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Abstract 

The paper presents a new method for simultaneous tracking of varying grid impedance and its uncertainty 
bounds. Impedance tracking consists of two stages. In the first stage, the actual noise estimate is obtained from
least squares (LS) residua. In the second stage, the noise covariance matrix is approximated with the use 
of residual information. Then weighted least squares (WLS) method is applied in order to estimate impedance 
and background voltage. Finally uncertainty bounds for impedance estimation are computed. The robustness 
of the method has been verified using simulated signals. The proposed method has been compared to sliding LS. 
The results have shown, that the method performs much better than the LS for all considered cases, even in 
the presence of significant background voltage variations. 
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1. Introduction 

 
Central power plants are still dominant electric energy sources in most countries. However, 

increasing power demand and more frequent failures of power systems have forced electric 
engineers to consider new solutions like distributed power generation as well as to provide 
continuous grid monitoring and control. Simultaneous generation by many small energy 
sources (photovoltaic panels, wind turbines, etc.) as well as operation of sensitive loads 
require continuous monitoring of grid impedance at the point of common coupling (PCC) [1]. 
Such information allows us to detect faults and sudden changes in power demand. The nature 
of time variations of grid impedance can also be used for verification of flicker source 
localization methods, like the one presented in [2]. 

A number of methods for grid impedance measurement have been developed over the last 
20 years [3]. These can be generally classified as invasive or non-invasive [4, 5]. Invasive 
methods rely on controlled disturbance/excitation in a form of current pulses injection [6, 7] 
or utilization of converter switching noise [8, 9]. Thus they usually offer higher accuracy, 
when compared with non-invasive ones. On the other hand, their use is limited to low voltage 
grids and the locations where the power electronic converters are installed. Continuous 
tracking of time varying impedance using invasive methods may be problematic, especially in 
grids of medium or high voltage levels, due to the requirement of continuous, high-power, 
controlled disturbance [10]. Non-invasive methods are better suited for impedance tracking, 
because they use only natural customer side variability as the source of excitation [11, 12, 13]. 

The biggest disadvantage of non-invasive methods is the fact, that they do not ensure the 
credibility of the result, because they rely on a natural, uncontrollable variability of a grid. 
Moreover, the uncertainty of the results is a varying quantity due to varying properties of the 
excitation and the impact of background voltage variations. Therefore, the estimation                   
of instantaneous uncertainty of impedance tracking results is a desired feature of a tracking 
methods. 
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The authors propose a new method for simultaneous tracking of varying grid impedance 
and its uncertainty bounds.  

 
2. Power system model 
 

The grid seen from the PCC can be modelled as Thevenin or Norton circuit [13],                      
the former being usually used to model the grid side containing fundamental frequency 
voltage source. One-phase Thevenin/Norton equivalent power grid model shown in Fig. 1                          
is considered in the paper. 

 

 

Fig. 1. Power system model. 

 
According to the model shown in Fig. 1, complex voltage V for a given frequency                       

(e. g. fundamental one) can be computed as:  

 IZEV −= , (1) 

where I is complex PCC current, Z is complex impedance of the grid to be estimated and E              
is complex background voltage of equivalent source. 

The only measurable quantities are voltage V and current I. Due to unknown value of E, 
the estimation of the unknown Z requires solving the system composed of at least two 
equations (1) containing two different pairs V and I. The source of excitation is the variation 
of the customer side parameters, i.e. ZC and/or IC, which impacts values V and I. Assuming 
invariance of Z and E during the experiment and having sufficient number of complex data 
samples of V and I containing load variations, one can estimate Z and E using the LS method 
[13].  

Assuming that the measurement noise is a) complex normal i.i.d (independent, identically 
distributed), b) additive to the output signal of the object (the voltage V in this case), c) not 
correlated with the input (the current I in this case), the LS is minimum variance unbiased 
(MVU) estimator [14]. 

The biggest problem is that such assumptions are hard to meet in a real power system. 
Variations of impedance Z are rather slow and periodical [13]. Magnitude of source voltage 
E can change frequently, usually in a step manner, which can result from e.g. automatic 
voltage regulation (AVR) systems [5]. All these facts violate the assumptions of the MVU LS 
estimator. 

