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Abstract 

Spectrometry, especially spectrophotometry, is getting more and more often the method of choice not only in 

laboratory analysis of (bio)chemical substances, but also in the off-laboratory identification and testing of 

physical properties of various products, in particular – of various organic mixtures including food products and 

ingredients. Specialised spectrophotometers, called spectrophotometric analysers, are designed for such 

applications. This paper is on the state of the art in the domain of data processing in spectrophotometric 

analysers of food (including beverages). The following issues are covered: methodological background of food 

analysis, physical and metrological principles of spectrophotometry, the role of measurement data processing in 

spectrophotometry. General considerations are illustrated with examples, predominantly related to wine and 

olive oil analysis. 
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1. Introduction 

 

The Committee on Higher Education of the Institute of Food Technologists – the largest 

international, non-profit professional organisation involved in the advancement of food 

science and technology – has provided the following definition of food science: “Food 

science is the discipline in which the engineering, biological, and physical sciences are used 

to study the nature of foods, the causes of deterioration, the principles underlying food 

processing, and the improvement of foods for the consuming public.”
 
[1]. This definition is 

emphasising the empirical nature of food science, and – consequently – its strong affinity to 

measurement and instrumentation. That is the aspect of food science to be discussed in this 

review paper. A range of measurement methods and techniques, that are currently applied in 

food science and technology, is encompassing both simple tools and procedures for measuring 

mass or temperature, and very sophisticated ones – such as computer-based measuring 

systems combining liquid chromatography (separation of mixture compounds) with mass 

spectrometry (elemental analysis).  

This paper is devoted to the methods for processing measurement data in 

spectrophotometric analysers of food (including beverages). The rapid development of such 

instruments, observed since the last decades of the XXth century, is implied both by a 

spectacular technological progress in the domain of spectrophotometry (spectrophotometric 

transducers, instruments and systems) and by growing demand for adequate methods of food 

analysis. The latter is driven by several factors; the most important among them is the 

growing awareness of consumers concerning the nutritional value of food products, which – 

in particular – is fuelling public debates over genetically modified food ingredients and 
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organic food products as well as on food scandals which, despite the legislative efforts, aimed 

at protecting consumers and ensuring fair trade, are reported quite frequently. In most cases, 

their origin is related to pesticide residues, veterinary drug residues, endocrine disruptors, 

processing contaminants, packaging materials and natural toxins.  

A successful fusion of two powerful technologies: near-infrared spectrophotometry and 

measurement data processing, has provided a quite universal solution for the analysis and 

testing of many alimentary products, especially outside analytical laboratories. 

Spectrophotometric analysers for grain and fruits, milk and beer, chocolate and cheese, etc., 

are today manufactured by numerous companies all over the world. Their development is 

possible due to the intensive research on chemometric methods dedicated to the analysis of 

such raw materials and products as grape fruits and wine [2-26], olive fruits and olive oil [27-

58], other fruits and juices [59-75], vinegars [76-79], cheeses and other milk products [80, 

Chapter 4], [81-90], eggs [80, Chapter 5], [91-92], meat [93-103], honey [80, Chapter 6], 

[104-107], chocolate [108], and tea
 
[109-110].  

This paper contains an outline of a broad engineering and application background of that 

technology and a more detailed review of the state of the art in the domain of measurement 

data processing dedicated to spectrophotometric analysers of food. It is focused on a review of 

problems rather than of literature; the latter is referred to rather selectively – only to provide 

illustrations of reviewed problems; an exhaustive listing and analysis of the literature devoted 

to spectrophotometric analysers of food would require a book rather than a journal paper. 

The paper is a significantly restructured, updated and extended version of the author's 

conference paper of 2008 [111]; it is reporting – in particular – the progress in the domain of 

spectrophotometric data processing, accomplished during last four years.  

 

2. Spectrophotometric analysers of food 

 

Spectrophotometric tools, and – consequently – the methods for interpretation of 

spectrophotometric data, are of increasing importance for analytical laboratories, as well as 

for environmental, biomedical and industrial monitoring. On the one hand, the development 

of corresponding applications is driven by a growing demand for this kind of tools, the 

demand implied i.a. by the advancement of standards related to environment protection, 

health care, individual and collective security, as well as by the widespread use of optical 

means for inspection of industrial processes. On the other hand, however, this development is 

due to the market availability of miniature spectrophotometers: mini- and micro-

spectrophotometers [112]. 

The name spectrophotometric analyser is used for various spectrophotometric sensors, 

devices, instruments, probes and testers designed for measuring physical and/or chemical 

parameters characterising a pre-defined class of chemical or biochemical substances. In each 

version, an analyser must contain a spectrophotometric transducer (ST) converting an optical 

signal into a sequence of raw data  TNyy ~...~~
1y  representative of the spectrum  x  of that 

signal, where   is wavelength, x  is light intensity, N  is the number of data, and the tilde 

placed over 1y , ..., Ny  is to indicate that the data are subject to various disturbances of 

external and internal origin. The wavelength values may cover a broader or narrower 

subrange  maxmin,   of one of the following standard ranges: 200-300 nm – middle-

ultraviolet radiation (MUV), 300-380 nm – near-ultraviolet radiation (UV), 380-750 nm – 

visible radiation (Vis), 750-2,500 nm – near-infrared radiation (NIR) or 2.5-10 μm – middle-

infrared radiation (MIR). Several physical principles and corresponding devices may be used 

for the design of STs: 

 a dispersive element (a grating or a linear variable filter) that enables separation of spectral 
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components in space; 

 a tuneable filter that enables separation of spectral components in time; 

 an optical heterodyne that enables shifting the spectrum to a wavelength range where its 

analysis is easier; 

 an interferometer providing the data whose Fourier transform is representative of the 

spectrum. 

The first of them, a dispersive element, is applied today most frequently. Referring to Fig. 1, 

one may explain its functioning as follows: 

 An optical signal to be converted into a digital representation of its spectrum is separated 

into N  optical signals, corresponding to narrow subranges of wavelength   by a 

dispersive element, e.g. a grating. 

 Each of those signals is reaching a corresponding photodetector (PD) converting it into a 

current proportional to its intensity. 

 The output currents of the photodetector matrix are scanned by an analogue-to-digital 

converter and, one by one, coded. 
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Fig. 1. A spectrophotometer based on the ST with a dispersive element: 

the principle of functioning. 

