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Abstract 

For non-sinusoidal single-phase systems, the classical apparent power has been divided into various components 

using different techniques. These power resolutions generally aim at to provide a tool for the accurate 

determination of the maximum power factor achievable with a passive compensator and to measure the load’s 

nonlinearity degree. This paper presents a current decomposition-based methodology that can be employed for 

computationally efficient implementation of the widely recognized non-sinusoidal power resolutions. The 

proposed measurement method and the original expressions of the power resolutions are comparatively 

evaluated by considering their computational complexity. The results show that the proposed method has a 

significant advantage in terms of computational efficiency for the simultaneous measurements of the powers 

when compared with the original expressions. Finally, in this paper, a PC-based power meter is developed using 

the proposed measurement method via the LabVIEW programme. 
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1. Introduction 

 

The classical apparent power resolution, S
2
=P

2
+Q

2
, has long been employed to facilitate a 

tool for system’s efficiency improvement and sizing of the system equipment in sinusoidal 

single-phase systems. However, it does not fulfil the conditions caused by the presence of 

non-sinusoidal voltages and/or currents. Consequently, several power resolutions [1]-[7] have 

been proposed for non-sinusoidal systems to fill the gap left out in the classical apparent 

power concept. The power resolutions, which were proposed by Fryze [2], 

Shepherd&Zakikhani [3], Sharon [4], Kusters&Moore [5] and Czarnecki [6], are widely 

recognized and employed for the accurate determination of the maximum power factor 

achievable with passive compensators and to measure the load’s nonlinearity degree under 

non-sinusoidal conditions. In addition to that, several studies [8]-[11] investigated the 

physical meaning of these power resolutions via qualitative and/or quantitative analysis. 

On the other hand, in order to solve power quality problems, measurements of the power 

resolutions should be implemented before appropriate action on this matter is taken [12], [13]. 

Thus, for non-sinusoidal conditions, the studies on the implementation of the power meters, 

which can measure different power componentresolutions, were presented in [14]-[18].  

In this paper, a novel current decomposition-based method is proposed for the 

simultaneous measurements of the widely recognized power resolutions with improved 

computational efficiency. In addition to that, a PC-based power meter is developed using the 

proposed measurement method via LabVIEW programme [19]. It should be noted that this 

work was partly presented in [20].  
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2. Brief summary of the power resolutions 

 

One of the main frame works on the subject belongs to Fryze whose power resolution is 

based on a current separation, and has two orthogonal components, namely: active and 

reactive currents [2]. By using this current separation, he decomposed apparent power into 

active and reactive powers.  

In another study [3], Shepherd and Zakikhani proposed a power resolution by separating 

individually the current of common numbers of harmonics, which exist in both voltage and 

current, into two orthogonal components, namely; active and reactive currents. Their current 

decomposition’s third component, named as distortion current, can be observed if voltage and 

current have uncommon harmonic numbers. Thus, they decomposed apparent power into 

three components ie.; active apparent, reactive apparent and distortion apparent powers by the 

product of the RMS values of voltage and respective current components.  

In [4], Sharon further developed the resolution proposed in [3] by replacing active apparent 

power with active or average power and kept Shepherd&Zakikhani’s reactive apparent power 

as it is. The last component of his power resolution was named as complementary power. 

The reactive power components of Fryze, Shepherd&Zakikhani and Sharon can provide 

useful information on the optimum compensation capacitor with extra mathematical efforts. 

However, they do not directly give the power of an optimal compensation capacitor. 

Therefore, Kusters and Moore proposed a power resolution that provides the power system 

operator to determine if the possibility of improving power factor by means of shunt 

capacitance or inductance exists and to easily identify the proper value required to realize the 

maximum benefit [5].  Accordingly, they divided current into three orthogonal components 

i.e., active, reactive and residual reactive currents. Active current is in phase with voltage and 

reactive current is in phase with the derivative of voltage for the inductive loads. On the other 

hand, reactive current is in phase with the integral of voltage when the load is capacitive. 

Consequently, their power resolution was formed as the vector sum of active, reactive and 

residual reactive powers, which were defined as the product of RMS values of voltage and 

respective current components.  

