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Abstract 

An electronic system and an algorithm for estimating pedestrian geographic location in urban terrain is reported 
in the paper. Different sources of kinematic and positioning data are acquired (i.e.: accelerometer, gyroscope, 
GPS receiver, raster maps of terrain) and jointly processed by a Monte-Carlo simulation algorithm based on the 
particle filtering scheme. These data are processed and fused to estimate the most probable geographical location 
of the user. A prototype system was designed, built and tested with a view to aiding blind pedestrians. It was 
shown in the conducted field trials that the method yields superior results to sole GPS readouts. Moreover, the 
estimated location of the user can be effectively sustained when GPS fixes are not available (e.g. tunnels). 
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1. Introduction 

 
Reliable and accurate estimation of outdoor personal positioning is an important problem 

in many professional and leisure activities. Applications are numerous, e.g.: tracking of 
soldiers or firemen in action [1], aiding travel for the visually impaired [2], locating the 
whereabouts of children and the elderly [3], or navigating tourists around points of 
interest [4].  

In open outdoor spaces, an obvious solution is to use the Global Positioning System (GPS) 
that, together with data derived from digital maps, offers a powerful positioning and 
navigation tool. Car navigation devices mostly implement such solutions. The available 
software is capable of improving positioning accuracy by using a priori information 
concerning the layout of road networks. However, a pedestrian navigation task poses a more 
complex challenge [5, 6, 7]. Firstly, the path the pedestrian walks is not confined to a priori 
given routes. Secondly, there are few maps available that provide detailed information about 
pavement layout in urban terrain (e.g. underground pathways, large squares, parks etc.). 
Thirdly, the mobility pattern of a pedestrian is more complex than that of the vehicles moving 
along road lanes. Hence, the routing algorithms used in car navigation procedures cannot be 
directly applied in pedestrian navigation. Finally, in the urban environments, pedestrians walk 
alongside buildings’ walls making the GPS readouts even less accurate (the positioning errors 
can reach several dozens of meters). The indicated problems of pedestrian navigation tasks 
call for additional sources of positioning data that could be fused with GPS readouts and 
enhance the navigation performance of a pedestrian. There have been a number of reported 
systems aiding GPS based pedestrian navigation that can be grouped into two major types: 
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− smart environment systems:  in which a dedicated infrastructure is embedded into the 
urban terrain or alternatively an already existing telecommunication system (GSM base 
stations) are used for positioning, 

− wearable sensors that are carried by the navigated user.  
In the smart environment systems, a network of electronic tags (radio, ultrasound or 

infrared beacons) is embedded into the environment. Example solutions employ Radio 
Frequency Identification Devices (RFID) [8] or infrared based systems like the Talking-Signs 
[9] designed for navigating the visually impaired. The pedestrian position is tracked by the 
beacons whose landmark is known. Unfortunately, such systems are costly in implementation. 
Large number of tags need to be mounted and serviced, although the unit cost of such devices 
is consistently dropping. In smart environment systems, a pedestrian’s position can be 
determined by multilateration algorithms, similar to the ones used in the GPS [10]. 

Wearable sensors are becoming an attractive mobile solution for aiding pedestrians. 
Currently, such devices as accelerometers, electronic gyroscopes and compasses, digital 
cameras and barometers are of small size and consume low power. Some of the devices can 
be integrated into cloths. The wearable sensors allow estimation of a pedestrian’s kinematical 
parameters, his cardinal directions or local positioning against the surrounding objects. 
However, due to limited accuracy of the sensors and an iterative manner of motion estimation, 
special dead-reckoning algorithms need to be employed. Dead-reckoning can be defined as 
the task of determining own (e.g. pedestrian) position on the basis of a previous fix and 
current kinematical parameters (e.g. speed, movement angle).  

Aided navigation can only be successfully implemented if various sources of positioning or 
kinematic data can be suitably fused and continuously updated for efficient position tracking 
of a moving object [10]. 