 

Depending on application, one of the following modes of acquisition of spectral data may 

be applied in an analyser: transmittance mode, interactance mode, transflectance mode, 

diffuse transmittance mode or diffuse reflectance mode. Further considerations will be limited 

here to the first of them which is most frequently used in SAFs. This is sufficient because the 

mode of data acquisition has a very limited impact on the methods and algorithms of their 

processing. A functional diagram of a spectrophotometer, based on the ST with a dispersive 

element and working in the transmittance mode, is shown in Fig. 1. Its operation may be 

explained as follows: 

 First, the source optical signal is converted into the data 0
~y  representative of its intensity 

spectrum  0x . 

 Next, the same source optical signal is passed through a cuvette, containing a sample of 

the substance to be analysed, and converted into the data 1
~y  representative of its intensity 

spectrum, modified by a sample,  1x . 

 Finally, the intensity data 0
~y  and 1

~y  are processed by a digital processor (a controller, a 

microprocessor, a digital signal processor or a personal computer) in order to obtain an 

estimate of the target parameters of the sample, such as concentrations Jcc ...,,1  of 

selected compounds of that sample. 

The estimation of target parameters is, as a rule, an ill-conditioned numerical problem of 

measurand reconstruction [113-114]. Therefore, its solution may require not only simple 
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conversion of codes and estimation of the transmittance or absorbance spectrum on the basis 

of two intensity spectra, but also some more sophisticated operations, aimed at extraction of 

information hidden in the data, such as estimation of the optical noise level, estimation of the 

spectrum with a better resolution than the resolution of the ST or estimation of concentrations 

on the basis of preprocessed data. In some cases, estimation of special intermediate or 

auxiliary parameters, such as positions and magnitudes of spectral peaks, may be necessary, 

because the information on the positions of peaks in the absorbance spectrum may facilitate 

identification of the compounds which are present in the sample; and the information on their 

magnitudes may facilitate estimation of the concentrations of the identified compounds.  

The complexity of spectrophotometric data processing significantly depends on the 

technological and functional imperfections of the ST. Their external manifestations – such as 

noise-type disturbances in the data or blurring and overlapping of spectral peaks – must be 

taken into account during data processing. Therefore, the corresponding algorithms, as a rule, 

require considerable amount of a priori information on the mathematical model of the ST (or 

on the mathematical model of the data at its output). This information is acquired during an 

operation, most frequently performed off-line, called calibration of the ST; it is comprising 

not only scaling of wavelength axis and intensity axis, but also the identification of a forward 

or inverse mathematical model of the ST on the basis of the ST data corresponding to some 

standards of the spectrum or of a class of substances the analyser is designed for.  

The interpretation of the intensity spectra  0x  and  1x , in terms of concentrations (or 

other physical or (bio)chemical parameters) characterising a sample under study, may be 

simplified if those spectra are transformed into the transmittance spectrum defined as: 
 

      .01  xxxTr   (1) 
 

The corresponding data 0
~y  and 1

~y  should be then converted into the transmittance data 

representative of  Trx  according to the formula: 
 

 
nn

nnTr
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~
~   for n = 1, …, N,  (2) 

where  TNbb ...1b  is the ST response to the zero-intensity optical signal. The 

interpretability of spectra may be further improved by using the absorbance scale defined as 

follows: 

      TrAb xx 10log  (3) 

and the corresponding absorbance data: 
 

  Tr
n

Ab
n yy ~log~

10   for n = 1, …, N. (4) 
 

a)                                                                                   b) 

 

 

 

 
                  Fig. 2. The transmittance (a) and absorbance (b) data representative of the spectrum of red wine. 
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An example of transmittance data is shown in Fig. 2a, and the result of their transformation 

into absorbance data – in Fig. 2b. The absorbance data emphasise the most informative parts 

of the spectrum, viz. absorption peaks whose parameters, positions and magnitudes, depend 

on the qualitative and quantitative composition of a sample under study. Their graphical 

representation is therefore a finger-print enabling the identification of that sample. 

The name spectrophotometric analyser of food (SAF) is used for various 

spectrophotometric sensors, devices, instruments, probes and testers dedicated to measuring 

physical and (bio)chemical parameters characterising food products (including beverages). 

The NIR spectrophotometry is of particular usefulness for food analysis because spectra of 

organic samples comprise broad bands arising from overlapping of absorption peaks 

corresponding to the C-H, O-H and N-H chemical bonds. The main advantage of NIR 

spectrophotometry, when applied for routine analysis of food, is its simplicity and speed: 

usually no sample preparation is necessary, and the time of analysis is not greater than 1 

minute.  

Another advantage of NIR spectrophotometry is that it allows several constituents to be 

identified concurrently. Finally, the relatively weak absorption due to water enables one to 

analyse high-moisture food products and ingredients. Depending on the category of food to be 

analysed, the range of analysis may be extended towards the UV-Vis range or the MIR range. 

The driving forces behind the development of SAFs may be easily recognised on the basis 

of the general structure of food business, shown in Fig. 3 and of the specification of needs of 

its main actors, provided in Table 1. 

All those actors are potential users of SAFs, but the measurement needs are today better 

defined, and the use of SAFs is more common, among the food producers and supervisors of 

food business than among the providers of raw materials, food distributors, food vendors and 

individual consumers. It may be predicted, however, that the significant lowering of the prices 

of SAFs will quickly increase the demand among the members of the latter group.  

The main reasons for using SAFs in the food business may be summarised as follows: 

checking the quality of food, monitoring of the food production process, providing data 

necessary for production control, specification of food products necessary for their labelling, 

and precise classification of food products enabling their better pricing. There are more-or-

less evident economic benefits behind each of them. Precise classification, for example, 

enables one to minimise losses due to aging of food by replacing a worst-case approach with a 

realistic-case approach since the selection and grading of food may be based on the objective 

measurement results rather than on the “best-before” date. 
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Fig. 3. The general structure of the food business. 
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 Table 1. The motivation for using SAFs by the main actors of food business. 