Complex samples of V and I are usually obtained from time domain signals using Discrete 
Fourier Transform (DFT) [15, 16]. DFT may be computed recursively using sliding window 
techniques [17]. Main problem associated with computing DFT of power grid signals is its 
spectral leakage resulting from varying fundamental frequency of the grid. In order to avoid 
the leakage, sampling rate has to be synchronized with the actual voltage frequency, prior              
to the DFT computation. It can be realized by means of hardware sampling synchronization 
[18, 19] or software resampling methods [20, 21, 22]. In case of nonsynchronously sampled 
signals, what is common in phasor measurement units (PMUs), interpolated DFT methods can 
be used [23]. There are also adaptive filtering methods, which allow for direct calculation               
of leakage-free complex samples of V and I from nonsynchronously sampled time domain 
signals like Kalman filtering [24, 25] or phase locked loop (PLL) based [26]. 
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3. The proposed Algorithm 
 

Assuming two complex unknown quantities Z and E in (1) are fixed within single 
estimation, they can be calculated by solving at least two complex equations (1).  

Output samples V contain unknown measurement errors ε. Thus, the equation (1) has to be 

extended by adding measurement noise (time index is dropped due to clarity):  

 ε++−= EIZV . (2) 

The reduction of noise impact is possible by collecting L measurements of Vl and Il and 

solving a system of L equations:  
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which can be rewritten in a matrix form:  

 εXΘY += , (4) 
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For now, we assume that errors vector ε contains only complex measurement noise                    
ε resulting from sampling, quantization, electromagnetic interference, etc. According to the 
central limit theorem, the propagation of time domain measurement noise through relatively 
long DFT results in complex normal i.i.d noise [27]. Thus complex measurement noise 
variance σε

2
 can be evaluated on the basis of measurement system parameters, such as ADC 

resolution and range, measurement transformer ratio and DFT length. 
The solution of (4) may not exist in a classical sense due to noise, but one can solve                  

the system in the least squares sense by minimizing the sum of squared differences between 

the model and the object outputs [14]:  

 εεXΘYXΘYΘ
HH

J =−−= )()()( , (5) 

where superscript 
H
 denotes conjugate transposition of a matrix. The LS solution of (4) is:  

 YXXXΘ
HH 1)(ˆ −

= . (6) 

If the assumptions of the MVU LS estimator are fulfilled, then the uncertainty                       

of the estimator can be evaluated in terms of its covariance matrix:  

 12

,
)()ˆcov()( −

=== XXΘP
H

jip ε
σ , (7) 

which gives us values of variances (diagonal elements) and covariances (off-diagonal 

elements) of estimates Ẑ  and Ê . Then standard uncertainty of Ẑ  is ( ) 1,1ˆ
ˆ pZu

Zc
==σ . 

The estimation (6), (7) can be performed sequentially (sliding LS) in order to track slowly 
varying grid impedance together with its uncertainty. It can give accurate results under                
the assumption of local invariance of estimated parameters within estimation window.  
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Unfortunately, rapid variations of unknown background voltage E violate this assumption. 
They result in degrading impedance estimation accuracy and make its standard uncertainty 

( )Zu
c

ˆ  strongly underestimated. 

However, we can split background voltage E into two components: constant component    

E‒, which is a mean value of E within single data window, and varying (disturbing) 

component E~, such that E=E~+E‒. Then (2) can be rewritten in the following form:  

 ε+++−=
− ~

EEIZV , (8) 

which modifies vector ε in the following way:  
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The feature of LS estimator is that in case of variations of an estimated parameter within 

data window, its expected value is equal to the mean value of the parameter within data 

window [14]. This trait of LS estimator causes that using (4), in fact, we get [ ]TE
−

=
ˆ ẐΘ̂ . 

Thus, we can estimate disturbing component E~ together with the noise ε in a form of residual 

vector:  

 ˆˆ
∧

= + = −
~

ε E ε Y XΘ . (10) 

It can easily be shown that a step change in background voltage during single data window 
of L samples results in a complex bimodal distribution with much higher variance than the 
variance σε

2
 of noise ε only (see Fig. 2). A rough method for extending the underestimated 

uncertainty uc(Z) to a reasonable level could be the use sample variance ( )ε̂var  of residual 

vector as the measurement errors variance  σε
2
 in (7). However, it can also be noticed, that in 

case of a step change of E~ consecutive samples of ε̂  are not strictly random and are strongly 
correlated with each other. This fact prompted us to use the weighted least squares (WLS) 
method as a second step of the proposed estimation procedure. 

