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Abstract 

Prior knowledge of the autocorrelation function (ACF) enables an application of analytical formalism for the 

unbiased estimators of variance 
2
as  and variance of the mean )(2 xsa . Both can be expressed with the use of so-

called effective number of observations neff. We show how to adopt this formalism if only an estimate {rk} of the 

ACF derived from a sample is available. A novel method is introduced based on truncation of the {rk} function 

at the point of its first transit through zero (FTZ). It can be applied to non-negative ACFs with a correlation 

range smaller than the sample size. Contrary to the other methods described in literature, the FTZ method assures 

the finite range nneff  ˆ1 for any data. The effect of replacement of the standard estimator of the ACF by three 

alternative estimators is also investigated. Monte Carlo simulations, concerning the bias and dispersion of 

resulting estimators as  and )(xsa , suggest that the presented formalism can be effectively used to determine a 

measurement uncertainty. The described method is illustrated with the exemplary analysis of autocorrelated 

variations of the intensity of an X-ray beam diffracted from a powder sample, known as the particle statistics 

effect. 

 

Keywords: autocorrelated data, time series, effective number of observations, estimators of variance, 

measurement uncertainty. 
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1. Introduction 

 

An analysis of series of observations represents perhaps the most common procedure in 

applied statistics. The well-known formulae for the mean x  and the estimators of variance s
2
 

and variance of the mean )(2 xs  are unbiased and with maximum efficiency when the 

observations {xi} are independent (uncorrelated), equivalent, and normally distributed. 

Let us now assume that the observations are autocorrelated while the two remaining 

assumptions remain unchanged. The equivalence of the observations xi implies that the 

expected value  and variance 2
 are the same for all xi, whereas the correlation coefficient 

relating xi and xj depends only on the difference ji   [1]. Consequently, the correlations are 

fully specified by the discrete one-dimensional autocorrelation function (ACF) denoted as 

{k}, k = 0, 1, , n  1. Alternatively, such data can be considered as a finite sample obtained 

from a stationary time series or as an effect of sampling of a stationary stochastic process.  

When the autocorrelation function {k} is known, it is possible to develop an analytical 

formalism in order to derive the mean and the estimators of variance. The arithmetic mean x  

remains to be the unbiased estimator of the expected value, but it is no more the best linear 
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unbiased estimator (BLUE). Its common use is justified because it remains asymptotically 

BLUE (in the limit n  ) and the loss of efficiency for a finite sample size is small [2, 3]. 

The resulting unbiased estimators of variance and variance of the mean are, respectively, 

given by 
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Both estimators are expressed as functions of the effective number of observations, 
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which depends on the number of observations n and elements k of the autocorrelation 

function. The dispersion of variance and standard deviation estimators depends on a quantity 
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termed the effective degree of freedom. Equations (1)–(4) and the above concept of ‘effective’ 

numbers were first introduced by [4] and presented independently in several other works (as 

reviewed in [1]).     

This formalism can be directly used when the autocorrelation function is known from other 

sources of information. This assumption occurs quite frequently in practice. Nevertheless, the 

implementation of this method should also involve the estimation of quantities (1)–(4) when 

only an estimate {rk} of the ACF, calculated from the analyzed data {xi} is available. This 

could not be done by merely replacing {k} by {rk} in Eqs. (3)(4). The main objective of this 

work is to propose suitable algorithms and to investigate their properties by using both 

analytical methods and Monte Carlo (MC) simulations. 

Of course, the use of neff and eff is not a necessity and, in fact, is not widely used. It allows 

to express the formulae for both variances in a compact manner which reveals the similarities 

and differences with respect to the case of independent observations. Regardless of the 

notation, the stochastic properties of estimators of variance (1) and (2) can be analyzed 

bearing in mind the fact that they are the products of the sum of squares (with the stochastic 

properties defined by eff) and a multiplicative factor depending on the autocorrelation 

function and the sample size. When the autocorrelation function is known this factor is fixed, 

whereas it becomes a random number when the estimator of the ACF is used.  