 Specific examples of SAFs Reasons to use SAFs 

Providers 
of raw 
materials 

analysers of fruits ripeness, 
analysers of moisture content in grains, 
analysers of meat tenderness, 
analysers of raw milk; 

checking the quality of raw materials, 
specification of raw materials enabling their labelling, 
precise classification of raw materials enabling their better pricing; 

Food  
producers 

analysers of olive oil: chemical contents, 
analysers of olive oil: geographical origin, 
analysers of chocolate products, 
analysers of cheese; 

monitoring of the production process from the verification and selection  of raw 
materials to the final products, 

providing data necessary for manufacturing control, 
specification of final products enabling their labelling, 
precise classification of final products enabling their better pricing; 

Food  
distributors 

analysers of flour, 
analysers of honey: chemical contents, 
analysers of honey: floral origin, 
analysers of coffee grains; 

checking the quality of products to be distributed, 
monitoring of the quality of stored products, 
precise classification of products to be distributed, enabling their better pricing, 
increased productivity; 

Food  
vendors 

analysers of water (esp. for restaurants), 
analysers of bread, 
analysers of dairy products, 
analysers of fruits (aging); 

checking the quality of products to be sold, 
monitoring of the quality of stored products, 
precise classification of products for sale, enabling their better pricing, 

Food  
consumers 

analysers of mineral water, 
analysers of wine, 
analysers of beer, 
analysers of tee; 

checking the quality of purchased products, 
monitoring of the quality of stored products, 
improved selectivity in purchasing food products (based on better quality price 

evaluation); 

Supervisors 
analysers for microbiologial evaluation of   food, 
analysers for toxicological evaluation of food. 

checking the quality of food products in situ, 
increased effectiveness of supervision.  

 

 

3. Mathematical modelling of spectrophotometric data 

 

The operation principle of any SAF is based on the sensitivity of the spectrum  x  to a 

measurand being a vector – let’s denote it with the symbol  – containing quantities 

characterising a sample of food to be analysed: concentrations of some compounds of that 

sample, and – optionally – some quantities specific of the category of food the SAF is 

designed for. A good example of such a quantity is the indicator of acidity pH in case of wine 

[26], fruit vinegars [77], yogurt [115], cheese [81], pork [102], kiwi fruit [71] or tomato [62]. 

In this Section, the methodology for mathematical modelling of the relationship  xc  is 

outlined under an assumption that all components of the measurand are concentrations. This 

methodology may be generalised on the measurands containing some other quantities, 

provided the corresponding physical, chemical or purely numerical models of the sensitivity 

of the spectrum  x  to those quantities are available. 

The contents of this and three following sections at many points refer to the author’s 

review paper of 2006 [116], where many more algorithmic details may be found. 

 

3.1. Forward models of intensity data 

 

The intensity data, provided by an ST, may be modelled using a white-box approach, a 

black-box approach, or a grey-box approach combining some advantages of white-box and 

black-box approaches [117]. The experience behind modelling of spectrophotometric data, 

accumulated since the appearance of a seminal paper published by Pieter Hendrik van Cittert 

in 1931 [118], seems to prove that the approximation power of the so-called Wiener operator 

(a superposition of a linear integral operator with a nonlinear algebraic operator) is sufficient 

for adequate modelling of the relationship between the intensity spectrum  x  and the 

corresponding raw spectral data y~ . Let the variable ny  denote the mathematical model of the 

“noise-free” version of the datum ny~ ; then this operator may be given the following form: 
 

c
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nnnn xgFy α;d)(     for  n = 1, …, N, (5) 

where:  ng  is the response of the ST, measured at the output of the n th photodiode, to a 

tuneable monochromator producing an optical signal whose spectrum is close to  l  

with l  moving from min  to max ;  nF α;  is an a priori known function (e.g. an algebraic 

polynomial, a cubic spline) whose parameters,  Tnnn ...2,1, α , have to be determined 

during the ST calibration.  

 

3.2. Forward models of absorbance data 

 

The reasoning presented above for the intensity data may be repeated for the transmittance 

data. As a rule, due to the compensation of some irregularities by the division of 

corresponding intensity data, the function  nF α;  may be less complex in this case, and the 

variability of nα  and  ng  along the wavelength axis – less important. Consequently, quite 

often this variability is neglected, and the corresponding model of the transmittance data is 

simplified by fixing: αα n  and     ggn   for Nn ...,,1 . The following mathematical 

model of the relationship between the transmittance spectrum  Trx  and the corresponding 

data  TTr
N

TrTr yy ~...~~
1y  is then applied: 

 

     n
Tr

n
Tr
n dxgy   





~    for  n =1, …, N, (6) 

where the additive residuals n  represent the total uncertainty of data modelling.  

For modelling the dependence of the data on concentrations, the Lambert-Beer laws of 

absorption are used most frequently, viz. the relationship between  Trx  in (6) and the vector 

of concentrations  TJcc ...1c  is established, taking into account that the absorbance of a 

solution of a single compound is proportional to its concentration, and the absorbance 

spectrum of a solution containing J  compounds: 
 

      TrAb xx 10log  (7) 
 

is equal to the linear combination of the normalised absorbance spectra of those compounds 

    Ab
J

Ab xx ...,,1 : 

       Ab
JJ

AbAb xcxcx  ...11 .
 (8) 

 

The last three equations – (6), (7) and (8) – have to be discretised to become a useful basis 

for the development of numerical methods for estimation of concentrations. Thus, (6) is 

replaced with:  

 ηxGy  TrTr~
, (9) 

where:  TN ...1η , and:  

     TM
TrTrTr xx   ...1x   with   

1
1 minmax

min





M
mm




 
 for m = 1, …, M,   (10) 
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and G  is a rectangular matrix whose values depend on the values of the function  g  and on 

the chosen method of numerical integration. The discretisation of (7) and (8), consistent with 

(9), yields: 

        cXxxx
AbAb

JJ
AbT

M
TrTrAb ccxx  ...log...log 1110110  , (11) 

where: 

     TM
Ab
j

Ab
j

Ab
j xx   ...1x    for Jj ...,,1    and    TAb

J
AbAb

xxX ...1 . (12) 

The above-developed model of the relationship 
Tr

yc ~  characterises this relationship for 

one particular pair of c  and 
Tr

y~ . It should be generalised on the populations of possible 

vectors c  and 
Tr

y~  to make feasible the use of probabilistic tools of data processing. This is 

usually achieved by introducing random vectors (denoted hereinafter with underlined 

symbols) for modelling unknowns. The randomisation of the vector η , representative of 

modelling uncertainty, yields: 

 ηxGy  TrTr~
, (13) 

where  T
N

 ...
1

η . The model of the relationship between concentrations and absorbance 

spectrum, corresponding to (11), takes on the form: 
 

 εcXx  AbAb
, (14) 

where  TJcc  ... 1c  is the random vector modelling the concentrations to be estimated, 