The paper proposes an iterative Monte-Carlo method (also known as particle filtering) that 
fuses and processes the data from an accelerometer, gyroscope, GPS receiver and raster maps. 
The accelerometer serves as a step meter for calculating the number of steps as well as 
estimating their length [11]. The gyroscope provides the angular velocity which is used to 
calculate a relative rotation of the traveller. Should the GPS fixes diverge, the user’s position 
is predicted in a dead-reckoning manner from the step meter and gyroscope readouts. The 
raster map of the terrain is converted into a probability map, in which different probability 
values are assigned to the different regions the user passes (e.g. who is more likely to walk 
along a pavement than traverse walls, fences or ponds). In a number of field trials, it was 
shown that the built prototype system and the proposed data fusion algorithm significantly 
improved the estimation of a pedestrian’s geographic location in urban terrain. 

 
2. System components 
 

The system block diagram is shown in Fig. 1. A small portable laptop serves the purpose of 
a computational unit. The system can estimate location on-line as well as store data from the 
sensors for off-line analysis. 

All the sensors (accelerometer, gyroscope and GPS) are encompassed in a small PCB 
board (‘Sensor board’ see Fig. 1) that connects to the PCB via an USB interface. The sensors 
board can work independently storing data on a Micro-SD card. The board can be then 
connected to the PC and all recorded data can be read off. Fig. 2 shows a picture of the 
sensors PCB.  

The PC records on-line the data stream from the sensors board and processes them. The 
accelerometer readouts are digital-filtered to estimate the number of steps and their length. 
The angular velocity, provided by the gyroscope, is integrated and a relative rotation angle is 
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calculated. The step lengths and rotations thus determine a relative user displacement, which 
is used to predict the geographical location should the GPS fixes be inaccurate. 

 
 

 
Fig. 1. System block diagram, ACC and GYR stands for accelerometer and gyroscope respectively and uC 

denotes a microcontroller. 
 
 

 
Fig. 2. The sensors board (65mm×48mm×29mm). The large cube is a digital 6DOF sensor (Analog Devices 

ADIS16355) that houses 3-axis accelerometer and 3-axis gyroscope. The smaller cube is a GPS receiver (with an 
integrated antenna). The bottom layer comprises a Micro-SD slot and a battery connector for the independent-

work mode. When connected to a PC, the power is drawn from the USB interface. 
 

2.1. The GPS receiver 
 
The FGPMMOPA6B GPS receiver comes with an integrated ceramic antenna of compact 

measurements (16mm x 16mm). Apart from the location estimates, every GPS receiver within 
the NMEA protocol provides a parameter that reflects the quality of a fix – i.e. HDOP 
(Horizontal Dilution of Precision) [10]. Larger values of this parameter correspond to less 
accurate estimates. This parameter is crucial with a view of the whole algorithm that is to take 
decision whether to believe the GPS receiver or predict the location from the step meter, 
gyroscope and raster maps. We categorized the value of HDOP parameter into three ranges:  
− HDOP < 1.0 – accuracy better than 5m 
− HDOP < 2.0 – mediocre accuracy, better than 15m 
− HDOP ≥ 2.0 – poor accuracy, worse than 15m. 
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These values differ greatly from receiver to receiver. We tested three GPS receivers: 
HAiCOM HI-204III, Pentagram Pathfinder P3105 and FGPMMOPA6B which returned 
competently different values in the same locations at the same time.  

It was noticed that the HDOP parameter, in many cases, does not reflect the actual 
precision, which initially complicated the implementation of the algorithm. To account for 
such events, after a period of poor quality estimates, we introduce the so called guard time, 
i.e. the value of HDOP is filtered so that it does not abruptly change from high to low values. 
The following simple rule was applied for HDOP filtering: 

 
IF (current_HDOP < previous_HDOP) THEN current_HDOP :=   

previous_HDOP +  A
.
(previous_HDOP – current_HDOP) 

 
Factor A ranges from 0.05 to 0.1 and depends on the GPS receiver model. Lower values of 
this parameter correspond to a longer guard period. In Fig. 3 an example of filtering the 
HDOP value by using the proposed rule is shown. 
  

 
Fig. 3. Filtering the HDOP parameter: thin line corresponds to HDOP values obtained from the GPS receiver and 

thick line denotes the filtering result. 
 