 

2. Estimating the effective number of observations: truncating the tail of the 

autocorrelation function estimate  

 

The estimators effn̂  investigated in this paper are derived from (3) defining neff. This 

formula has been modified by truncating the summation in (4) at the limiting lag nc, which 

should be smaller than 1n . The resulting formula reads  
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The effect that the choice of nc may have, is investigated in this section assuming the use 

of just one standard estimator {rk} of the ACF. The effect of the replacement of {rk} with 

other estimators of the ACF will be discussed in Sec. 3. Quantitative data for addressing both 

these issues is obtained by means of Monte Carlo simulation. The results of simulations 

presented in Figs. 2 and 3 concern in fact the variable effn̂/1  instead of effn̂ (i) to cover 

conveniently the case when effn̂  goes to infinity or becomes negative, and (ii) because effn̂/1  

is a proportionality coefficient in relation (2) between )(2 xsa  and 2
as .   

 

2.1. The specifics of Monte Carlo simulation  

 

Two different models of the stationary time series are used to generate autocorrelated 

numbers. The simple moving average (SMA) is defined as the arithmetic mean  
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of m successive uncorrelated Gaussian numbers {ui}. The first-order autoregressive model 

(AR(1)) is defined by  

 iii uxax  1  (7) 

with the parameter 10  a .  

Both models belong to two general categories: moving average (MA) and autoregressive 

(AR) time series. In the present study, we set m = 5 for the simple moving average model, 

whereas parameter a of the autoregressive AR(1) model was adjusted to obtain the same 

theoretical neff that was calculated using the SMA for the given sample size. The 

autocorrelation function for both models is nonnegative (k  0) and of finite range. The 

difference is that, in the case of the SMA, the function {k} equals zero above a well-defined 

k, whereas for the AR(1) model, it approaches zero asymptotically. In both cases, though, the 

autocorrelation function becomes practically zero for k significantly smaller than the sample 

size n. 

The sample size chosen for the modelling was n = 15, 60, and 240 for the following 

reasons. In the textbook [5] (p. 32) it is proposed that ‘in practice, to obtain a useful estimate 

of the ACF, we would need at least 50 observations’. A sample of n = 60 elements, which is 

slightly larger than that limit, was chosen. The simulations for the four times larger value of 

n = 240 provide us with information concerning the convergence of estimators, whereas the 

results for n = 15 allow us to check the case of a small sample. The total number of MC 

duplicates used was NMC = 250,000 for each case. This assures two significant decimal digits 

for estimators’ values derived through the simulations.  
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2.2. Standard estimator of the autocorrelation function 

 

The estimator 
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is named standard because it is the most frequently discussed in literature one and widely 

implemented in computer programs. An important reason of its widespread use is that the 

correlation matrix composed of the elements rk remains positive definite. 

Example estimates {rk} are shown in Fig. 1. These discrete functions seem to be rich in 

details but only a limited number of initial points corresponding to non-zero values of the 

autocorrelation function {k} are relevant. The remaining points, the so-called tail, represents 

merely autocorrelated noise, which is further characterized by dispersion s(rk). The formula 

for the variance in the tail was given by [5] (p. 33). Utilising the concept of effective degrees 

of freedom (4) , it can also be expressed as s(rk)  (eff +1)
1/2

. This explains the rather large 

amplitude fluctuations in the tail of the {rk} function for a sample of finite size. 
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Fig. 1. Exemplary estimates a), b) and c) of the autocorrelation function calculated from three 60-

element samples generated with the use of the AR(1) model. Solid lines denote the function 

)(96.1 krs  used in the LSN method (pt. 2.4). 