 TM  ... 1ε  is the random vector modelling the residual spectrum corresponding to 

unexpected or neglected compounds, and CAT is the operator of absorbance-to-transmittance 

conversion: 

      TxxAbTTr

M

TrTr Ab

M

Ab

xx


 10  ... 10CAT  ... 1

1 xx . (15) 

 

The substitution of (14) to (15), and then of (15) to (13) yields a compact-form, discretised 

and randomised model of the data: 

     ηεcXGy  AbTr
CAT~

. (16) 

 

3.3. Inverse models of absorbance data 

 

The model of absorbance data, corresponding to (14) has the form: 
 

 

   ηεcXGy   AbAb
CATCAT~ 1

. (17) 

 

Its inversion with respect to c  yields a nonlinear function  ηεyc ,,~Ab
  which hardly 

can be used for spectrophotometric data processing. Fortunately, in the majority of practically 

important cases, it may be approximated by a known function linear with respect to unknown 

parameters P : 

  Pηεyc ;,,~ˆ Ab
  (18) 

 

or even with respect to 
Ab

y~  and to a residual vector  ηε,ρ  whose impact on c  is – 

according to some criteria – equivalent to that of ε  and η : 
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  ηεyPc ,~ ρ
Ab
 . (19) 

The matrix 
NJ

P  contains parameters which should be estimated during calibration of the 

ST. 

 

4. Spectrophotometric data interpretation 

 

4.1. Two principal approaches 

 

Any procedure of spectrophotometric data interpretation, aimed at estimation of 

concentrations, refers to a more or less complex mathematical model of the ST and related 

model of those data [119-120]. The identification of that model is the main objective of the 

ST calibration. There are two basic approaches of the problem of spectrophotometric data 

interpretation that imply substantially different solutions for calibration: the forward-model-

based approach (FMA) and the inverse-model-based approach (IMA). The first of them 

consists in identification of a forward model of the ST, i.e. in estimation of the parameters of 

an operator mapping the space of real-valued functions  c;x , or the space of vectors c , 

into the space of vectors 
Ab

y~ . The IMA is aimed at identification of an inverse model of the 

ST, i.e. at estimation of the parameters of an operator, mapping the space of vectors 
Ab

y~  into 

the space of real-valued functions  c;x  or the space of vectors c . In both cases, a set of 

reference data: 

  calcalAb
n

cal
n

cal ,N,,n, 21~~~ ,  ycD  (20) 
 

is necessary to attain the desired validity of the model. It should contain concentrations 
cal
nc~ , 

characterising reference samples used for calibration and measured by reference 

instrumentation, and the corresponding spectral data calAb
n

,~y  acquired by means of the 

calibrated ST.  

The estimation of the measurand c  according to the FMA consists in the direct use of the 

forward model defined by (17) or – much more frequently – of its linearised version. The 

corresponding calibration procedure is in this case limited to the estimation of the matrices G  

or H  and 
Ab

X  on the basis of the reference data acquired by means of the ST subject to 

calibration and by means of an ST of significantly higher resolution; if necessary, some a 

priori information (e.g. covariance matrices) characterising the random vectors ε  and η  or 

ηεH   is also extracted from those data. An estimate of the measurand c , corresponding to 

a vector of raw spectral data 
Ab

y~  is obtained by solving the following system of algebraic 

equations: 

    AbAb-
ycXG ~ˆCATˆCAT 1   (21) 

or: 

 
AbAb

ycXH ~ˆˆ  , (22) 

where Ĝ , Ĥ  and 
Ab

X̂  are the estimates of G , H  and 
Ab

X , obtained during calibration. The 

a priori information on ε  and η  or ηεH  , acquired during calibration, may be used for 

regularisation of that numerical problem. 

The estimation of the measurand c  according to the linear IMA consists in execution of 

the following operation: 
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Ab

yPc ~ˆˆ  , (23) 

where P̂  is an estimate of the matrix P , obtained during calibration as a regularised solution 

to the system of linear algebraic equations: 
 
 

 cal
n

calAb
n cyP ~~ ,     for 

cal,N,,n 21 . (24) 
 

If the concentrations of all compounds are to be estimated, then this system is given the 

form: 

 
calTcal

CPS
~~

 , (25) 

where: 