The implementation of this non-linear filtering method has improved overall system 
performance. However, unique situations take place in which inaccurate values of HDOP 
confuse the system. 

 
2.2. The accelerometer 

 
The data from the accelerometer is used to estimate the length and number of steps of 

a person. The sample rate is 50Hz. The resolution of the readouts is 14-bits per sample. As 
a person walks the body moves up and down in accord with the steps. The step detection 
algorithm examines the acceleration of a body in the vertical direction only (i.e. parallel to the 
gravity axis). The algorithm estimates step lengths with 1.5% accuracy when the user walks 
on a flat ground. The step detection algorithm is shown in Fig. 4. A detailed explanation of 
the algorithm together with the tests performed on a number of pedestrians follow in the 
authors’ paper [11].  

The pedometer is sensitive to orientation, as it measures the acceleration in a given axis to 
estimate the step length. Any deviation ød from the direction of the gravity will scale the 
accelereometer’s readouts by cos(ød), as it is clarified by Fig. 5. According to the step 
estimation algorithm, the lengths of steps will be scaled by cos0.25(ød). The estimated step 
length is then given by formula: 
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where: ammax and ammin
 denote the measured peaks in the acceleration (cf. Fig. 4), agmax and 

agmin
 stand for the peaks of acceleration in the gravity axis. 

 
Fig. 4. Step detection algorithm. The acceleration samples are filtered to reject undesired constituents like body 
swings and so on. A maximum and minimum of accelerations are detected and multiplied by a scaling factor K, 

which is individual for a given person. Then the result is raised to an empirical power of 0.25. 
 

 φd 

 ag 

 am 

 
Fig. 5. A sensor misalignment causes that the sensors measures the acceleration am which is equal ag· cos(φd). 

 
The error due to the sensor misalignment is given by the following formula: 
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For small reasonable angles ød, the algorithm accuracy is not significantly compromised. 
For example, for ød=10o, the step length is scaled by 0.996.  

It was noticed during tests that tripping over had an influence on the algorithm 
performance. These events caused the sensor to register 1 to 4 spurious steps. Moreover, blind 
testers were noticed to make steps in a place when they were not sure were to go. The latter 
error can be eliminated by measuring the acceleration in the walking direction. This solution 
has yet to be implemented. The accelerometer readouts are perturbed by white noise [12]. As 
the distance estimation is based on the previous one and the current step length, the whole 
process is described by a random walk, whose variance grows unboundedly over time. This 
will be explained in the next chapter which covers the gyroscope accuracy. The accelerometer 
bias instability does not play an important role, because the step lengths are calculated as the 
difference between subsequent extrema. Calculating the displacement of the user by 
integrating twice the acceleration will quickly lead to enormous errors. Any bias that may 
appear due to e.g. sensor misalignment or temperature change, results in the displacement 
error growing quadratically with time. 
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2.3. The gyroscope 
 
The data from the gyroscope is integrated to calculate a relative rotation angle ∆φ, 

according to the following formula: 

 ( ) dtt
t

drift ⋅+=∆ ∫
0

)( ωωφ , (3) 

where: t – is the integration time, i.e. the sampling interval, ω – is the angular velocity of 
a body, ωdrift – is the angular drift velocity. 

Every gyroscope exhibits a so called drift, i.e. the sensor shows an angular velocity despite 
no movement. This depends on the temperature, sensor alignment and circuit voltage supply. 
The manufacturer claims that the gyroscope is temperature compensated. Nonetheless the 
drift was approx. 0.2º/s. Thus in the time period of 15minutes the gyroscope can stray 180º 
from the true direction. The systematic bias can be easily measured and subtracted. Similarly 
to the accelerometer, the gyroscope measurements ω(t) are flawed by white noise nω(t). The 
estimated angle ∆φ(t) is then corrupted by the error expressed by the formula: 
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where: δt is the sampling period, Nω(i) are samples of angular speed ω(t), i is the 
measurement number, whereby t=n·δt. The variance of the aforementioned error (of zero 
mean) can be calculated according to the following formula: 
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where: σω
2 is the variance of the angular velocity measurements. The variance of the 

estimated angle σφ
2 grows boundlessly with the time. The manufacturer of the sensor [12] 