 

Fig. 2. Exemplary histogram of complex disturbing voltage E, containing step change from                                  
90+j10 V to 94+j12 V located in the middle of data window length. 

 

The WLS estimate of unknown parameters vector Θ is given by:  

 ( ) YWXXWXΘ
111

W
ˆ −

−
−

=
HH

, (11) 

where W is a weighting matrix, which allows to put more emphasis on some measurements 
with respect to others, as well as to include information about the correlation between noise 
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samples. Optimal weighting matrix W is equal to unknown covariance matrix C of the noise ε 
[27]. The problem is that noise ε is unknown and its statistical properties can change with 
time between consecutive data windows of the sliding estimator because of nonstationary 
component E~. Moving the analysis window along the data may cause unknown noise ε to be 
perceived as a correlation process, which is quite common e.g. in econometric analysis.                  
It means that complex sample εl,m with a fixed position l within m-th data window of the 
length L is correlated with sample εl,m+i at the same position l in successive realizations i = 1, 
2, ...  of sliding data window. This phenomenon is depicted in Fig. 3. 

 

Fig. 3. Successive realizations of residual vector including step disturbance in E~ while moving data window 

along the signals. Strong autocorrelation as well as zero mean of residuals is visible. 

 
This fact allows us to approximate noise covariance matrix C in each realization from                  

a single realization of residual vector ε̂  as a matrix containing its shifted biased 

autocorrelation function estimates (Toeplitz structure) [28]:  
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where 
s

â  is autocorrelation function estimate of residual vector ε̂  for lag S. Due to zero mean 

of the residual vector ε̂ , autocorrelation estimate can be replaced with autocovariance 

estimate given as:  

 ∑
−

=
+

=

1

0
ˆˆ

1
ˆ

L

l slls

L
a εε . (13) 

Thanks to conjugate symmetry of autocorrelation function we can write *
ˆˆ
ss

aa =
−

. Such 

a form of weighting matrix W is a rough approximation of the actual noise covariance matrix 
(Fig. 4), but it can significantly improve tracking performance, which is shown in section 4. 

 

Fig. 4. Actual covariance matrix computed during pass of step disturbance E
~
 through whole data window                  

vs. covariance matrix estimated using (12). All axes scaled in values of lag s. 
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Finally, the uncertainty of the WLS estimator can be evaluated from its covariance matrix:  

 ( ) ( ) ( ) 11

WWW

ˆcov
−

−

=== XWXΘP
H

i,jp . (14) 

Standard uncertainty of grid impedance estimation can be computed as:  

 ( )
11W

ˆ
,c

pZu = . (15) 

Having grid impedance estimate Ẑ , as well as its standard uncertainty ( )Zu
c

ˆ ,                        

its confidence interval is given by:  

 ( ) ( )ZkuZZUZ
c

ˆˆˆˆ ±=± , (16) 

where ( )ZU ˆ  is expanded uncertainty and k is an coverage factor, i.e. the number, by which the 

standard uncertainty should be multiplied in order to ensure that true impedance value lays 
within the confidence interval with given probability [29]. k value depends on probability 

distribution of a random variable Ẑ  as well as on requested confidence value. In general,           

the probability distribution of Ẑ  is unknown, but for most of the time, when no jumps              
of E exist within data window, it will be close to complex normal distribution. Thus, we 
choose k = 2, which gives  confidence in case of normal distribution. 

Summarizing, for n-th time instant grid impedance estimate ( )nẐ  is computed with its 

confidence interval using L newest samples 
nLn
VV ,...,

1+−
 and 

nLn
II ,...,

1+−
 in a following steps:  

1. Vector [ ]TÊ Ẑˆ
=Θ  is calculated using (6). 

2. Current noise realization ε̂  is estimated using (10). 

3. Autocovariance estimates 
s

â of residua are calculated using (13) for 1,...,0 −= Ls . 

4. Noise covariance matrix estimate Ĉ  is built as (12). 

5. New estimates 
W

Θ̂  of grid impedance and background voltage are calculated using WLS 

(11), substituting Ĉ  for W. 