  TcalAb

N

calAb

NN

cal
cal

cal

,,
1

~~~
yyS 


   and    Tcal

N

cal

JN

cal
cal

cal
ccC ~~~

1 
 .

 (26) 

If the concentration of a selected compound, e.g. of the j th compound, is to be estimated, 

then that system of equations may be reduced to the form: 
 

    cal
j

T
j

cal
CPS
~

colcol
~

 , (27) 
 

where  jcol  is the operator of extraction of the j th column of a matrix. 

 

4.2. Methodological considerations 

 

From computational point of view, the key numerical problem – common for both 

approaches – is the necessity to solve a system of linear algebraic equations: bxA
~~

 , whose 

elements are defined by (22) in case of the FMA, and by (25) or (27) in case of the IMA. The 

uncertainty of the solution in both cases depends on the structure and properties of the matrix 

A
~

 and on the level of errors in the data A
~

 and b
~

 – the errors defined with respect to their 

hypothetical exact versions A  and b .  

In case of the FMA, the system is as a rule overdetermined because   JN A
~

dim  and 

the number of data representative of a single spectrum ( N ) is on the whole greater than the 

number of concentrations to be estimated ( J ). Since each column of the matrix A
~

 contains in 

this case the data representative of the spectrum of a single compound, the conditioning 

number of this matrix depends on the similarity of compound spectra: the more they differ, 

the smaller it is. The level of errors in the data A
~

 can be made negligible by repeated 

measurements of compound spectra and appropriate averaging included in the calibration 

procedure.  

In case of the IMA, the system is as a rule underdetermined because   NN cal A
~

dim  

and the number of data representative of a single spectrum ( N ) is on the whole greater than 

the number of reference samples used for calibration (
calN ) due to the high costs of their 

preparation. For the same reason, the reduction of errors in the data is more problematic than 

in case of the FMA. Consequently, both source errors and coefficients of their amplification 

are larger than in case of the FMA unless regularisation measures are applied. Moreover, the 

final result of measurand estimation is in case of the IMA subject to uncertainties inherited 

from the estimate P̂  of the parameters P  and from the raw data 
Ab

y~ . Despite all those 

apparent drawbacks, the IMA is more and more frequently applied due to its better robustness 

to the impact of deviations of the mathematical models – described in the previous sections – 

“from reality”. For this reason, the considerations to follow will be focused on the IMA-based 
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methods of spectrometric data processing. 

In most cases, the dimension of the vector c  (1-25) is significantly smaller than the 

number of the data in the vector 
Ab

y~  (200-1000) and the data corresponding to the neighbour 

wavelength values are highly correlated; they may be also correlated from one reference 

sample to another. This serial correlation decreases the apparent information in the data; but – 

if a method applied takes into account this serial correlation – it is possible to turn the 

correlation to a benefit by taking advantage of the redundancy. Therefore, a methodology for 

solving those problems, as a rule, comprises two steps: the compression of the data 
Ab

y~ , i.e. 

their transformation into an estimate yẑ  of a low-dimensional vector of informative 

parameters yz : 

 y
Ab

zy ˆ~   (28) 
 

and subsequent estimation of the concentrations on the basis of yẑ : 
 

 cz ˆˆ y . (29) 

The complexity of both steps depends on the number of informative parameters: the 

greater it is, the larger is the time required both for the ST calibration and for estimation of 

concentrations. The ST calibration, performed on the basis of the reference data 
calD

~
, is 

aimed at estimation of the parameters of the operator of data compression, defined by (28), 

and of the operator of measurand estimation, defined by (29), provided the structure of both 

operators is chosen in advance. A large variety of algorithms can be generated by combining 

various techniques of data compression with various techniques of estimation. The 

compression consists, as a rule, in the selection of the most informative among the parameters 

computed according to various principles, such as: projection of the data 
Ab

y~  on a set of 

linearly independent vectors; parameterisation of the data 
Ab

y~ , i.e. their approximation by 

means of a known function  yny z;ˆ   with unknown parameters yz ; estimation of the 

moments of 
Ab

y~ ; the estimation of latent variables, such as principal components. The first 

approach may be exemplified with the author’s recent paper [121], where a very simple and 

effective method of compression has been proposed, viz. the method which consists in 

multiplication of the vector 
Ab

y~  by a matrix 
NK

W  ( NK  ) whose rows contain Walsh 

functions.  

The most self-imposing tool for estimation of concentrations is a neural network being a 

universal approximator [122-123], but – for the reason of efficiency – multidimensional B-

splines and wavelet transforms are viable alternatives in many practical cases. Chemometric 

examples of the methods for selection of the most informative variables or elimination of non-

informative variables are provided in the references [124-127]. 

 

5. Calibration of spectrometric transducers 

 

5.1. Methodology of inverse-model-based calibration 

 

The univariate calibration is, by definition, related to modelling the dependence of the 

concentration of a single compound on a single spectral datum [128], [129, Section 5.2], 

while multivariate calibration might involve determining the measurand using the spectral 

data acquired for tens or hundreds of wavelength values. A general scheme of multivariate 

calibration, applied in practice, comprises the following steps: 
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 selection of the reference samples (mixtures) to be used for identification of the model; 

 acquisition and visual, or computer-aided [130], evaluation of the spectral data used for 

calibration, before and after preprocessing; 

 a first modelling trial to decide whether it is possible to attain the expected quality of the 

model and whether non-linearity should be introduced in this model; 

 iterative refinement of the model, e.g. by considering elimination of possible outliers with 

respect to the model, selecting the model complexity; 

 final validation of the model. 

The optimum complexity of the model, resulting from calibration, is a key issue. As the 

complexity of the model is increasing, the prediction error assessed for the data set 
calD

~
 is 

diminishing. To determine the optimum number of significant components in a series of 

spectral data, one may look at how the error is decreasing when that number is growing [131-

134]. By increasing the complexity of the model, one may reduce this error almost to zero, but 

at the same time – make the model produce artefacts when it is applied to unknown samples. 

The final validation of the model is an operation that consists in testing the prediction power 

of the chosen model: an additional set of data 
valD

~
, independent of 

calD
~

 but having the same 

structure, should be used for this purpose: 
 

  valval
n

val
n

val ,N,n, 1~~~
 ycD . (30) 

As already mentioned, the problem of estimation of the parameter matrix P  is numerically 

ill-conditioned because of the collinearity in the data matrix A
~

 [135]. Two kinds of measures 

are applied to remediate this difficulty, viz.: selection of samples and wavelength values used 

for calibration (which are discussed in the next subsection), and so-called soft modelling. The 

first step of the latter consists in expressing the data in terms of a new set of axes based on the 

different contributions to variation in the data. Most frequently, it is based on covariance in 

the data A
~

: a set of orthogonal components, the so-called latent variables, being linear 

combinations of the independent spectral data, is created to describe independent sources of 

the observed variations in those data. They are, as a rule, ordered in terms of the magnitude of 

the independent sources of variation that they explain: the first latent variable explains the 

largest independent source of variance in the data, the second latent variable – the second 

largest, etc. The second step in soft modelling is the elimination of non-informative latent 

variables. Generally, re-expression of the data A
~

 in terms of latent variables is not very useful 