states that the deviation σφ equals h/2.4 0 , where h – is given in hour time units. Hence, 
after one hour the deviation equals σφ=4.2o and after two hours reaches σφ=5.8o etc. σφ grows 
proportionally with time due to bias instability at the level of 54o/h [12]. There are other 
factors, however, of much lesser importance, that degrade the gyroscope’s performance like: 
change of gyroscope sensitivity due to temperature, axis nonorthogonality, nonlinearity, 
voltage sensitivity etc. What should be also taken into account is the sensor misalignment 
which causes the readouts to be scaled, similarly as with the accelerometer. Laser gyroscopes 
improve by far on MEMS gyroscopes. For example, GG1320AN Digital Laser Gyro is a 
single axis gyroscope with a bias instability of 0.0035o/h and an angular random walk of 

h/0035.0 0 . The dimensions rather disqualify them from mobile applications –  
8cm×8cm×4.5cm. By comparison, the ADIS16355 measures 2cm×2cm×2cm. The cost of the 
laser gyroscope is at least several times higher than the MEMS (Micro Electro-Mechanical 
Systems) based device ADIS16355.  

The authors performed also tests with an electronic compass which provides absolute 
orientation. The compass was very susceptible to any magnetic field distortions caused by 
cars, power lines, trams etc. For example, a tram, 30 meters away, rendered the compass 
readouts useless for around 30s [11].  
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2.4. The raster map 
 
The raster map is divided into three distinct regions with different weights assigned as 

follows: 
− forbidden areas – buildings, ponds, walls, fences etc., wmap=0.1, 
− probable areas – lawns, fields etc., wmap=0.5, 
− preferred areas – pavements, streets, squares, alleys etc., wmap=1.0. 

Each weight corresponds to the probability of the user being in a given region. The 
probability map mitigates the problem of gyroscope drifts and step meter inaccuracies. The 
weight value for the forbidden regions (wmap=0.1) was chosen to provide some “flexibility” 
for the data fusion algorithm. Initially we set w=0 for the forbidden regions. However, cases 
occurred, due to inadequate HDOP parameter readouts, that the estimated locations (particles) 
“enter” the wall and die out due to the zero weight value assigned. Then all the particles had 
to be randomly reinitialized. Hence, the algorithm required extra time to converge to an 
optimal solution, in which case it worsened the overall computational performance. 
The values of the map’s weights were assumed empirically on the basis of different trials. 
The environment is subject to change, e.g. a new pavement, road and a digital map is not 
always up to date. The weights should provide some margin for that. A small value for 
probable areas would cause that the particles would die out quickly e.g. when a user crosses 
a wide street and wants to travel on the other side. The algorithm would then estimate that the 
pedestrian is on the wrong side. Fig. 6 shows an example of a raster probability map.  

  
 

 

Fig. 6. A raster map of the University campus. White, grey, black correspond to preferred, probable and 
forbidden regions respectively. 

 
3. The particle filtering algorithm applied to positioning estimation 
 
3.1. Introduction 

 
Particle filtering is an advanced model estimation technique derived from a sequential 

version of Monte Carlo methods [13, 14]. This approach uses a simulation technique that 
generates a large number of candidate solutions (particles) in search for the best solution to 
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a complex problem. An estimated system state is represented by a large number of particles. 
Each particle undergoes certain rules and then it is assessed how accurately it approximates 
the solution (measurement update). Therefore, every particle has an associated weight 
(importance). The final system state is a weighted average of particle states (prediction). With 
successive iterations of the simulation, some particles assume negligible weights and do not 
effectively take part in the simulation. These particles are replaced with the ones that more 
accurately converge to the optimal solution – this is the so-called resampling technique [13]. 

