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Abstract

An electronic system anah algorithm for estimating pedestrian geograpdgation in urban terrain is repor
in the paper. Different sources of kinematic andifianing data are acquired (i.e.: accelerometgrosrope
GPS receiver, raster maps of terrain) and jointhcpssed by a Mont€arlo simulation algorithm based on
particle filtering scheme. These data are procearddused to estimate the most probable geogralpbitatior
of the user. A prototype system was designed, buitt tested with a view to aidindiriml pedestrians. It wi
shown in the conducted field trials that the methimdds superior results to sole GPS readouts. bae the
estimated location of the user can be effectivabtaned when GPS fixes are not available (e.aqeish
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1. Introduction

Reliable and accurate estimation of outdoor pelspositioning is an important problem
in many professional and leisure activities. Apgicns are numerous, e.g.: tracking of
soldiers or firemen in action [1], aiding travelr fthe visually impaired [2], locating the
whereabouts of children and the elderly [3], or igating tourists around points of
interest [4].

In open outdoor spaces, an obvious solution is#the Global Positioning System (GPS)
that, together with data derived from digital majpsiers a powerful positioning and
navigation tool. Car navigation devices mostly iempént such solutions. The available
software is capable of improving positioning accyraby usinga priori information
concerning the layout of road networks. Howeveapedestrian navigation task poses a more
complex challenge [5, 6, 7]. Firstly, the path gezlestrian walks is not confined dopriori
given routes. Secondly, there are few maps availdizt provide detailed information about
pavement layout in urban terrain (e.g. undergropathways, large squares, parks etc.).
Thirdly, the mobility pattern of a pedestrian ismm@omplex than that of the vehicles moving
along road lanes. Hence, the routing algorithmsl ulsecar navigation procedures cannot be
directly applied in pedestrian navigation. Finaltythe urban environments, pedestrians walk
alongside buildings’ walls making the GPS readewien less accurate (the positioning errors
can reach several dozens of meters). The indigatglllems of pedestrian navigation tasks
call for additional sources of positioning datattbauld be fused with GPS readouts and
enhance the navigation performance of a pedesffia@re have been a number of reported
systems aiding GPS based pedestrian navigatiocahnabte grouped into two major types:
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— smart environment systems: in which a dedicatéasiructure is embedded into the
urban terrain or alternatively an already existiapcommunication system (GSM base
stations) are used for positioning,

— wearable sensors that are carried by the navigested
In the smart environment systems, a network oftedac tags (radio, ultrasound or

infrared beacons) is embedded into the environmErample solutions employ Radio

Frequency Identification Devices (RFID) [8] or iafed based systems like the Talking-Signs

[9] designed for navigating the visually impairéithe pedestrian position is tracked by the

beacons whose landmark is known. Unfortunatelyh systems are costly in implementation.

Large number of tags need to be mounted and sdnadthough the unit cost of such devices

is consistently dropping. In smart environment ays, a pedestrian’s position can be

determined by multilateration algorithms, similarthe ones used in the GPS [10].

Wearable sensors are becoming an attractive maloiletion for aiding pedestrians.
Currently, such devices as accelerometers, elactrgyroscopes and compasses, digital
cameras and barometers are of small size and cenkwmpower. Some of the devices can
be integrated into cloths. The wearable sensoosvadstimation of a pedestrian’s kinematical
parameters, his cardinal directions or local positig against the surrounding objects.
However, due to limited accuracy of the sensorsaamniterative manner of motion estimation,
special dead-reckoning algorithms need to be eneploipead-reckoning can be defined as
the task of determining own (e.g. pedestrian) pmsibn the basis of a previous fix and
current kinematical parameters (e.g. speed, moveamngte).

Aided navigation can only be successfully implerednt various sources of positioning or
kinematic data can be suitably fused and continyaysdated for efficient position tracking
of a moving object [10].

The paper proposes an iterative Monte-Carlo metalst known as particle filtering) that
fuses and processes the data from an acceleromggtescope, GPS receiver and raster maps.
The accelerometer serves as a step meter for atifgulthe number of steps as well as
estimating their length [11]. The gyroscope prosidiee angular velocity which is used to
calculate a relative rotation of the traveller. Gldathe GPS fixes diverge, the user’s position
is predicted in a dead-reckoning manner from tlep sheter and gyroscope readouts. The
raster map of the terrain is converted into a poditg map, in which different probability
values are assigned to the different regions tlee passes (e.g. who is more likely to walk
along a pavement than traverse walls, fences odg)omn a number of field trials, it was
shown that the built prototype system and the pgedodata fusion algorithm significantly
improved the estimation of a pedestrian’s geog@jmwation in urban terrain.