unless a decision is made on the number of latent variables that are sufficient to adequately 

explain the systematic variation in the data A
~

. There are numerous references containing 

detailed reviews of the methodology and practice of soft modelling, both for experts and for 

beginners [136-138]. 

No single method for solving linear algebraic equations has turned out the best in all 

spectrophotometric applications. Sometimes, the simplest tool, i.e. the ordinary least squares 

(OLS) estimator is sufficient, much more frequently, however – more sophisticated one must 

be applied. Therefore, several alternative methods have been developed; among them the 

partial-least-squares (PLS) estimator is probably the most commonly acknowledged. It has 

gained much popularity among the researchers in chemometrics, and – consequently – has 

been enhanced and modified in various ways, including the incorporation of some 

nonlinearity and constraints, such as the positivity of spectral data and the positivity of 

concentrations of compounds [5-6, 9-10, 12-13, 21-22, 24, 26, 28, 35, 37-38, 42, 44-46, 52-

56, 61, 67-68, 71, 73, 77-79, 82, 84, 86, 88, 92-93, 101, 105-106, 108, 139-180]. The PLS 

estimator is a relatively complex (sophisticated) mathematical tool, both from logical and 

algorithmic point of view – see, for example, its traditional description in the handbooks [129, 
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Section 5.5], [181, Section 3.5], [182, Section 4.7] or its probabilistic interpretation in the 

paper [183]. Its widespread use is most probably motivated by the availability of numerous 

library procedures of PLS – such as those in the PLS_Toolbox by Eigenvector Research, Inc. 

[184] – rather than by the real need. As shown in a recent comparative study of five least-

squares estimators of concentrations [185], in many cases much simpler tools – such as ridge 

least-squares (RiLS) estimator, the total-least-squares (TLS) estimator or even the OLS 

estimator – may provide results of comparable metrological quality as those generated by the 

PLS estimator. The RiLS estimator has turned out in this study to be a real alternative for the 

PLS estimator since it provided better results than the latter in the middle-range values of 

concentrations. This is a one more confirmation for an earlier conclusion that it may be an 

effective remedy for numerical ill-conditioning of the parameter estimation problems [186–

187]; this conclusion applies even more to the generalised RiLS estimator where each variable 

gets a slightly different regularisation parameter [188].  

It should be noted that the linear-model approach may fail when considerably nonlinear 

relationships have to be taken into account. Numerous linearisation techniques have been 

proposed to deal with such situations: some of them work on the data and others work on the 

model or on some model parameters. In general, the artificial neural networks are natural 

tools for dealing with nonlinear models. They are used more and more frequently in 

spectrophotometric data processing, as a rule in combination with various data compression 

techniques, such as principal component analysis (PCA), to avoid excessive overfitting [189].  

 

5.2. Selection of samples and wavelength values 

 

The multivariate calibration requires standards, i.e. samples for which the estimates of 

concentrations, obtained by a reference method, are known. For the cost and/or time reasons, 

the number of such standards cannot be too large (usually not greater than 50 or 100). Since 

the model has to be used for the prediction on new samples, all possible sources of variation 

that can be encountered later must be included in the calibration data 
calD

~
. This means that 

the chemical compounds present in the samples to be analysed must be included in the 

samples used for calibration, and the range of variation in their concentrations should be at 

least as wide as that expected of the samples to be analysed. There is, however, a practical 

limit on what is available. It is, therefore, necessary to achieve a compromise between the 

number of samples to be analysed and the prediction error that can be attained. When it is 

possible to artificially generate a number of samples, experimental design can and should be 

used to decide on the composition of the calibration samples. In most cases only real samples 

are available, so that an experimental design is not possible. This is the case for the analysis of 

food products and ingredients.  

There are several strategies available for selection of the calibration samples representative 

of the problem to be solved. The simplest of them is random selection, but it is open to the 

possibility that some sources of variation may be lost. Another strategy refers to a priori 

knowledge about the problem under study: if all the sources of variation are known, then the 

calibration samples can be selected on the basis of that knowledge. A more detailed 

information on selection of samples may be found in the literature [34, 63, 190-191]. For each 

sample, the spectral data are recorded for many wavelength values. An important opportunity 

to improve the numerical conditioning of the estimation problem is the proper selection of 

those values. It can be based on a priori knowledge of the most informative wavelength 

values, derived from previous experience, or may be performed by means of special 

techniques of selection such as the stepwise OLS estimator. A more detailed information on 

wavelength selection may be found in the abundant literature [24, 35, 67, 107-108, 159-160, 

166-167, 175, 178, 180], [182, Section 4.5], [192-198]. 
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6. Preprocessing of spectrophotometric data 

 

6.1. Objectives of spectrophotometric data preprocessing 

 

The estimation of the concentrations, directly from the acquired spectrophotometric data, is 

in many practically important cases problematic due to instrumental imperfections of the ST 

and to some quantum phenomena in the analysed substance that produce blurring in the data 

representative of the measured spectrum. Both effects may be significantly reduced by means 

of the algorithms of deconvolution or generalised deconvolution. As a rule, those algorithms 

are designed and assessed using the criteria of the quality of deconvolution, which are not 

specific of spectrophotometry, such as the root-mean-square error of approximation. 

Consequently, the estimates of the concentrations, determined on the basis of the results 

produced by those algorithms, may turn out to be poor. On the other hand, the variational 

algorithms, used for estimation of concentrations, may be very inefficient if not provided with 

a good initial guess of the sought-for estimates [199].  

A significant improvement may be attained by taking into account that the positions of 

spectral peaks are carrying information on the compounds of the analysed substance, and the 

magnitudes of peaks – on their concentrations. In a series of the author's publications [200-

202], a methodology for estimation of the concentrations, on the basis of spectrophotometric 

data, has been developed – the methodology comprising the compression of spectral data to 

the estimates of the positions and magnitudes of spectral peaks, and qualitative identification 

of the compounds on the basis of those estimates. The ratio of compression attained in this 

way may be very high (100 or more); for example: 1024 data points representative of the Vis-

NIR spectrum of Satsuma mandarin may be replaced with 6 pairs of the coordinates of the 

most informative absorption peaks [69]. Not only parameters of spectral peaks, but also some 

other morphological features of the spectrum of an analyte may be used for identification of 

its contents. In the paper [203], for example, the concentrations are estimated using a 

procedure based on an assumption that the list of possible compounds is known a priori: first, 

the spectral data are twice differentiated and partitioned into segments along the wavelength 

axis; next, the presence or absence of the compounds from the predefined list is checked on 

the basis of the binary codes of the segments, using a neural network; finally, the 

concentrations are estimated on the basis of the data corresponding to the most informative 

parts of the spectrum, using another neural network.  

The main aims of spectrophotometric data preprocessing may be summarised as follows: 

 the elimination or suppression of those features of the spectral data that are not related to 

the concentrations; 

