedure searches, in the vicinity of the neigh-
bor, the point with a higher value and uses it as
a replacement. After selecting a new neighbor, the
best neighbor uses (9) to select the best option
among the neighbors. The random neighbor proce-
dure computes the probability values of each neigh-
bor according to (10), and the selection is made
with a Roulette Wheel procedure. It is important
to notice here that a neighbor for an explorer ant
corresponds to an arc departing from its current
zone; for a collector ant, a neighbor is another
cell.

In order to avoid the overexploitation of arcs ex-
iting from the origin point and to explore the most
of the search space, the ants are forced in the first
iteration of Algorithm 1 to move almost complete-
ly at random (by setting q0 to 0.2) over the arcs
and the cells leaving the corresponding pheromone
trace, using only the heuristic information as a guid-
ance. In iteration 2 the value of q0 is set to 0.5, and
from iteration 3 on the behavior of the ants is re-
gular.

Experimental results

The tests of our proposed implementation of
ACO were made over the data of the zone located
in the southern part of Lake Winnipeg. Two sections
with areas of 1.369 km2 and 13.210 km2 were extract-
ed at coordinates 53◦21’19” N, −98◦30’9” W; they
will be later referred as set #1 and set #2. The data
acquisition strategy followed the maximum gradient
following scenario.
The parameter values used in all experiments are

given in Table 5. The variable parameters specific
to the tests are: the minimum and maximum dis-
tance, the maximum time of the mission, the mini-
mum number of samples to collect, and the number
of ants in the system, these are exposed in Table 6.

Table 5
Parameter values common to all experiments.

Parameter Value

α 1

β 0.8

ρ 0.9

ACO ITS 50

Table 6
Parameter values for experiments.

Experiment Set Max dist.
[km]

Max time
[sec]

Min
samples

Ants

1 1 100 28.800 100 10

2 1 100 28.800 100 200

3 2 250 50.000 100 200

Table 7 shows the value, the trip time, the trip
distance and the number of collected samples for each
experiment specified in Table 6.

Table 7
Results of experiments.

Experiment Value
Trip
time
[sec]

Trip
dist.
[km]

Collected
samples

1 220 20.494 102.47 107

2 280 22.895 114.48 128

3 286 51.955 259.776 117

As it can be seen from Table 7, with 200 ants
the algorithm generates the best trip for the test set
#1; the distance and time constraints in experiment
#1 were broken in 2.47%. It is worth noting that
although experiment #2 exceeds the trip time and
distance only a little more than experiment #1, the
value of Vx,y is incremented by almost 30%, with
20% more of samples collected. Figures 5 and 6 show
the resulting trips for experiments 1 and 2, respec-
tively.
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Fig. 5. Path generated for experiment 1.

Fig. 6. Path generated for experiment 2.

The third experiment was performed with a sim-
ilar parameter configuration, in set #2 which repre-
sents a bigger zone. In this case, the time and dis-
tance constraints increased by 3.91%.
However, as it can be seen in Fig. 7, the path

leads the ship through non-traversable zones. This
issue has to be resolved by the implementation of a
reactive control scheme that executes the path gen-
erated here at the deliberative control level.

Fig. 7. Path generated for experiment 3.

Conclusions

The results presented in this paper showed that
the Ant Colony algorithm can be applied to the op-
timization of an environment monitoring mission in
different map coverage scenarios. The main contribu-
tions of this paper are the following. An ACO algo-
rithm was presented to plan a closed path that passes
through areas of high sensory interest. The objective
function can be modified depending on the data ac-
quisition strategy. The form of constraint functions
was proposed to achieve higher sample density in
areas of higher scientific interest, and, at the same
time, uniform sampling coverage of these areas. In
our hybrid graph-grid model the ants can have one
of two roles: explorer or collector. The hybrid grid-
graph implementation also reduces the computing
time, since is not necessary to create connections be-
tween all the possible points in the search space.
The algorithms were validated by implementing

the computed strategies in the context of monitoring
water quality in large inland water basins in combi-
nation with satellite imagery. The satellite data were
used to calculate the concentration of environmental
features that were subject of the monitoring. The
specific features were chlorophyll-a and Total Sus-
pended Solids.
In the future work we will consider additional an-

cillary information, including meteorological data, in
order to compensate for the impact of such factors
as temperature or wind strength in the mission plan-
ning stages. Also, applications of the proposed opti-
mization schemes will be investigated in the area of
transportation systems using autonomous vehicles.
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