2. System components

The system block diagram is shown in Fig. 1. A $ipaitable laptop serves the purpose of
a computational unit. The system can estimate imcain-line as well as store data from the
sensors for off-line analysis.

All the sensors (accelerometer, gyroscope and GiP&S)encompassed in a small PCB
board (‘Sensor board’ see Fig. 1) that connectheéd®CB via an USB interface. The sensors
board can work independently storing data on a &A®D card. The board can be then
connected to the PC and all recorded data can dx off. Fig. 2 shows a picture of the
sensors PCB.

The PC records on-line the data stream from themsrboard and processes them. The
accelerometer readouts are digital-filtered toneste the number of steps and their length.
The angular velocity, provided by the gyroscopenisgrated and a relative rotation angle is
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calculated. The step lengths and rotations thusriohte a relative user displacement, which
is used to predict the geographical location shthdGPS fixes be inaccurate.

Sensors board

GPS
\
acc | uc UsSB PC Raster
map
\
GYR

Fig. 1. System block diagram, ACC and GYR standsézelerometer and gyroscope respectively and uC
denotes a microcontroller.

Fig. 2. The sensors board (65mmx48mmx29mm). Thye laube is a digital 6DOF sensor (Analog Devices
ADIS16355) that houses 3-axis accelerometer arxis3ggroscope. The smaller cube is a GPS recewiéhn @n
integrated antenna). The bottom layer comprisescaoMED slot and a battery connector for the incheieat-
work mode. When connected to a PC, the power iwrdfeom the USB interface.

2.1. The GPSreceiver

The FGPMMOPAGB GPS receiver comes with an integragramic antenna of compact
measurements (16mm x 16mm). Apart from the locagtimates, every GPS receiver within
the NMEA protocol provides a parameter that reflettte quality of a fix — i.e. HDOP
(Horizontal Dilution of Precision) [10]. Larger weds of this parameter correspond to less
accurate estimates. This parameter is crucial avittew of the whole algorithm that is to take
decision whether to believe the GPS receiver odiptehe location from the step meter,
gyroscope and raster maps. We categorized the saldBDOP parameter into three ranges:

— HDOP < 1.0 — accuracy better than 5m
— HDOP < 2.0 — mediocre accuracy, better than 15m
- HDOP> 2.0 — poor accuracy, worse than 15m.
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These values differ greatly from receiver to reeeivwe tested three GPS receivers:
HAICOM HI-20411l, Pentagram Pathfinder P3105 and FNBMOPAG6B which returned
competently different values in the same locatiainthe same time.

It was noticed that the HDOP parameter, in manyegasloes not reflect the actual
precision, which initially complicated the implenation of the algorithm. To account for
such events, after a period of poor quality estmatve introduce the so called guard time,
i.e. the value of HDOP is filtered so that it doed abruptly change from high to low values.
The following simple rule was applied for HDOP éiling:

IF (current_HDOP < previous_HDOP) THEN current HDO®
previous HDOP + Aprevious HDOP — current_ HDOP)

FactorA ranges from 0.05 to 0.1 and depends on the GRSveeanodel. Lower values of
this parameter correspond to a longer guard petiodtig. 3 an example of filtering the
HDOP value by using the proposed rule is shown.

40

A

20

HDOP

5000 10000 15000 20000 250.00 30000 35000 400.00  450.00
Time[s]

Fig. 3. Filtering the HDOP parameter: thin lineresponds to HDOP values obtained from the GPSwercand
thick line denotes the filtering result.

The implementation of this non-linear filtering et has improved overall system
performance. However, unique situations take piacehich inaccurate values of HDOP
confuse the system.