6. Covariance matrix PW of the WLS estimator is calculated using (14), for CW ˆ
= . 

7. Standard uncertainty ( )Zu
C
ˆ  is calculated using (15). 

8. Confidence interval is calculated according to (16). 
 

4. The results 
 

 The performance of the proposed algorithm was evaluated by means of tracking                   
of simulated grid impedance variations in the Matlab environment. In order to show 
superiority of the algorithm, its results were compared to those obtained using the classic            
LS algorithm [13, 30]. 
 
4.1. Test cases 

 
Simulation study included 16 test cases, each of which had different set of parameters 

describing grid side variations E(n), Z(n) and customer side variations IC(n), ZC(n), where n is 
time index. Each test consisted of simulation of a grid model from Fig. 1 and calculation of          
� = 1440 complex samples V(n) and I(n) of voltage and current at PCC, with the rate of one 
sample per minute. Grid model parameters E(n), Z(n), IC(n), ZC(n) were described by                   
a general complex exponential form M(n)·e

jA(n)
, where M(n) is the magnitude and A(n) is the 

angle. Time variations of magnitudes and angles of E(n), Z(n), IC(n), ZC(n) were obtained            

by modulating base magnitudes M, MZ, 
CI

M , 
CZ

M  and base angles AE, AZ, 
CI

A , 
CZ

A  

respectively with deterministic or randomly varying terms.  
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Time variations of Zn were obtained using deterministic sine and cosine terms. Time 

variations of E(n), IC(n), ZC(n) were obtained using random series ( )nR
CMZ

, ( )nR
CMA

, 

( )nR
CMI

, RME(n), RAE(n), which were independent of one another and had uniform 

distributions in the range of [-1;1]. ( )nR
CMZ

, ( )nR
CMA

, ( )nR
CMI

 took new random value                   

at each time instant n, what resulted in frequent changes of IC(n), ZC(n), however the angle                  
of IC(n) was fixed. The series RME(n), RAE(n), which were responsible for the shape                         
of magnitude and angle of E(m), were piecewise constant. Each of them contained only                     
30 random changes within whole � samples long simulation. Time points at which random 
changes occurred were drawn from all � possible time points. They were distributed 
uniformly within the whole simulation time, giving average distance of  samples between 
consecutive random changes, which is less than estimator window length L = 60. In some                
of test cases, the magnitude of voltage E contained additional significant step distortion 

( ) ( ) ( )
21

11 nnnnnS −+−−=  for n1=600, n2=1000, where 1(ni) is Heaviside step function                 

at time instant ni. An exemplary realization of E(n) is shown in Fig. 5.  

 

Fig. 5. Exemplary realization of |E(n)| variations in VSE case. 

 
The resulting level of variability of magnitudes and angles of E(n), Z(n), Ic(n), Zc(n) in 

each test case was controlled by values of multipliers DMZ, DAZ, 
cMZ

D , 
c

AZ
D , 

cMI
D , DME, DSE, 

DAE, which scaled the depth of modulation of base magnitudes and angles. 
Formulas which were used to generate complex values of grid model parameters E(n), 

Z(n), Ic(n), Zc(n)  are given in Tab. 1. 
 

Table 1. Components of simulated signals. 

Parameter Magnitude [Ω, A, V] Angle [°] 
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Time series of complex PCC voltage V(n) and complex PCC current I(n) were calculated 

for each test case according to the assumed power system model (Fig. 1):  

 ( ) ( ) ( ) ( )[ ]
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Each test case was a combination of the following three sub-cases: 
a) Variations of background voltage E(n): 

CE – an ideal case of constant E(n), obtained by setting DME = 0, DSE = 0, DAE = 0; the 
only source of errors is variability of Z(n); 

CSE – constant E(n), except for  step distortion, obtained by setting DME = 0, DSE = 0.01, 
DAE = 0; 

VE – variable E(n) containing random variations of magnitude and angle in ranges                 
of ±0.25% ME, ±0.5° AE obtained by: DME = 0.0025, DSE = 0, DAE = 0.5 / 360; 

VSE – variable  E(n), same as VE case, containing additional 1% ME step distortion, 
obtained by: DME = 0.0025, DSE = 0.01, DAE = 0.5 / 360; 

b) Type of grid side impedance Z(n): 

IZ – mainly inductive type impedance Z defined by its base phase angle: AZ = 70°; 
RZ – mainly resistive type impedance Z defined by its base phase angle: AZ = 30°; 

c) Load side variability: 

HI – high load side variability defined by modulation depths of random variations of Zc 

and Ic: 2.0=
c

MZ
D , 25.0=

c
IZ

D ; 

LO – low load side variability defined by modulation depths of random variations of Zc  

and  Ic : 1.0=
c

MZ
D , 125.0=

c
MI

D ; 

Other parameters had common values across all cases. They had base magnitudes and 

angles ME =25kV, MZ = 1Ω, 
c

Z
M = 25 Ω , 

cZ
A = 70°, 

c
I

M = 400A, 
c
I

A = 0° and modulation 

depths DMZ = 2%, DAZ = 5%, 
c

AZ
D = 20%. 