Finally, Czarnecki’s work, which is one of the most important studies on the subject, was 

aimed to interpret the physical mechanism of the powers in non-sinusoidal conditions [6]. In 

his study, the current was separated into four components, namely; active, reactive, scattered 

and generated harmonic currents. Active and reactive currents occur due to the equivalent 

conductance and n
th

 harmonic susceptance of the load, respectively. In addition, scattered 

current is caused by the differences between n
th

 harmonic load conductance and load 

equivalent conductance, and generated harmonic current is the current component created by 

the harmonics that exist only in current not in voltage. As a result, his power resolution was 

formed as the vector sum of active, reactive, scattered and generated harmonic powers, which 

were defined as the product of RMS values of voltage and respective current components. 

For non-sinusoidal systems where voltage and current are written as; 

( ) ( )0 0 n2 2n n n n n

n N n N

v=V V sin ω t+θ ,        i=I I sin ω t+δ
+ +Î Î

+ +å å       (1) 

the expressions of above summarized power resolutions are given in Table 1. Table 2-Table 5 

show the numbers of operations that should be performed when the expressions presented in 

Table 1 are implemented for the simultaneous measurements of the power resolutions.  
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Table 1: Expressions of the power resolutions. 

 

 

 

 

 

 

Power 

Resolutions 
Active Components Reactive Components Distortion Components 

Fryze 
0 0 n

n N

P V I P
+Î

= + å
 

( )n n n n nP V I cos q d= -  

2

2
,n f

n N

P
V V   i i v

VÎ

= = -å
 

f f

2 2

Q VI

    S P

=

= -
 

- 

Shepherd&

Zakikhani 

r rS VI=
 ( )2 2

r n n n

n m

I I cos q d
Î

= -å  

 

m: Common harmonics of 

voltage and current. 

x xS VI=
 ( )2 2

x n n n

n m

I I sin q d
Î

= -å  
2 2 2

d r xS S S S= - -  

Sharon P Sx 
2 2 2

c xS S P S= - -  

Kusters& 

Moore 
P 

kus qcQ VI=
 

( )n n n n

n N
qc

2 2

n

n N

nV I sin

I
n V

q d
+

+

Î

Î

-
=
å

å
 

 

(for inductive loads) 

2 2 2

kusr kusQ S P Q= - -  

Czarnecki P 

Cz RQ VI=  
2 2

R n n

n m

I B V
Î

= å
  

n
n 2

n

Q
B

V
=

 

( )n n n n nQ V I sin q d= -  

Scattered Power: 

s sD VI=
 

( )2 2

s n e n

n m

I G G V
Î

= -å  

n
e n2 2

n

PP
G ,  G

V V
= =

 

 

Generated Harmonic 

Power: 

h hD VI=  
2

h n

n k

I I
Î

= å  

 
k : Current harmonic 

numbers do not present in 

the set of voltage harmonic 

numbers. 
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Table 2. The numbers of operations performed for the measurement of Fryze’s power resolution. 

 

 

 

 

 
Table 3. The numbers of operations performed for the measurement of the power resolutions of 

Shepherd&Zakikhani and Sharon. 

 

 

 

 

 

 
 

 

 

 

 

 Sum&Subtract Multiply&Dividing Square Root  Cos&Sin 

Fryze 

P 

K-1 for ( )n nq -d
 

K-1 for 

( )0 0 n n n n

n N

P V I V I cos
+Î

= + q -då
 

1 for 0 0V I
           

K-1 for n nV I  

K-1 for 

( ) ( )n n n nV I cos q -d  

- 

K-1 for 

( )n ncos q -d

 

Qf 

K-1 for 
2 2

n

n N

V V
Î

=å       

K-1 for 
2 2

n

n N

I I
Î

=å  

1 for 2 2 2

fQ S P= -  

K for 2

nV
   

K for 2

nI
    

1 for 2P  

1 for ( )( )2 2 2S V I=  

1 for 
2

f fQ Q=  - 

Sub Total 4K-3 4K+1 1 K-1 

 Sum&Subtract Multiply&Dividing Square Root Cos&Sin 

Shepherd&

Zakikhani 

2

rI

 