 

2.3. The failure of first attempts to estimate neff from an autocorrelation function estimate 

 

The investigation into the effects that the choice of nc may have, can start by taking into 

account all elements of {rk}, i. e., nc = n – 1 in (5). This option assures that effn̂ > 0 because 

the denominator of (5) represents the sum of all elements of the correlation matrix, which is 

positive definite for this specific estimator of the ACF. The corresponding MC simulated 

probability density function )ˆ/1( effng  is represented by curve a) of Fig. 2. One can see the 

large negative bias: almost the whole area of function )ˆ/1( effng  is located leftwards with 

respect to the theoretical value of 1/neff. 
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The rule of thumb has been expressed in the literature [5] that reasonably good estimates of 

the ACF can be obtained only for k < n/4. One may try to estimate the effective number of 

observations using a limiting lag of nc = n/4 (curve b) in Fig. 2). However, this estimator is 

characterised by the largest dispersion. Even more troublesome is the quite large probability 

of 1/ effn̂  < 0 leading to 0)(2 xsa . The negative effn̂  can occur because the correlation matrix 

composed of the truncated {rk} estimate (rk = 0 for k > nc) has not to be positive-definite. 

Hence, the option of nc being equal to n/4 cannot be accepted nor another fixed fraction of the 

sample size. 
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Fig. 2. MC probability density functions for different approaches to estimate the effective number 

of  observations shown for 1/ effn̂  variable.The presented curves correspond to: a) nc = n  1, 

b) nc = ¼ n, c) the LSN method, and d) the FTZ method (as described in Sec. 2.3  2.5). Vertical 

lines indicate: 0ˆ/1 effn , nneff /1ˆ/1  , and the theoretical value 1/neff = 1/12.33. 

 

2.4. Limiting lag determined by last significant nonzero element of the autocorrelation 

function estimate (LSN method) 

 

Statistical fluctuations in the tail seem to be the main source of the undesirable properties 

of the two estimators outlined above. Zhang [6] was the first to introduce a well-defined 

statistical procedure to address this issue by introducing the limiting lag nc, corresponding to 

the last significant nonzero value of {rk } (LSN method). The algorithm defining nc is given 

by a set of formulae 

  )(96.1max kkc rsrkn  , (9a) 
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It can be described as follows: 

(a) nc is first defined as the maximum value of k for which kr > 1.96 s(rk) (a confidence 

level of 0.95 is assumed).  

(b) Eq. (9b) defines s(rk) for k = 1 and for k ≥ 2. For further details see [6]. 

(c) if the value of nc thus obtained is larger than n/4, it is fixed at nc = n/4. 
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Two features of the method can be qualitatively understood by visual inspection of Fig. 1 

and curve c) in Fig. 2. First, the limit of )(96.1 krs  intersects with the estimate {rk} at a 

relatively high level, leading in most cases to excessively low values of nc. Underestimation 

of nc, in turn, leads to a lower value of effn̂/1  and to the peculiar shape of )ˆ/1( effng  with its 

successive maxima corresponding, from left to right, to nc = 1, 2, 3, and 4. The finite 

probability of obtaining nc = 0 leads to a small sharp peak for nneff /1ˆ/1  . Furthermore, there 

remains a finite probability that fluctuations in the tail may exceed the limit of )(96.1 krs , as 

illustrated by curve c) in Fig. 1. As a result, a small fraction of effn̂  can take values larger than 

the number of observations or even become negative. 

Selected statistical parameters of the quantity effn̂/1  for two time series models and 

samples of three different sizes are summarized in Table 1. 
 

Table 1. The statistical parameters of the quantity effn̂/1 , which have been obtained using two 

different methods of estimating the effective number of observations based on MC simulations. 

These correspond to two time series models and samples of three different sizes n. 
 

 SMA model AR(1) model 
     

Model parameter m = 5 a = 0.634 a = 0.659 a = 0.665 

n 15 60 240 15 60 240 

neff  theoretical 3.36 12.33 48.32 3.36 12.33 48.32 
        

effn̂/1  

LSN 

method 

biasr 0.58 0.28 0.16 0.69 0.44 0.26 

sr 0.14 0.21 0.32 0.13 0.19 0.31 

)/1ˆ/1( effeff nnP   1.00 0.92 0.74 0.99 0.98 0.84 
        

effn̂/1  

FTZ 

method 

biasr 0.38 0.04 0.08 0.53 0.19 0.01 

sr 0.19 0.31 0.32 0.17 0.33 0.36 

)/1ˆ/1( effeff nnP   0.98 0.68 0.55 0.99 0.78 0.61 

 

The relative bias and relative dispersion are defined as  
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Symbols   and ̂  denote the statistical parameter and its estimator. In addition, the table 

provides the quantity )/1ˆ/1( effeff nnP   indicating the probability that the estimate is lower 

than the true value of effn/1 . 