 the enhancement of those features of the spectral data that are carrying information on the 

concentrations; 

 the improvement of the resolution. 

Some methods of calibration, e.g. the PCA-based compression followed by the OLS 

parameter estimation, are derived or designed under an assumption that the mean of spectral 

data is zero and their standard deviation is equal to one. The application of those methods 

must be preceded by centring and scaling of spectral data. It should be, however, noted that, 

as shown in the author's recent paper [185], this standardisation may occur useless in other 

cases. 

 

6.2. Suppression of undesirable features of spectrophotometric data 

 

The first objective of data preprocessing is traditionally attained by reduction of noise 

present in the data, by elimination of the non-informative part of the spectrum called baseline 
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or background, and by elimination of outliers. More recent are methods for elimination of 

systematic variations in the spectral data, being not correlated to the concentrations, 

regardless of the nature of those variations: orthogonal signal correction [204] and pre-

whitening of spectral data by their covariance-weighted filtering [205]. 

The noise in spectral data is most frequently reduced by means of moving-window 

averaging filters [206], in particular – by means of the Savitzky-Golay filter [166, 175], [182, 

Section 7.2], [195]. Alternatively, it may be suppressed with the filters defined in the domain 

of the discrete Fourier transform or in the domain of wavelet transform [207-208]. Another 

way of reducing noise is the repeated acquisition of the data and their averaging [206]; the 

signal-to-noise ratio increases then with the square root of the number of data vectors. The 

tutorial information on the noise reduction in spectral data may be found in a series of internet 

papers [209], more advanced – in the Ph.D. thesis [210]. 

The baseline may be informally defined as a component of the data, slowly-changing with 

wavelength, whose subtraction from the data leaves spectral peaks placed at the zero level of 

intensity or absorbance. There are numerous heuristic methods for baseline subtraction, 

referring to this informal definition. For example: constant baseline differences can be 

eliminated by using offset correction (each vector of spectral data is corrected by subtracting 

either the absorbance value at a selected wavelength or the mean value in a selected 

wavelength range); the constant and linear components of the baseline may be removed by 

double differentiation of the data. Further examples may be found in the literature [211-215]. 

Outliers are extreme, very large or very small, measurement results. If they are retained in the 

data, one may falsely conclude that they do not follow a normal distribution. Among various 

ways for overcoming this problem, the simplest consist in removing the outliers, more 

advanced – in using special criteria for fitting a model.  

 

6.3. Enhancement of informative features of spectrophotometric data 

 

The second aim of data preprocessing is attained mainly by their numerical differentiation 

which is enhancing spectral differences. Both first and second derivatives are used, but the 

second derivative seems to be applied more frequently [182, Section 7.2]. An important 

drawback of the use of derivatives is the decrease of the signal-to-noise ratio implied by the 

amplification of noise (for that reason, smoothing is needed before differentiation). Another 

drawback is that models, obtained as a result of calibration, based on spectral data 

preprocessed by differentiation, are sometimes less robust to instrumental changes, such as 

wavelength shifts which may occur over time. The tutorial information on the methods of data 

differentiation may be found in the references [206, 216], while reviews of recent 

developments – in [210-211], and examples of applications – in [5, 45, 55, 66, 68, 71, 101-

102, 106, 166, 168, 170, 217-222]. 

 

6.4. Improvement of spectral data resolution 

 

If a method, used for estimation of the measurand c , is ignoring the limitations of the 

optical resolution of the ST, then the preprocessing of spectral data, increasing their 

resolution, may reduce the uncertainty of the estimates ĉ . This operation, called spectrum 

reconstruction, consists in estimation of the spectrum  x  on the basis of the data y~ . The 

convolution-type model of spectrometric data, defined by (6), and – consequently – the 

methods of deconvolution, may be used for this purpose. In the majority of practically 

interesting cases, the problem of spectrum estimation is numerically ill-conditioned, i.e. 

oversensitive to the errors in the data. Consequently, the direct numerical approach of (6) 

yields, as a rule, solutions buried in the noise “inherited” from the data with an amplification 
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coefficient reaching the values of hundreds, thousands or millions. Thus, the problem of 

spectrum reconstruction, although very simple from the logical point of view, is not trivial 

and far from being definitively solved in practice. Numerous sophisticated algorithms for 

dealing with it have been developed since 1931 when a first iterative algorithm of 

deconvolution for improving resolution of spectrometric measurements was proposed [118]. 

None of them, nevertheless, has turned out to be the best in all applications under all possible 

measurement conditions. Consequently, a complex methodology for solving problems of 

spectrum reconstruction has been developed, and comparative studies of the methods have 

been continually carried out [223-227]. This methodology refers to the idea of a numerical 

mechanism, called regularisation, that consists in modification of the initial problem in such a 

way as to make it less sensitive to the errors in the data.  

There are various general-purpose methods of regularisation – all consist in constraining 

the set of admissible solutions. They may be classified into the following groups: direct 

methods, variational methods, probabilistic methods, iterative methods, parametric methods, 

and transformation-based methods [113]. As a rule, the methods of reconstruction, met in 

practice, are combinations of some of these elementary methods of regularisation. The rapid 

increase in computing power available for dealing with practical tasks of measurement data 

processing has radically changed views on the applicability of various mathematical methods 

and algorithms for solving problems of spectrum reconstruction. The speed and accuracy of 

computing – offered by general-purpose computers, digital signal processors or even 

application-specific processors – make possible implementation of the algorithms which for 

decades have been considered too complex for practical applications. First of all, 

optimisation-based approaches of reconstruction problems have become very common. They 

produce efficient variational algorithms of calibration or reconstruction – due to the strong 

regularising properties, the possibility of combining all elementary mechanisms of 

regularisation, and the convenience of incorporating additional constraints of the set of 

feasible solutions, deduced from a priori information on the solution  x  and on the 

disturbances in the data y~ . A variational algorithm of spectrum reconstruction is a numerical 

implementation of the operation: 
 

 
         X   xxx x p̂ ;optargˆ J ,

 (31) 
 

where J  is a criterion of optimisation, and X  is a set of admissible solutions, defined on 

the basis of a priori information derived from physical or technical context of the 

measurement task under consideration. A key problem to be solved in this case is the choice 

of the criterion J  in such a way as to mathematically express our expectations concerning 

good spectrum reconstruction. 

 

7. Example: spectrophotometric analysis of wine 

 

Instruments, designed for measurement of ethanol concentration and sugar concentration in 

wine, were used by wine makers already in the first half of the XIXth century, and started to 

be their common tools after 1857 when Louis Pasteur explained the biochemical nature of 

fermentation. However, more complete analysis of wine had to wait ca. 100 years for the 

development of such modern analytical techniques as liquid chromatography and mass 

spectrometry. The time for spectrophotometry came by the end of the 1980’s. In 2006, this 

measurement technique was applied by a Japanese research team for prototyping a robot able 