K-1 for 

( )2 2 2 2

r 0 n n n

n N

I I I cos
+Î

= + -å q d  

K-1 for ( )2

n ncos q d-
 

K-1 for 

( ) ( )( )2 2

n n nI cos q d-  

- - 

2

xI

 

K-2 for 

( )2 2 2

x n n n

n N

I I sin q d
+Î

= -å  

K-1 for ( )2

n nsin q d-
 

K-1 for 

( ) ( )( )2 2

n n nI sin q d-  

- 

K-1 for 

( )n nsin q -d

 

2

dI

 

1 for 
2 2

rI I-  

1 for ( )2 2 2 2

d r xI I I I= - -  
- - - 

Sr - 1 for ( )( )2 2 2

r rS V I=  1 for 2

r rS S=  - 

Sx - 1 for ( )( )2 2 2

x xS V I=  1 for 2

x xS S=  - 

Sd - 1 for ( )( )2 2 2

d dS V I=  1 for 2

d dS S=  - 

Sharon Sc 1 for ( )2 2 2 2

c xS S P S= - -  - 1 for 2

c cS S=  - 

Sub Total 2K 4K-1 4 K-1 
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Table 4. The numbers of operations performed for the measurement of Kusters&Moore’s power resolution. 

 
Table 5. The numbers of operations performed for the measurement of Czarnecki’s power resolution. 

 

 

 
 

 

 Sum&Subtract Multiply&Dividing Square Root Cos&Sin 

Kusters

&Moore 

Iqc 

K-2 for 

( )n n n n

n N

nV I sin
+Î

q -då
 

K-2 for 2 2

n

n N

n V
+Î

å  

K-1 for ( ) ( )( )n n n nV I sin q -d   

K-1  for ( )( )n n n nn V I sin q -d  

K-1 for 2n   

K-1 for ( )( )2 2

nn V   

 

1 for  

( )

2 2

n n n n

n N

qc

n

n N

nV I sin

I
n V

+

+

Î

Î

q -d
=
å

å
  

1 for 2 2

n

n N

n V
+Î

å   - 

Qkus - 1 for 
kus qcQ VI=  1 for  2V V=  - 

Qkusr 

1 for 

( )2 2 2 2

kusr kusQ S P Q= - -

 

1 for 2

kusQ   
1 for  

2

kusr kusrQ Q=  
- 

Sub Total 2K-3 4K-1 3 - 

 Sum&Subtract Multiply&Dividing Square Root  Cos&Sin 

Czarnecki 

2

RI   
K-2 for ( )22

R n n

n N

I B V
+Î

= å  

K-1 for 

( )( )
( )2

n n n n

n

n

V I sin
B

V

q -d
=

        

K-1 for ( )( )n nB V
 

K-1 for ( )2

n nB V
 

- - 

QCz - 1 for ( )( )2 2 2

Cz RQ V I=   
1 for 

2

Cz CzQ Q=   
- 

Ds 

K for ( )n eG G-  

K-1 for 

( )22 2

s n e n

n N

I G G V
Î

= -å  

1 for 0 0 0G I V=  

K-1 for 

( )( )
( )2

cosn n n n

n

n

V I
G

V

q -d
=

 

1 for 
2

eG P V=  

K for ( )2

n eG G-
 

K for ( )2 2

n e nG G V-  

1 for ( )( )2 2 2

s sD V I=  

1 for 

2

s sD D=  
- 

Dh 

1 for ( )2 2 2

CzS P Q- -  

1 for 

( )2 2 2 2 2

h Cz sD S P Q D= - - -  

- 
1 for 

2

h hD D=  
- 

Sub Total 3K-1 6K 3 - 
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In the tables, K and (K-1) are the numbers of voltage and current harmonics in N (natural 

numbers) and N
+
 (cardinal numbers), respectively. It can be seen from Table 2-Table 5 that 

for the simultaneous measurements of the power resolutions via their original expressions 

total numbers of sum&subtract, multiply&dividing, square root and cosines&sinus operations 

are 11K-7,  18K-1, 11 and 2K-2, respectively.  

In the next section, a novel current decomposition will be provided for the simultaneous 

measurements of the power resolutions with reduced computational efforts. 