Kalman filters are commonly used for dead reckoning applications. The Kalman filter is a 
recursive algorithm, whereby the current state depends only on the previous one and the 
driving inputs [15]. The filter is much less computation expensive than a particle filter. When 
the object model is nonlinear, then the Extended Kalman Filter (EKF) is applied. The filter is 
based on linearization around the current state by the Taylor approximation. The algorithm 
performs well when the system exhibits moderate nonlinearity and moderate non-Gaussian 
measurement noise. Due to linearization, the covariance matrix is propagated with an error 
which grows with every iteration. The algorithm, called the Unscented Kalman Filter (UKF), 
deals with significant non-linearities by sampling the probability distribution around the mean 
in so-called sigma points [15]. The above discussed techniques can effectively be used when 
the posterior distribution is unimodal [16]. Often, there are situations when two solutions are 
possible, for example, a pavement can bifurcate into two paths of a similar orientation. The 
traveller might be on either path but not between them, as a Kalman algorithm would 
estimate. One path can be pointed as more probable but at a later time. For these kinds of 
problems, the ensemble Kalman filter, also referred to EnKF, is employed [17]. The system 
state is represented by a large collection of ensemble members. Each member implements the 
idea of the Kalman filter and it is individualized by adding a small perturbation to its state. 
The EnKF works under the assumption that all probability distributions are Gaussian [18]. As 
a matter of fact, the EnKF is closely related to the particle  filter, which can assume any 
probability distribution, albeit at a heavy computational cost. The main advantage of a particle 
filter is quick implementation and flexibility when adding new data sources.  

 
3.2. Implementation of the particle filtering algorithm 

 
In our simulation, every particle ci (i – is particle number) that takes part in the simulation 

is a hypothetic user location, thus it can be described by the following vector denoted by 
formula 6. 

 )](),(),(),([ twttytxc iiiii ϕ= , (6) 

where: xi(t), yi(t) – a particle location in Cartesian coordinates, φi(t) – an angle associated with 
the particle, i.e. angle versus the coordinates, wi(t) – a particle weight. In the discussed 
application the number of particles must be at least 2500 to obtain good simulation 
accuracies.  

For the algorithm outset, all the particles are initialized with randomly distributed angles 
φi(t), and the coordinates xi(t), yi(t) are spread around GPS estimates converted into Cartesian 
coordinates  xGPS(t), yGPS(t). This algorithm step is called initialization.  

As the user walks, the step meter and gyroscope provide data about relative user 
displacement – d(t) and ∆φ(t) respectively. Every particle is updated with this data. Moreover, 
the algorithm simulates sensor inaccuracies by introducing measurement errors. The 
algorithm generates (randomly) measurements errors individually for every particle. A 
Gaussian noise model was used both for the step meter and the gyroscope. A particle 
transition from the current to the next state is explained in Fig. 7.  
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Fig. 7. Particle transition introduced by the step meter and gyroscope. d(t) is a step length, ∆φ(t) is the relative 
rotation. εd(t) and εφ(t) are simulated measurement errors for the step meter and gyroscope respectively. The 

algorithm generates these values randomly for every updated particle. 
 
Following Fig. 7, a particle transition to a new state is given by equation (7). 
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Then every particle is assessed, i.e. how accurate it approximates the user location. The 
assessment is based on GPS measurements and the map. If a particle encounters a forbidden 
region and in the long run does not coincide with GPS measurements, it means that the 
particle has a wrong orientation φi(t) or its location (xi(t),yi(t)) is erroneous. The weight ni(t) of 
this particle is accordingly lowered.  

The weights of particles are updated on the basis of GPS measurements according to 
equation (8). 

 ))1(()()1( +⋅=+ tPDFtwtw iGPSii δ , (8) 

where PDFGPS(δi(t)) is a probability density function for the ei(t) error. We used a normal 
error distribution, expressed by equation (9). 
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σGPS is standard deviation of GPS measurements. Empirically we assumed that σGPS is 
proportional to the squared HDOP parameter. ei(t) is the distance between a given particle 
location (xi(t),yi(t)) and the GPS measurement (xGPS(t),yGPS(t)), thus it can be calculated from 
equation (10). 

 22 ))()(())()(()( tytytxtxte GPSiGPSii −+−= . (10) 

The raster map is used also to update particle weights – equation (11). 

 ))(),(()()1( tytxwtwtw iimapii ⋅=+ , (11) 

wmap(xi(t),yi(t)) is an area weight for given coordinates (xi(t),yi(t)) (see section 2.4 The raster 
map).  