 
4.2. Evaluation of the WLS algorithm  
 

For each test case, R=100 repetitions of tracking were performed. Each repetition was 

conducted for a different set of random series ( )nR
CMZ

, ( )nR
CMA

, ( )nR
CMI

, ( )nR
ME

, ( )nR
AE

. 

Confidence intervals, calculated for assumed extension factor k = 2, were validated for 

each realization and each time point, by checking whether true impedance value lays within 

confidence interval. The results ( )nẐ  of tracking varying Z(n) were delayed by the half of 

estimator window length L with respect to Z(n) variations. Therefore, in order to eliminate the 

impact of that delay for confidence intervals validation, true impedance values were delayed 

accordingly. Taking this delay into account (shift by L/2 samples), confidence interval 

validation test condition takes the following form:  

 ( ) ( ) ( ) ( )ˆ ˆ

2

L
Z n U n Z n Z n U n

 
− < + < + 

 
. (19) 

The result of delaying actual impedance values by L/2 samples is visible in Fig. 6. 

 

Fig. 6. Exemplary realization of impedance magnitude tracking (black) with standard uncertainty interval (red) 
plotted for VSE-IZ-HI case. Significant increase in uncertainty appears close to step disturbances in |E(n)|. 
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From Fig. 6 it can be seen, that impedance estimates, shifted by L/2 samples, are consistent 
with instantaneous values of actual sinusoidally varying impedance. 

For each test case, the percentage number of total WLS hits, i.e. the number of true 
impedance values falling within confidence intervals, was calculated. WLS hits are given                
in Tab. 2. The hits vs time for the selected case are shown in Fig. 7. 

 
Table 2. Relative number of WLS hits. 

E Z 
Load 
var. 

abs(Z) 
[%] 

real(Z) 
[%] 

imag(Z) 
[%] 

CE 

IZ 
LO 99.82 98.33 97.50 

HI 98.32 92.18 89.50 

RZ 
LO 99.93 95.18 98.80 

HI 99.27 82.24 94.71 

CSE 

IZ 
LO 99.69 97.47 97.45 

HI 98.00 91.78 88.56 

RZ 
LO 99.89 94.65 98.39 

HI 98.37 83.05 92.74 

VE 

IZ 
LO 98.51 93.45 93.16 

HI 95.78 87.98 83.58 

RZ 
LO 98.60 92.19 93.80 

HI 95.67 84.28 86.08 

VSE 

IZ 
LO 98.55 93.30 93.42 

HI 95.72 88.20 83.05 

RZ 
LO 98.70 92.08 93.98 

HI 95.16 84.87 85.12 

Average: 97.84 89.66 91.08 

 

 

Fig. 7. Percentage of hits of impedance values into confidence intervals from all realizations for VSE-IZ-HI case. 

 
The comparison of the WLS method (10) to the LS method (7) is done by calculation               

of root mean squared errors (RMSE) and maximum errors (MAXE) of tracking                           

of Z magnitude and angle. The errors were calculated using following formulas:  

 ( ) ( )∑ ∑
= =

∆=∆
R

r

�

n
nr

R�
RMSE

1 1

2

,
1

, (20) 

 ( ) ( )( )nrMAXE
nr

,maxmax ∆=∆ , (21) 

where ∆(r,n) could either be the error of impedance magnitude or angle estimation i.e. 

( ) ( ) ( )nZnrZnr −=∆ ,ˆ,  or ( ) ( )( ) ( )( )nZnrZnr arg,ˆarg, −=∆  respectively. Index r denotes                    

the number of impedance tracking repetition (realization), while index n denotes time within 
single realization. RMSE and MAXE errors are given in Tab. 3. 
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Table 3. Total errors of impedance magnitude and angle estimation. 

Case Magnitude Angle 

E Z 
Load 
var. 