 

2.5. Limiting lag determined based on the first transit of the autocorrelation function 

estimate through zero (FTZ method) 

 

In order to truncate the tail of the ACF estimate, one can subjectively decide where the 

borderline is between the significant nonzero values of the {rk} function and the tail. To make 

this process more objective we propose to define the cut-off lag nc as corresponding to the last 

positive value of the {rk} function before its first transit through zero,  
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  )0 0(min 1  kkc rrkn . (11) 

The value nc < n  1 is found in every data set, even when all k are nonnegative, because 

of two reasons. First, negative rk values will appear due to statistical fluctuations. More 

precise is another argument. Percival [7] has proved that for another estimator of ACF, 
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the sum of all its elements equals zero, 
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To fulfill this condition at least one element *
kr  has to be negative. It follows from (8) and 

(12) that kk rknnr )]/([*  . Hence at least one rk is also negative and (11) defines nc < n – 1 for 

any data. 

FTZ method assures nneff  ˆ1  since the effective number of observations is calculated 

exclusively based on the positive values of rk. The case nneff ˆ  is possible because of a finite 

probability that r1 < 0 for nonnegative ACF. The inspection of Fig. 2 suggests that this 

probability is usually insignificantly small.  

The range of allowed values of effn̂  for the FTZ method, nneff  ˆ1 , is finite,  contrary to 

three other options discussed in pt. 2.3 and 2.4. When all elements of {rk} are used in (5) effn̂  

can take values from the range  effn̂1 . For the LSN method, or when a fixed nc < n is 

used in (5), this range is even wider,  effn̂ . 

The results of MC modelling based on this FTZ method are presented in Table 1 and  

Fig. 2. When compared to the results obtained with the LSN method, one can observe that 

anomalies of g(1/ effn̂ ) are eliminated and the bias is reduced. The entire procedure is simpler 

than the LSN method and independent of the choice of a tuning parameter (the factor 1.96 in 

(9a)).  

However, the FTZ method may only be applied when all the k elements of the ACF are 

nonnegative. This is the case in the majority of experimental situations. On the contrary, the 

LSN method remains more general because it can be applied regardless of the correlation 

coefficients' sign. Both methods could be interpreted as using an estimator of the ACF 

composed of two parts, of the nonzero rk for k  nc and of  rk = 0 for k > nc. 

The inspection of Table 1 also reveals that, assuming the same value of n and neff, both bias 

and dispersion are larger in the case of the AR(1) model when compared to the SMA. The 

function {k} gradually approaches zero, meaning the uncertainty of the determination of 

limiting lag nc is higher than with the SMA method. In the following section, our 

investigations are narrowed down to the more difficult AR(1) case, which is also more 

frequently encountered in experiments.      

 

3. Estimating the effective number of observations: alternative estimators of the 

autocorrelation function 

 

In the search for the potentially most accurate estimator of the effective number of 

observations, we first concentrated on methods of eliminating the fluctuating tail (Section 2). 
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In this section, we will check the possibility of using alternative estimators of the ACF that 

are less biased.  