 

3. Proposed method 

 

To derive the expressions of the novel current decomposition, which can effectively be 

employed for the simultaneous measurements of the widely recognized power resolutions, 

firstly the active current component (ia) is calculated: 

 

( )
a e

e 0 e n n n

n N

i =G v

  =G V + G 2V sin ω t+θ
+Î

å         (2) 

 

where  ( )2 2

0 0 cose n n n n n

n Nn N

G P V V I V I V
+ ÎÎ

æ ö
= = + q - dç ÷

è ø
å å  is the load’s equivalent conductance. 

 

In the second step, Kusters&Moore’s reactive current (iqc) is expressed: 

 

12
2

qc e n n n

n N

i nB V sin t
+Î

æ ö= + -ç ÷
è ø

å
p

w q        (3) 

 

using the fundamental harmonic equivalent susceptance (Be1) defined as,  

 

    

( )
e1

+ +

+ +

n n n n n

n N n N

2 2 2 2

n n

n N n N

nV I sin θ -δ nQ

B = =
n V n V

Î Î

Î Î

å å

å å
       (4) 

 

After writing active and Kusters&Moore’s reactive currents in terms of equivalent 

conductance and susceptance parameters, the current is separated into three components, 

namely; active, Kusters&Moore’s reactive and Kusters&Moore’s residual reactive (iqcr) 

currents: 

 

( )0 12
2+

e e n n n e n n n qcr

n N n N

i G V + 2G V sin ω t+θ nB V sin t i
p

w q
+Î Î

æ ö= + + - +ç ÷
è ø

å å      (5) 

 

On the other hand, by means of the dc conductance (G0), n
th

 harmonic conductance (Gn) and 

n
th

 harmonic susceptance (Bn); 

 

( ) ( )n n n n n n n n0
0 n n n 2 2

0 n n

V I cos V I sinI
G ,   Y G jB j

V V V

- -
= = - = -

q d q d

   (6)
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the current can be written as: 

 

( )0 0 2 2
2

n n n n n n n n

n N n N

i G V G V sin t B V sin t
p

w q w q
+ +Î Î

æ ö= + + + + -ç ÷
è ø

å å      (7) 

 

By equating the right hand sides of (5) and (7), the residual reactive current of 

Kusters&Moore (iqcr) is found: 

 

( ) ( ) ( ) ( )0 0 12 2
2

qcr e n e n n n n e n n n

n N n N

i G G V G G V sin t B nB V sin t
p

w q w q
+ +Î Î

æ ö= - + - + + - + -ç ÷
è ø

å å
   (8) 

It is seen from (8) that iqcr is the sum of two current parts: 

Czarnecki’s scattered current; 

( ) ( ) ( )s 0 e 0 n e n n n

n N

i G G V 2 G G V sin tw q
+Î

= - + - +å    (9) 

and a novel current component named as scattered susceptance current; 

 

( )ss n e1 n n n

n N

i 2 B nB V sin t
2

p
w q

+Î

æ ö= - + -ç ÷
è ø

å    (10) 

As a result, the current decomposition in the time domain is obtained: 

 

a qc s ssi i i i i= + + +        (11) 

Due to the orthogonality among four components of the proposed current decomposition, 

which was previously provided in [21], the rms value of total current can be written as: 

 

( ) ( ) ( )2 2 22 2 2 2 2

1 1

2 2 2 2 2

a qc s ss

e n e n n e n n e n

n N n Nn N n N

I =I +I +I +I

   G V nB V G G V B nB V
+ +Î ÎÎ Î

= + + - + -å å å å
    (12) 

In addition to the novel current decomposition given in (12), some cases should be considered 

to reduce computational efforts for the simultaneous measurements of the power resolutions: 

· Distortion apparent power (Sd) of Shepherd&Zakikhani’s resolution and generated 

harmonic power (Dh) of Czarnecki’s resolution are zero in practical systems due to the 

fact that the voltage and current should contain the same harmonic orders [10].  