The weights of the particles are normalized according to formula 12. 
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where L is the total number of particles.  
After a number of algorithm iterations, all but a few particles have negligible weights and 

therefore do not participate in the simulation effectively. This situation is detected by 
calculating the so called degeneration indicator given by equation (13).  
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If g(t) falls below a given threshold of e.g. 0.6, then a process called resampling is 
incorporated into the algorithm in which a new set of particles is created. The probability of 
copying a particle to the new set is proportional to its weight wi(t). Therefore particles that 
poorly approximate the system state are replaced by more “accurate” particles. Then all 
particles are assigned the same weight L-1.  

The estimated system state, i.e. the user location (xu(t),yu(t)), is a weighted average of all 
particle states: 
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4. Results 
 

Fig. 8 shows an example path followed by a pedestrian in urban terrain. The route was 
ca. 1.9km long. The histogram of geographic estimation errors for the path is shown in Fig. 9.  
 

 
Fig. 8. A path followed by a pedestrian: Solid line –true path, crosses – estimated path, triangles – GPS readouts. 

 
First, the absolute errors between the true location (read from a map) and the location 

estimated by means of the applied algorithms are calculated. Next, the errors are sorted with 
respect to their values that were expressed in meter units. The number of errors falling into each 
histogram bin is divided by the number of measurements and multiplied by a factor of 100. 
From the histogram shown in Fig. 9, we can conclude that the estimation algorithm (3) is the 
most precise, since more that 70% of location estimations are within the range of 0÷3m. 
In other words, the proposed algorithm brings large errors to smaller range. Hence, the number 
of smaller errors increases. It would be ideal if 100% of the errors fell in the range of 0÷3m. 
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Fig. 9. The error histogram for the path. (1) – sole GPS readouts, (2) – GPS + inertial sensors + particle filtering, 

(3) – GPS + inertial sensors + map + particle filtering. 
 
The histogram clearly shows that the proposed method combining data from inertial sensors 

and raster maps improves on GPS readouts. The errors were cut down to the range of up to 10 
meters. This is a significant improvement, but it is still not enough to build a device that would 
robustly guide the user on a certain side of the pavement, in which case the accuracy must be 
within 2 meters. As shown in Fig. 9, implementation of inertial sensors improves on sole GPS 
readouts, by eliminating large errors (ca. 75m – cf. Fig. 10). Since the gyroscope provides only 
direction change and a new location is based on the previously estimated one, the predication 
strays away over time, as the errors quickly accumulate, e.g. when the direction is estimated with 
10º accuracy, after traversing a 100m distance the predicted location is ca. 20m from the correct 
location. Moreover, GPS errors in many cases tend to be systematically biased. Introduction of 
new data modality taken from the raster maps gives a synergetic benefit. As the particles attempt 
to drift away from the correct direction, they are trimmed by the building regions – cf. Fig. 10. In 
consequence, the direction is self-aligned and the prediction precision improves. 

 

 

Fig. 10. A screenshot of the particle filtering simulation: large round dot – GPS location readout, large square – 
estimated user location, small squares – particles. Note that the algorithm eliminates the particles that would 

enter forbidden areas (i.e. buildings, fences, etc.). 
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5. Conclusions and future work 
 

Application of inertial sensors and raster maps gives a measurable improvement in location 
estimation in urban terrain (Fig. 9). The errors were reduced several times – from ca. 70m to 10m. 
The presented example path (Fig. 8) was taken from one of the best results that were obtained. On 
several occasions, however, the particles entered an adjacent street or a square and encountered 
a dead-end in a form of connected buildings or walls. In these cases the algorithm was inferior to 
the GPS receiver. A reliable recovery algorithm needs to be worked out. It was noticed during the 
tests that the algorithm lacks parallelism. When the particles met several similar direction paths, 
they accordingly branched, but over time one path – not always the correct one – monopolized the 
particles. This led in many cases to the aforementioned deadlock. A larger number of particles 
alleviated the problem, but the computation burden was prohibitive for a real-time simulation. An 
additional source of data is currently considered to further improve positioning precision. Namely, 
the stereovision technique is being tested and compared against 3D maps of the terrain. The first 
successful field trials were conducted on the University Campus.  
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