There are two sources of bias for the elements of {rk} function. The first is the unequal 

numbers of terms in sums defining the numerator and denominator of Eq. (8). (These are 

equal to n – k, and n, respectively). To correct this bias, one may use an alternative estimator 

of the ACF, defined by (12). The replacement of rk in (5) with kk rknnr )]/([*   leads to a 

simple formula 
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As stressed by Percival [7], using }{ *

kr  does not assure a substantial reduction in the bias 

because the more important source of the one is application the sample mean x  instead of the 

expected value  in both (8) and (12). An estimator of the ACF that is unbiased up to O(n
2

) 

with respect to both sources of bias was introduced by Quenouille ([8], see also [9]). To 

obtain this estimator, one must calculate {rk} for the whole sample (assumed its size to be 

even) and separately for its two halves, leading to two estimates )1(
kr and )2(

kr . The 

combination 2/)(2
)2()1()(

kkk
Q

k rrrr   defines a new estimator of the ACF. The resulting 

estimator of the effective number of observations reads  
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Another timator { 
kr } aiming to reduce the bias of the standard estimator of {rk} is 

proposed by the authors [10]. The resulting bias-reduced estimator of the effective number of 

observations is given by 
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 Contrary to (15) it is defined solely by standard {rk} function and the numbers n and nc.   

It appears that the use of different estimators of the ACF has a moderate influence on its 

shape, which remains qualitatively similar and markedly non-symmetric (Fig. 3). This is in 

contrast to the dramatic effect that the choice of nc has (Fig. 2). 

A rather small difference between the estimators {rk} and { *
kr } result in the fact that the 

functions )ˆ/1( effng  and )ˆ/1( *
effng  are quite close to each other. A more substantial transfer of 

probability density from the region below the theoretical value 1/neff to the region above this 

limit is evident in the case of estimators 
effn̂/1  and )(ˆ/1 Q

effn . 

The value of selected statistical parameters for all four estimators are summarized in  

Table 2, where one observes a reduction in bias and improvement in )/1ˆ/1( effeff nnP  . 

Inevitably, this occurs at the cost of increased dispersion.  
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Fig. 3. The probability density function for four estimators of the inverse effective numbers of 

observations, defined using the same FTZ method and different estimators of the ACF: a) }{ kr , b) 

}{ *
kr , c) }{ 

kr  and d) }{
)(Q

kr . 

 

4. Estimators of the standard deviation and the standard deviation of the mean 

 

Estimators of standard deviation as  and standard deviation of the mean )(xsa  are defined 

by Eqs. (1) and (2) when parameter neff is replaced by one of its estimators. Our investigations 

are focused on only two of these estimators, namely, effn̂  calculated using the standard 

estimator of the ACF and 
effn̂ , which is defined by using the same quantities {rk} and nc but 

ensures an appreciable reduction in the bias. In both cases, the limiting lag nc defined by 

means of the FTZ method is used. 

The statistical properties of the estimators of standard deviation and standard deviation of 

the mean can be conveniently characterised using the dimensionless ratios /as  and 

)(/)( xxsa   (or /
as  and )(/)( xxsa  ). Selected probability density functions and statistical 

parameters obtained by means of the MC simulation method are shown in Fig. 4 and 

summarized in Table 3. 

 

4.1. Estimators of standard deviation 

 

In the case of uncorrelated observations, the statistical properties of the relative estimators 

/s  and )(/)( xxs   are described by the same statistical variable zv which is related through 

equation 
2z  to the chi-square variable 2

  where the degrees of freedom are equal to 

 = n – 1. Its probability density function is  

  2/exp
)2/(

2
)( 21
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where symbol  denotes the Euler gamma function.  
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Table 2. The properties of four estimators of the 

effective number of observations, estimated based on 

by (5), (14), (15), and (16) and the same FTZ method 

of determining nc. The parameters of the AR(1) model 

and the sample size are the same as in Table 1. 

 

Table 3. Selected parameters of the estimators of 

relative standard deviations for the same models of 

autocorrelated data as in Table 2. 