2.2. The accelerometer

The data from the accelerometer is used to estitm@dength and number of steps of
a person. The sample rate is 50Hz. The resolutidheoreadouts is 14-bits per sample. As
a person walks the body moves up and down in acedtid the steps. The step detection
algorithm examines the acceleration of a body enwvrtical direction only (i.e. parallel to the
gravity axis). The algorithm estimates step lengtith 1.5% accuracy when the user walks
on a flat ground. The step detection algorithmhisven in Fig. 4. A detailed explanation of
the algorithm together with the tests performedaonumber of pedestrians follow in the
authors’ paper [11].

The pedometer is sensitive to orientation, as &suees the acceleration in a given axis to
estimate the step length. Any deviatiginfrom the direction of the gravity will scale the
accelereometer’'s readouts byq@,), as it is clarified by Fig. 5. According to théeg
estimation algorithm, the lengths of steps will smled bycos*Yay). The estimated step
length is then given by formula:
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d=K[a =K May ., -

g max g min

)" cos™(4y), (1)

where: ammax andammin denote the measured peaks in the acceleratioffrief4), agmax and
agmin Stand for the peaks of acceleration in the graauxig.

mmax ammin)

Max. detection

high-pass low-pass
. filter filter +
acceleration Step
samples / \ K ( )1 /4 length
‘-_-_'—’ Lol il . .

Min. detection

Fig. 4. Step detection algorithm. The accelerasimmples are filtered to reject undesired constituigke body
swings and so on. A maximum and minimum of accélema are detected and multiplied by a scalingofialt
which is individual for a given person. Then theul¢is raised to an empirical power of 0.25

®d

Y--

Fig. 5. A sensor misalignment causes that the semseasures the accelerat@mnwhich is equady- coggq).

The error due to the sensor misalignment is giwethe following formula:

ad — K mag max agmin)
09, cos™(4,)

For small reasonable anglgg the algorithm accuracy is not significantly compised.
For example, fogg=10°, the step length is scaled by 0.996.

It was noticed during tests that tripping over had influence on the algorithm
performance. These events caused the sensor tteregi® 4 spurious steps. Moreover, blind
testers were noticed to make steps in a place wienwere not sure were to go. The latter
error can be eliminated by measuring the accetarati the walking direction. This solution
has yet to be implemented. The accelerometer reado@tperturbed by white noise [12]. As
the distance estimation is based on the previoesaml the current step length, the whole
process is described by a random walk, whose \@ignows unboundedly over time. This
will be explained in the next chapter which couies gyroscope accuracy. The accelerometer
bias instability does not play an important rolecéuse the step lengths are calculated as the
difference between subsequent extrema. Calculativey displacement of the user by
integrating twice the acceleration will quickly ¢e& enormous errors. Any bias that may
appear due to e.g. sensor misalignment or temperahange, results in the displacement
error growing quadratically with time.

025

sin@,) . (2)

149



www.czasopisma.pan.pl P@ N www.journals.pan.pl

P. Baraiski et al.: FUSION OF DATA FROM INERTIAL SENSB%"HER MAPS AND GPS FOR ESTIMATION OF PEDESTRIAN...

2.3. The gyroscope

The data from the gyroscope is integrated to cateub relative rotation anglag
according to the following formula:

At =j(w+ Wy ) B, @3)

where:t — is the integration time, i.e. the sampling &ty » — is the angular velocity of
a body,wqi — is the angular drift velocity.

Every gyroscope exhibits a so called drift, i.e siensor shows an angular velocity despite
no movement. This depends on the temperature, Iseligoment and circuit voltage supply.
The manufacturer claims that the gyroscope is teatpee compensated. Nonetheless the
drift was approx. 0.2°s. Thus in the time periddldminutes the gyroscope can stray 180°
from the true direction. The systematic bias cardmsly measured and subtracted. Similarly
to the accelerometer, the gyroscope measurengtjtare flawed by white noise,(t). The
estimated angldp(t) is then corrupted by the error expressed bydhadla:

t

jn (t) mt~zN (i), (4)

0 i=1

where: 6t is the sampling periodN,(i) are samples of angular speedt), i is the
measurement number, wheretyn-ét. The variance of the aforementioned error (of zero
mean) can be calculated according to the folloviamula:

Vaf{zn: Nw(i)d‘t} = E{Zn:(Nw(i)&)z} =n[&® EIE{Nw(i)Z} =nl&’c? =t@&Ww?2, (5)

i=1 i=1

where: 6,2 is the variance of the angular velocity measurémefihe variance of the

estimated anglsarq,2 grows boundlessly with the time. The manufactukthe sensor [12]

states that the deviatiar, equals 42°/\h, whereh — is given in hour time units. Hence,
after one hour the deviation equals4.2 and after two hours reaches=5.8 etc.os, grows
proportionally with time due to bias instability Hte level of 54h [12]. There are other
factors, however, of much lesser importance, tlegrate the gyroscope’s performance like:
change of gyroscope sensitivity due to temperataxs nonorthogonality, nonlinearity,
voltage sensitivity etc. What should be also takdn account is the sensor misalignment
which causes the readouts to be scaled, similarlyith the accelerometer. Laser gyroscopes
improve by far on MEMS gyroscopes. For example, GZAN Digital Laser Gyro is a
single axis gyroscope with a bias instability o®0@B5/h and an angular random walk of

0.0038/+/h. The dimensions rather disqualify them from mobisplications -

8cmx8cnmx4.5cm By comparison, the ADIS16355 measureaw2cnx2cm The cost of the

laser gyroscope is at least several times higher the MEMS (Micro Electro-Mechanical
Systems) based device ADIS16355.

The authors performed also tests with an electraoimpass which provides absolute
orientation. The compass was very susceptible yonaagnetic field distortions caused by
cars, power lines, trams etc. For example, a t@@nmeters away, rendered the compass
readouts useless for around 30s [11].
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2.4. Theraster map

The raster map is divided into three distinct regiavith different weights assigned as

follows:

- forbidden areas — buildings, ponds, walls, fentes\8ma=0.1,

- probable areas — lawns, fields eWy,=0.5,

- preferred areas — pavements, streets, squares atte Wma=1.0.

Each weight corresponds to the probability of tlserubeing in a given region. The
probability map mitigates the problem of gyroscalpéts and step meter inaccuracies. The
weight value for the forbidden regionsi{(;=0.1) was chosen to provide some “flexibility”
for the data fusion algorithm. Initially we set0 for the forbidden regions. However, cases
occurred, due to inadequate HDOP parameter regdbatghe estimated locations (particles)
“enter” the wall and die out due to the zero weighlue assigned. Then all the particles had
to be randomly reinitialized. Hence, the algoritheguired extra time to converge to an
optimal solution, in which case it worsened the raltecomputational performance.
The values of the map’s weights were assumed erafyrion the basis of different trials.
The environment is subject to change, e.g. a nevempant, road and a digital map is not
always up to date. The weights should provide somaegin for that. A small value for
probable areas would cause that the particles waiel@ut quickly e.g. when a user crosses
a wide street and wants to travel on the other. Jile algorithm would then estimate that the
pedestrian is on the wrong side. Fig. 6 shows amg@e of a raster probability map.

Fig. 6. A raster map of the University campus. \Whgrey, black correspond to preferred, probabte an
forbidden regions respectively.

3. Theparticlefiltering algorithm applied to positioning estimation
3.1. Introduction
Particle filtering is an advanced model estimation technique deriv@t a sequential

version of Monte Carlo methods [13, 14]. This apggfo uses a simulation technique that
generates a large number of candidate solutiontidea) in search for the best solution to
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a complex problem. An estimated system state ieseted by a large number of particles.
Each particle undergoes certain rules and thes aissessed how accurately it approximates
the solution (measurement update). Therefore, eypenyicle has an associated weight
(importance). The final system state is a weiglaeglage of particle states (prediction). With
successive iterations of the simulation, some glagiassume negligible weights and do not
effectively take part in the simulation. These ptet are replaced with the ones that more
accurately converge to the optimal solution — ihithe so-called resampling technique [13].