to check whether the content of a bottle of wine corresponds to its label [228]. Automatic 

analysers of beverages, based on various measurement principles, had been known long 

before 2006, but that achievement opened a new chapter in their development since wine 
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testing is a task much more complex than testing of any other kind of alimentary product, 

especially when it is not limited to the differentiation between white and red wine or between 

French and Chilean Cabernet Sauvignon... A robot for wine testing is expected to confirm, 

with sufficiently low uncertainty, that the content of a bottle has all the features promised by 

its label, including the geographical origin and vintage of wine, the sort of grapes it has been 

made of, and the type of barrels it has been aged in. Of course, still much information will 

remain behind the scene: sensory properties of wine, identified by keepers using organoleptic 

means, and its chemical properties, identified by oenology expert equipped with sophisticated 

analytical instruments such as systems of liquid chromatography combined with mass 

spectrometry. 

For obvious economic reasons, the research progress in the domain of wine analysis is 

quite spectacular: the robot for checking bottles of wine may soon become an effective tool 

for fighting the fraud on the wine markets. A simple example is sufficient to show the 

financial dimensions of this social issue. Let's assume that 900 bottles of wine, priced EUR 20 

per bottle, has been mixed with 100 bottles of wine, priced EUR 5. The sale of 1000 bottles of 

this mixture, at the price of EUR 20 per bottle, will generate the gain of EUR 1 500! The 

detection of fraud by means of a robot will be much easier, quicker and cheaper than by 

means of the today's procedures referring to expensive and time-consuming laboratory 

analyses and experts' services. 

From chemical point of view, wine is a water solution of ca. 1000 organic and non-organic 

substances. The most important of them are the following: glycerol (ca. 7000 mg/l), fixed 

acids (ca. 6000 mg/l), phenols (ca. 1800 mg/l), minerals (ca. 1200 mg/l), sugars (ca. 750 

mg/l), amino acids (ca. 550 mg/l), higher alcohols (ca. 500 mg/l), volatile acids (ca. 400 

mg/l), sorbitol & mannitol (ca. 300 mg/l), sulfites (ca. 80 mg/l), acetaldehydes (ca. 70 mg/l) 

and esters (ca. 60 mg/l). Even this incomplete list of wine compounds enables one to imagine 

in how many parameters (variables) wines may differ, depending on their geographical origin, 

sort of grapes and technology used for their fabrication. The task to be performed by a 

spectrophotometric wine analyser (estimation of those parameters or recognition of a pattern 

they belong to) is extremely difficult because the spectra of very different wines may differ 

insignificantly. It may be successfully carried out only if very high requirements, concerning 

both metrological features of the ST and the in-built capacity to process the raw data, are 

satisfied.  

The progress in this domain is, thus, conditioned by parallel advancements of micro- and 

optoelectronics, on the one hand, and methods for measurement data processing, on the other. 

The corresponding research-and-development works are carried out by numerous academic 

and industrial centres employing biochemists and ecologists, as well as computer and 

measurements experts. As a rule, the industrial works are oriented on prototyping of complete 

wine analysers. Technical specifications of numerous examples of commercially available 

spectrophotometric wine analysers may be found in the internet [229]. The research works 

carried out by universities and other non-industrial institutions are, as a rule, oriented on 

solving selected problems related to partial analysis of wine rather than on the design of a 

complete analyser [2-26, 142, 230, 231-245]. A typical objective of such research works is to 

attain – by means of spectrophotometry – similar metrological outcomes as those attainable 

by means of expensive systems of liquid chromatography combined with mass spectrometry.  

The research works of this type are carried out by numerous institutions in the countries, 

traditionally involved in wine making and distribution (France, Greece, Italy, Spain, 

Portugal), as well as in Australia which has declared wine production as their national 

industry. China – after spectacular successes in some other domains of economy – is currently 

joining the league of mass producers of wine and investing in related research activities. 

Although the objectives of research works, carried out in various regions of the world are 
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similar, their motivation may differ. In the countries, traditionally associated with wine 

culture, the improvement of laboratory-dedicated techniques of analysis seems to be the main 

driving force. In the countries where industrial wine production is aimed rather than wine 

making (Australia, Brazil, China), the motivation of research works is related to the demand 

for automated monitoring of wine production at all its stages. The common motive is the need 

to counteract the adulteration of wine. The development of the analysers (robots) for this 

purpose may be based on two approaches: 

 the translation of spectral data into the language of wine contents, followed by the 

translation of wine contents into the language of wine labels; 

 the direct identification of wine on the basis of spectral data and appropriately compiled 

libraries. 

The latter approach requires concerted efforts of interdisciplinary teams of scientists 

(biochemists, mathematicians, metrologists) and practitioners (engineers and sommeliers) to 

“teach” the analysers (robots) the skills which are up to now reserved for human beings. 

Despite the fact, that many wine experts, especially in Europe, look with scepticism at all the 

efforts aimed at automatic wine testing, the intensive research works are going on and 

delivering many spectacular results. 

 

8. Conclusions 

 

The research problems related to the spectrophotometric analysis and testing of food 

ingredients and products – such as olive oil, cheese, grains, bread, meat, milk or chocolate – 

are approached in a similar way as those related to wine analysers and robots. The existing 

instruments are rather bulky (both in terms of external dimensions and mass), but their 

miniaturisation seems to be imminent due to the rapid advancements of micro-technologies 

applicable in spectrophotometry. The number of commercially-available miniature and 

relatively cheap spectrophotometric transducers has been growing quickly. Their dimensions 

are in the range of millimetres and – consequently – their metrological performance is on the 

whole far below that of laboratory instruments, but this deficiency may be at least partially 

compensated by sophisticated algorithms of measurement data processing.  

It seems very probable that the on-going progress in the domain of 

microspectrophotometry and measurement data processing will lead, in the perspective of a 

decade, to the widespread use of hand-held spectrophotometric analysers in food 

manufacturing and distribution, next – in restaurants, bars and private kitchens. 

The overview of the methods for spectrophotometric analysis of food, presented in this 

paper, is demonstrating richness and diversity of approaches and techniques used for solving 

relevant problems of food analysis. Although they have been studied mathematically for a 

long time, only recently they can find mass applications. Hence the motivation for further 

development of the methods and techniques for measurement data processing, dedicated to 

food analysis, including calibration of spectrophotometric transducers.  

The main trends involve generalisation of the existing methods towards problems 

described by more complex models of the object of measurement, spectral data and their 

relationship. Apart from the increased dimensionality, which is of crucial importance, the 

nonlinearity and nonstationarity of the models are to be considered. When looking to the 

future, one should also mention the methods of measurement data processing, which are 

already in use, but whose potential of applicability seems to be far from being exhausted, viz.: 

methods of time-frequency analysis, including wavelet transforms [32, 42, 77, 102, 107, 158, 

164, 198, 246], and Bayesian methods [180, 247-249] as means for preprocessing of spectral 

data and for calibration of spectrophotometric transducers. 
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