 

  
 
 

 
 

Visual inspection of Fig. 4 shows that )/( asg  approximates the theoretical function 

)( zg  with  replaced by the suitable effective degrees of freedom eff. This is because 

)/( asg  is mainly determined by probabilistic properties of the sum   2)()/1( xxn i in (1), 

whereas the ratio )1/( effeff nn  tends to unity with increasing sample size n (hence the 

discrepancy is most visible for n = 15). This conclusion is reflected in Table 3 by the fact that 

the relative dispersion )( ar ss  and )( 
ar ss  remain in agreement with the theoretical value 
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 2/1)2()(  effar ss . (18) 

 

4.2. Standard deviation of the mean 

 

Contrary to the case of uncorrelated observations, the relative dispersions of estimators of 

the standard deviation and the standard deviation of the mean are different (Fig. 4 and  

Table 3). The value of )(2 xsa  is now estimated as the product of two random variables, 1/ effn̂  

and   2)()/1( xxn i  of comparable relative dispersion. Under the simplifying assumption 

that the correlation between the two aforementioned random factors is neglected, the 

approximate formulae 

 )ˆ/1()2/1()()]([ effrarar nbiassbiasxsbias   (19) 

and 

   2/122 )]ˆ/1()2/1[()]([)]([ effrarar nsssxss  , (20) 

can be obtained from the law of propagation of uncertainty ((12) in [11]). Relations (19) and 

(20) are approximately satisfied by the numerical data provided in Table 3 and 2. 

The results obtained for n = 15 demonstrate that the crude estimation of standard deviation 

of the mean )(xsa  is possible even for this rather small sample. In general, the formalism 

presented here ((4) and (18)) makes it possible to determine objectively the sample size n 

required to achieve a given accuracy for the estimates of standard deviation.  

 

5. An experimental example of autocorrelated data 

 

5.1. Particle statistics effect in X-ray diffraction 

 

X-ray diffraction is an important analytical technique used in various areas of science 

and technology [12]. Among others, it allows the phase content of powder samples to be 

determined. In this method, the reflection of X-rays occurs only for a small fraction of 

crystallites of the powder sample for which the so-called Bragg condition is met. When the 

sample is gradually inclined at a small angle  (while the positions of the X-ray source and 

detector remain fixed) certain crystallites cease to reflect the X-rays, while others start to 

diffract the radiation. This leads to variation in the detected signal Ni (number of registered 

photons per single observation) as a function of the angle  (Fig. 5). 

The detector signal is a weighted sum of the contributions of crystallites that are oriented 

in such a way that the reflected radiation reaches the detector. The number of ‘diffracting’ 

crystallites is finite, hence the detector signal is a random variable. On the other hand, 

successive measurements are autocorrelated because the same crystallite contributes to the 

signal for a few successive values of the angle . 

The variation observed in the intensity of the diffracted beam, which is the result of a finite 

number of diffracting crystallites, is called ‘particle statistics’. Its magnitude increases with 

increasing particle size, because a corresponding decrease in the number of diffracting grains 

leads to stronger fluctuations in the signal detected. On the contrary, the term ‘counting 

statistics’ refers to uncorrelated Poisson fluctuations resulting from a finite number N of 

registered photons which are characterized by a relative standard deviation equal to 

zs(N)/N = N
1/2

.     
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Fig. 5. Intensity of selected Bragg reflection of corundum (Al2O3) as a function of the inclination 

angle . The conditions under which the experimental data were collected were as follows: X-ray 

diffractometer X'Pert, CuK radiation, powder sample with mean grain size of 30 m. The 

experimental data were supplied by Dul (2006) in private communication. 

 

5.2. Processing the data 

 

The mean value of the signal detected, 31036.22 N  is indicated in Fig. 5 by the dashed 

line. The estimate {rk} calculated based on these data is shown in Fig. 6.  
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Fig. 6. Sample ACF function for the data shown in Fig. 5. 

 

The cut-off lag of nc = 8 is obtained by counting the number of values of {rk} preceding the 

first transit through zero. For n = 200 the effective number of observations is estimated using 

(15) as: 

8.281
)016.0057.0114.0206.0327.0486.0690.0889.0(21

200/98182200
ˆ 






eff
n . 

The absolute and relative values of the standard deviation and standard deviation of the mean 

are calculated using (1) and (2) as follows: 
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 33 1049.11047.1
)18.28(200

)1200(8.28





as ,   %6.6

N

sa .  

 3
3

1028.0
8.28

1049.1
)( 


Nsa ,   %2.1

)(


N

Nsa .    