Kalman filters are commonly used for dead reckorapglications. The Kalman filter is a
recursive algorithm, whereby the current state ddpeonly on the previous one and the
driving inputs [15]. The filter is much less comatibn expensive than a particle filter. When
the object model is nonlinear, then the Extendelinda Filter (EKF) is applied. The filter is
based on linearization around the current statéhbyTaylor approximation. The algorithm
performs well when the system exhibits moderatelinearity and moderate non-Gaussian
measurement noise. Due to linearization, the camaa matrix is propagated with an error
which grows with every iteration. The algorithm]led the Unscented Kalman Filter (UKF),
deals with significant non-linearities by samplihg probability distribution around the mean
in so-called sigma points [15]. The above discugsetniques can effectively be used when
the posterior distribution is unimodal [16]. Oftéhere are situations when two solutions are
possible, for example, a pavement can bifurcaie twb paths of a similar orientation. The
traveller might be on either path but not betwekant, as a Kalman algorithm would
estimate. One path can be pointed as more prolaiblat a later time. For these kinds of
problems, the ensemble Kalman filter, also refetee@&nKF, is employed [17]. The system
state is represented by a large collection of ebEmembers. Each member implements the
idea of the Kalman filter and it is individualizéy adding a small perturbation to its state.
The EnKF works under the assumption that all proiablistributions are Gaussian [18]. As
a matter of fact, the EnKF is closely related te particle filter, which can assume any
probability distribution, albeit at a heavy compidgaal cost. The main advantage of a particle
filter is quick implementation and flexibility wheadding new data sources.

3.2. Implementation of the particlefiltering algorithm

In our simulation, every particlg (i — is particle number) that takes part in the satiah
is a hypothetic user location, thus it can be deedrby the following vector denoted by
formula 6.

¢ =[x @,y (0.4, ©),w (], (6)

where:xi(t), yi(t) — a particle location in Cartesian coordinaiged) — an angle associated with
the particle, i.e. angle versus the coordinateft) — a particle weight. In the discussed
application the number of particles must be attle2800 to obtain good simulation
accuracies.

For the algorithm outset, all the particles ardiatized with randomly distributed angles
¢i(t), and the coordinates(t), yi(t) are spread around GPS estimates converted intestzm
coordinatesxgpdt), Yepdt). This algorithm step is calleditialization.

As the user walks, the step meter and gyroscopeid@odata about relative user
displacement €(t) and4¢(t) respectively. Every particle is updated with ttiéga. Moreover,
the algorithm simulates sensor inaccuracies byoduicing measurement errors. The
algorithm generates (randomly) measurements ernradividually for every particle. A
Gaussian noise model was used both for the steprnaeid the gyroscope. A particle
transition from the current to the next state iglaxed in Fig. 7.
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((t+1).y(t+1)

d(t+1)+¢&,(t+1

(% (t-12),yi(t-2)

Fig. 7. Particle transition introduced by the stegter and gyroscopd(t) is a step lengthyy(t) is the relative
rotation. &(t) ande,(t) are simulated measurement errors for the step raptegyroscope respectively. The
algorithm generates these values randomly for ewpdated particle.

Following Fig. 7, a particle transition to a newtstis given by equation (7).

X (t+07_[x0) cosf, 1)+ 40 +£,0)
{yi (t+1>}'[yi(t)}(d(t)”"(t){sin@.(t)+A¢(t)+e¢(t» ' %

Then every particle is assessed, i.e. how accutragproximates the user location. The
assessment is based on GPS measurements and thé anpprticle encounters a forbidden
region and in the long run does not coincide witASGmeasurements, it means that the
particle has a wrong orientatigx(t) or its location X(t),yi(t)) is erroneous. The weighi(t) of
this particle is accordingly lowered.

The weights of particles are updated on the baki&RS measurements according to
equation (8).

W, (t+1) = w; (t) IPDFgpg (9, (t+1) (8)

where PDFgpddi(t)) is a probability density function for the(t) error. We used a normal
error distribution, expressed by equation (9).

PDFps(4 (1)) = o JL/ETeX[{_ ;a(t) zj : 9)

ocps IS standard deviation of GPS measurements. Emlyriegee assumed thabgps is
proportional to the squared HDOP parametgt) is the distance between a given particle
location (t),yi(t)) and the GPS measuremexiddt),yepdt)), thus it can be calculated from
equation (10).

€ (t) = \/(Xi (t) - XGps(t))2 + (yi (t) - prs(t))2 . (10)
The raster map is used also to update particlehigigequation (11).
W (t+1) = w (1) [wap(X (1), Y (1) (11)

WmadXi(t),¥i(t)) is an area weight for given coordinate&gt),yi(t)) (see sectio2.4 The raster
map.
The weights of the particles are normalized accwydd formula 12.
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w ()

2 W (1)

W, t):= (12)

whereL is the total number of particles.