· The reactive powers proposed by Shepherd&Zakikhani (Sx) and Czarnecki (QCz) give 

the same results due to the equality given in (13): 

( )2 2 2 2

n n n n nB V I sin q d= -        (13) 

· The power resolutions proposed by Czarnecki and Sharon are identical for the 

practical systems due to the fact that the scattered and complementary power 

components give the same results [10]. 
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Finally, by considering above mentioned cases and novel current decomposition, it can be 

concluded that the product of the RMS voltage with 

· active current (ia)’s RMS value gives the active or average power (P), 

· the vector sum of RMS values of the current components apart from active current 

gives the reactive power defined by Fryze ( fQ ), 

· the reactive current (iqc)’s RMS value gives the reactive power defined by 

Kusters&Moore ( kusQ ), 

· the vector sum of RMS values of the scattered (is) and scattered susceptance (iss) 

currents gives the residual reactive power defined by Kusters&Moore ( kusrQ ), 

· the scattered current’s RMS value gives the scattered power defined by Czarnecki 

( sD ) and the complementary power defined by Sharon ( cS ), 

·  the vector sum of RMS values of the reactive and scattered susceptance currents gives 

the reactive powers defined by Czarnecki ( CzQ ), Shepherd&Zakikhani and Sharon 

( xS ), 

· the vector sum of RMS values of the active and scattered currents gives the active 

apparent power defined by Shepherd&Zakikhani ( rS ). 

The numbers of the operations of the proposed current decomposition-based method, which is 

performed for the simultaneous measurements of the power resolutions, can be detailed as in 

Table 6. Thus, a comparison between the operation numbers of both methods is obtained in 

Table 7.  

Table 7. Comparison between the operation numbers of both methods. 

 
Sum&Subtract Multiply&Dividing 

Square 

Root 
Cos&Sin 

Original Expressions 11K-7 18K-1 11 2K-2 

Proposed Method 9K-7 14K+3 6 2K-2 

Difference 2K 4K-4 5 0 

It is seen from Table 7 that the numbers of cosinus and sinus calculations are the same in 

the both methods. On the other hand, the measurements based on the proposed method 

contain a smaller number of sum&subtract, multiply&divide and square root operations.  

Thus, it can be concluded that the proposed method can be used for the simultaneous 

measurements of the powers with less computational efforts when compared to the original 

expressions of the power resolutions. 

Due to the fact that the proposed power measurement method provides less computational 

complexity or requires a smaller number of operations, it can be clearly mentioned that the 

proposed one will present better performance than the original expressions from the point of 

view of measurement uncertainty. 
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Table 6. The numbers of operations of the proposed method for simultaneous measurements of the power 

resolutions. 

 Sum&Subtract Multiply&Dividing Square Root Cos&Sin 

G0 - 1 for 0 0 0G I V=  - - 

Gn K-1 for ( )n nq d-  

K-1 for ( )n nV I     

K-1 for ( ) ( )n n n nV I cos q d-     

K for 2

nV  

K-1 for 

( )( )
( )

n n n n

n 2

n

V I cos
G

V

q d-
=  

- 

K-1 for 

( )n ncos q d-

 

Ge 

K-1 for 
2 2

n

n N

V V
Î

=å  

K-1 for 

( )0 0 n n n n

n N

P V I V I cos
+Î

= + q -då
 

1 for 0 0V I
         

1 for 
2e

P
G

V
=  

- - 

Bn - 

K-1 for ( ) ( )n n n nV I sin q d-
      

K-1 for 
( )n n n n

n 2

n

V I sin
B

V

q d-
=  

- 

K-1 for 

( )n nsin q d-

 

Be1 

K-2 for 

( )n n n n

n N

nV I sin
+Î

q -då  

K-2 for 
2 2

n

n N

n V
+Î

å  

K-1 for 2n          

K-1 for ( )( )2 2

nn V
 

K-1 for ( )( )n n n nn V I sin q -d  

1 for 

( )
1 2 2

n n n n

n N

e

n

n N

nV I sin

B
n V

+

+

Î

Î

q -d
=
å

å
 

- - 

2

aI  - 1 for 2

eG
     

1 for 2 2 2

a eI G V=  - - 

2

qcI  - 

1 for 2

1eB  

1 for ( ) ( )2 2 2 2

1qc e n

n N

I B n V
+Î

= å  - - 

2

sI  

K for ( )n eG -G
  

K-1 for ( )2 2 2

s n e n

n N

I G -G V
Î

=å
     

 

K for ( )2

n eG -G
      

K for ( )2 2

n e nG -G V  
- - 

2

ssI  

K-1 for ( )n e1B -nB
 
  