For the data analyzed, the relative standard deviation resulting from Poisson fluctuations is 

equal to %7.01036.22/1/)( 3 NNsa . Hence, we verified that the effect of particle 

statistics dominates over the effect of counting statistics for this specific size of crystallites. 

The uncertainty in the peak intensity propagates directly into the uncertainty of 

determining the phase content in a multiphase sample. A sample standard deviation of 

%6.6/)( IIsa  allows the uncertainty resulting from the particle statistics effect to be known 

a posteriori for a routine measurement with the sample position fixed. Averaging the signal 

detected over the 1 range of angle  lowers this uncertainty by a factor equal to 

5.58.28  . The fact that 8.28ˆ 
effn  is small when compared to n  = 200 suggests that a 

smaller number of data points (say, 100 or 50) in the same range 1 of angle  is sufficient 

to obtain a comparable reduction in the measurement uncertainty. 

 

6. Conclusions 

 

The way to estimate the standard deviations for a series of autocorrelated observations 

depends on the available knowledge of the autocorrelation function. Prior knowledge of the 

ACF allows the application of an analytical formalism. The present work focused on the case 

where only an estimate of the ACF can be obtained from the available data. MC simulations 

were carried out to investigate different estimators of the effective number of observations 

and the resulting estimators of the standard deviation of the data and the standard deviations 

of their mean. 

The results obtained through the Monte Carlo simulations are not general and, for the 

problem examined here, depend on (a) the chosen model of autocorrelated data, (b) the 

sample size, (c) the estimator of the ACF, and (d) the necessary truncation of sums defining 

the estimators of neff at the limiting lag nc. To obtain meaningful results within reasonable 

limits for the applied work, our strategy was based on consecutive checking of a few variants 

in succession for each of the four mentioned factors. 

The two models used in this work (the simple moving average SMA and the first-order 

autoregressive model AR(1)) are the simplest and most representative of two basic categories 

of stationary time series: the autoregressive (AR) and the moving average (MA). Starting with 

Section 3, quantitative results are obtained only with the AR(1) model, for which different 

estimators tend to exhibit larger bias and dispersion when compared to the SMA model with 

the same effective number of observations. Hence,, limits of its applicability should also 

apply for MA models. Moreover, the AR(1) model is most often used to interpret the 

autocorrelated data collected during real-world experiments. 

Numerical investigations were performed for three sample sizes: 15, 60 and 240, with 

corresponding effective numbers of observation equal to 3.36, 12.3 and 48.3. The simulations 

show that estimates of different statistical parameters can be obtained even for surprisingly 

small samples.  

Truncation of the sums defining the effective number of observations neff and effective 

degree of freedom eff can be alternatively considered as using estimates of the ACF, which 

are effectively zero above the limiting lag nc. Different options for the choice of nc were 

investigated, and the FTZ method introduced in this work was found to have the most 
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favorable properties. This method defines nc as corresponding to the last positive element of 

the ACF estimates before the first transit through zero. It can be used when we know that the 

true correlation coefficients are nonnegative. 

The use of the standard estimator {rk} of the ACF and three alternative estimators was 

examined. However, the choice of the ACF's estimator was found to be less critical than the 

choice of the method of defining nc. Nonetheless, a reduction of bias can be obtained by using 

a proposed estimator of the effective number of observations calculated using a closed 

formula from the standard estimator {rk}, the sample size n and the limiting lag nc.  

The final MC simulations concerned standard deviation of the data and standard deviation 

of their mean. They confirmed that their statistical properties depend on a suitably defined 

effective degree of freedom.  

As codified by [11], the type-A uncertainty is defined as the square root of the unbiased 

estimator of the variance of the mean. This statement emphasises the need for estimators of 

standard deviation, which are possibly unbiased. The formalism presented in this paper 

represents a generalization of the common formulae used for independent observations. For 

practical purposes, exemplary calculations for real-world data are presented. An immediate 

extension of this work will be to apply the estimators of the standard deviation of the mean 

and the effective degrees of freedom to calculate the confidence interval. 
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