After a number of algorithm iterations, all butewf particles have negligible weights and
therefore do not participate in the simulation effeely. This situation is detected by
calculating the so called degeneration indicateegiby equation (13).

o) = ———— (13)

L w (1)*

If g(t) falls below a given threshold of e.g. 0.6, thepr@cess calledesamplingis
incorporated into the algorithm in which a new gkparticles is created. The probability of
copying a particle to the new set is proportiomalts weightwi(t). Therefore particles that
poorly approximate the system state are replaceanbge “accurate” particles. Then all
particles are assigned the same welght

The estimated system state, i.e. the user loc#&tigt),y,(t)), is a weighted average of all
particle states:

b (t),yu(t)):[ix(t) SNOHRT0 Evvi(t)j. (14)
4. Results

Fig. 8 shows an example path followed by a pedestim urban terrain. The route was
ca. 1.9km long. The histogram of geographic estonagrrors for the path is shown in Fig. 9.

Fig. 8. A path followed by a pedestrian: Solid lirteue path, crosses — estimated path, triang@RS readouts.

First, the absolute errors between the true locaffead from a map) and the location
estimated by means of the applied algorithms al@ileded. Next, the errors are sorted with
respect to their values that were expressed inrraates. The number of errors falling into each
histogram bin is divided by the number of measurégmand multiplied by a factor of 100.
From the histogram shown in Fig. 9, we can concliha¢ the estimation algorithm (3) is the
most precise, since more that 70% of location edions are within the range of 0+3m.
In other words, the proposed algorithm brings lasgers to smaller range. Hence, the number
of smaller errors increases. It would be ideaDid% of the errors fell in the range of 0+3m.
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= (1)
B (2)
= (3)

frequency[ %]

40 50 75 100

range[m]

Fig. 9. The error histogram for the path. (1) -e$6PS readouts, (2) — GPS + inertial sensors icleafittering,
(3) — GPS + inertial sensors + map + particleriitg.

The histogram clearly shows that the proposed mdetiomnbining data from inertial sensors
and raster maps improves on GPS readouts. Thes evese cut down to the range of up to 10
meters. This is a significant improvement, busistill not enough to build a device that would
robustly guide the user on a certain side of theeqpent, in which case the accuracy must be
within 2 meters. As shown in Fig. 9, implementatainnertial sensors improves on sole GPS
readouts, by eliminating large errors (ca. 75m.-F. 10). Since the gyroscope provides only
direction change and a new location is based ompt&aously estimated one, the predication
strays away over time, as the errors quickly actat®ue.g. when the direction is estimated with
10° accuracy, after traversing a 100m distanceihdicted location is ca. 20m from the correct
location. Moreover, GPS errors in many cases teruktsystematically biased. Introduction of
new data modality taken from the raster maps gaveynergetic benefit. As the particles attempt
to drift away from the correct direction, they &menmed by the building regions — cf. Fig. 10. In
conseqguence, the direction is self-aligned angtbdiction precision improves.

- - -1
Fig. 10. A screenshot of the particle filtering siation: large round dot — GPS location readougdasquare —

estimated user location, small squares — partiblete that the algorithm eliminates the partiches tvould
enter forbidden areas (i.e. buildings, fences).etc.
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5. Conclusions and future work

Application of inertial sensors and raster mapegia measurable improvement in location
estimation in urban terrain (Fig. 9). The errorseveduced several times — from ca. 70m to 10m.
The presented example path (Fig. 8) was taken dmerof the best results that were obtained. On
several occasions, however, the particles entereati@cent street or a square and encountered
a dead-end in a form of connected buildings orsvéti these cases the algorithm was inferior to
the GPS receiver. A reliable recovery algorithmdsge be worked out. It was noticed during the
tests that the algorithm lacks parallelism. Whenphrticles met several similar direction paths,
they accordingly branched, but over time one patbt-always the correct one — monopolized the
particles. This led in many cases to the aforeroeatl deadlock. A larger number of particles
alleviated the problem, but the computation bundaa prohibitive for a real-time simulation. An
additional source of data is currently consideceftitther improve positioning precision. Namely,
the stereovision technique is being tested and amdpagainst 3D maps of the terrain. The first
successful field trials were conducted on the UsitgeCampus.
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