K-2 for 

( )2

+

2 2

ss n e1 n

n N

I B -nB V
Î

= å  

K-1 for e1nB
             

K-1 for ( )2

n e1B -nB  

K-1 for ( )2 2

n e1 nB -nB V  

- - 

P - - - - 

Qf 2 for ( )2 2 2 2

f qc ss sI I I Ié ù= + +ë û  1 for ( )( )2 2 2

f fQ V I=  1 for 
2

f fQ Q=  - 

Sr 1 for ( )2 2 2

r a sI I I= +  1 for ( )( )2 2 2

r rS V I=  1 for 
2

r rS S=  - 

Sx= QCz - 1 for ( )2 2 2 2

x qc ssS V I I= +  1 for 
2

x xS S=  - 

Ds=Sc - 1 for ( )( )2 2 2

s sD V I=  1 for 
2

s sD D=  - 

Qkus - 1 for ( )( )2 2 2

kus qcQ V I=  1 for 2

kus kusQ Q=  - 

Qkusr 1 for 2 2 2

qcr s ssI I I= +  1 for ( )( )2 2 2

kusr qcrQ V I=  1 for 
2

kusr kusrQ Q=  - 

Total 9K-7 14K+3 6 2K-2 
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4. Demonstration of a PC-based power meter developed according to the proposed 

method 

 

For the proposed power measurement method, a computer (PC)-based power meter is 

developed by using LabVIEW programme. The LabVIEW block diagram, which runs on PC, 

is given in Fig. 1. This figure shows that the LabVIEW block diagram has a compact frame, 

which could be divided into two main parts related with the computations of the voltage and 

current harmonics and the measurement of the powers.  

 

Fig. 1. Designed LabVIEW block diagram for the simultaneous measurements of the power resolutions 

according to the proposed method. 

4.1. Demonstration system 

 

A picture of the system, which is used for demonstration of the developed PC-based power 

meter, is given in Fig. 2. The demonstration system consists of a PC, a programmable power 

supply, which is used for generation of a non-sinusoidal supply voltage, a data acquisition 

card and a load (RL impedance bank controlled by a dimmer circuit).  

 

Fig. 2. Picture of the demonstration system. 

 

4.2. Measurement results 

 

A randomly generated non-sinusoidal supply voltage and non-sinusoidal load current, 

which are used for the demonstration, have total harmonic distortion values measured as 15% 

and 25%, respectively. For the demonstration voltage and current, the power components’ 

values are calculated by using their original expressions (Table 8). Table 8 shows that Sd and 

Dh are zero for the demonstration case. It is also seen that Sx is equal to QCz, and Sc is equal to 
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Ds. For the same case, Fig. 3 shows the screen of the PC-based power meter, which is used for 

simultaneous measurements of the power resolutions according to the proposed method. One 

can see from Table 8 and Fig. 3 that the results of both methods are almost the same.  

Table 8. For the demonstration case, the power components’ values calculated by using the original 

expressions of the power resolutions. 

P     

(W) 

Qf 

(VAr)
 

Sr   

(VA)
 

Sx 

(VAr)
 

Sd   

(VA) 

Sc   

(VA)
 

QCz  

(VAr)
 

Ds 

(VA)
 

Dh 

(VA) 

QKus 

(VAr) 

QKusr  

(VAr) 

11213 8296 11430 7993 0.000 2221 7993 2221 0.000 7166 4179 

 

 

Fig. 3. Screen of the PC-based power meter for the demonstration case. 

 

5. Conclusion 

 

In this paper, a method is proposed to measure the widely recognized power resolutions 

with computational efficiency. It is mainly based on the division of the load current into 

orthogonal components, which are related to the equivalent conductance and susceptance of 

the load.  

The results of the complexity analysis point out that the proposed method has a significant 

advantage in terms of computational efficiency for the simultaneous measurements of the 

powers when compared with the original expressions of the power resolutions. In addition to 

that, for the proposed method a PC-based power meter is developed using the LabVIEW 

programme. Its measurement results for a demonstration case show that developed PC-based 

meter can effectively be employed for simultaneous power measurements in non-sinusoidal 

conditions.  
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