RMSE [%] MAXE [%] RMSE [°] MAXE [°] 

LS WLS LS WLS LS WLS LS WLS 

CE 

IZ 
LO 0.17 0.03 0.94 0.18 0.09 0.02 0.52 0.15 

HI 0.10 0.03 0.62 0.20 0.07 0.02 0.45 0.16 

RZ 
LO 0.33 0.04 2.20 0.33 0.18 0.04 1.23 0.36 

HI 0.16 0.04 1.13 0.43 0.15 0.05 1.05 0.36 

CSE 

IZ 
LO 0.92 0.23 48.11 13.99 0.57 0.13 25.65 6.23 

HI 0.57 0.19 31.31 8.44 0.35 0.11 17.19 4.64 

RZ 
LO 1.08 0.23 43.84 10.58 0.65 0.16 26.12 7.74 

HI 0.75 0.24 35.31 9.71 0.33 0.11 11.63 5.25 

VE 

IZ 
LO 1.43 0.41 20.56 8.99 0.79 0.23 9.91 4.39 

HI 0.90 0.32 14.21 4.86 0.49 0.18 7.76 2.56 

RZ 
LO 1.50 0.42 19.64 8.48 0.87 0.25 11.02 5.48 

HI 1.00 0.36 14.59 5.17 0.51 0.19 5.74 2.62 

VSE 

IZ 
LO 2.07 0.56 45.21 12.44 1.17 0.32 24.69 6.47 

HI 1.30 0.46 25.98 11.26 0.73 0.26 16.43 6.15 

RZ 
LO 2.18 0.57 42.31 11.54 1.25 0.35 26.49 7.22 

HI 1.53 0.54 31.41 12.06 0.66 0.24 11.92 4.42 

 
4.3. Discussion of the results  

 

It can be seen from Tab. 2 that derived confidence intervals, for empirically chosen 
extension factor k = 2, contain about 98% impedance magnitude estimates from all test cases. 
Even for the worst case, i.e. VSE-RZ-HI, more than 95% of magnitude estimates fit within 
confidence intervals. For real and imaginary part of tracked impedance, not less than 80%              
of results fit the intervals. It can be noticed that in general the number of hits is higher for 
lower load variance. It is a result of narrowing of the confidence interval with the increase               
of excitation level, which in this case is the variance of current I in matrix X. 

It is worth to mention, that such results are obtained using actual impedance values delayed 
by L/2, which is possible only in offline analysis, e.g. so called post-mortem analysis 
commonly performed after significant power grid failure. For real-time analysis, one has to 
accept the delay resulting in estimator bias, so the number of hits can be lower, depending               
on tracked impedance dynamics. Tracking delay is however an inherent feature of each other 
tracking estimator. 

The results of comparison of the WLS and the LS shown in Tab. 3, prove that the WLS            
is much more accurate than the LS. Impedance tracking errors (both RMSE and MAXE)                 
of the WLS are about 3 to 4 times smaller than those of the LS for all considered cases.                 
An example of performance of the WLS and the LS methods is shown in Fig. 8. 

 

Fig. 8. Comparison of WLS and LS results for VE-IZ-HI case. The WLS method tracks varying                         
impedance with significantly smaller errors than the LS method. 
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It should also be noticed, that calculated standard uncertainty uC(n) varies depending on 
local disturbance (see Fig. 6) and excitation level (e.g. higher load variance, better excitation, 
greater confidence of the result, narrower confidence interval). Thus, its values can be used to 
reject uncertain results. 
 
5. Conclusion 

 

The paper presents a new method for tracking varying grid impedance together with its 
confidence intervals. The robustness of the method was verified by means of simulation                   
of 16 test cases, showing accuracy 3 to 4 times better than that of the LS [13, 30]. Estimated 
confidence intervals, for k = 2, contain about 98% of impedance magnitude estimates, even in 
the presence of significant background voltage variations. Thus, the proposed method can be 
successfully used for estimation of varying grid impedance together with its accuracy 
measure. Possible applications of the method are: scheduling of distributed power generation  
or offline (post-mortem) case study after power grid failures. 

Further research plans include tracking of impedance of laboratory power system model, 
which has been built at AGH-UST as well as tracking of impedance of the University power 
grid. Additional analysis of measurement errors as well as of the background voltage 
distortion on the performance of the method is also planned. 
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