
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.24 (2012), no. 3
pp. 205–225

DOI: 10.2478/v10179-012-0013-4

On the optimization of the inter-flow fairness in the Internet
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Abstract: All known active queue management algorithms invented to provide fair bandwidth allo-
cation between TCP flows are designed to cooperate with the classic TCP congestion control (New Reno).
However, some new congestion control schemes are becoming more and more popular nowadays (e.g. the
Cubic algorithm). Therefore, the following question arises: will these fair queue management algorithms
work well in the presence of a new congestion control scheme? To answer this questions, we present a
comprehensive study of the performance of seven fair queue management algorithms in the presence of
seven TCP variants. In particular, the fairness index, queue size and throughput were measured in scenarios
with diversified RTTs, traffic patterns and congestion levels. Not only do the results allow us to answer
the aforementioned question, but also to formulate recommendation on how to provide the best cross-layer
fairness optimization in the Internet.

Keywords: fairness, active queue management, congestion control

1. Introduction

It is widely recognized that the common combination of the Internet congestion con-
trol mechanism with the router queueing algorithm, that is the New Reno mechanism
with the drop-tail FIFO queue, does not provide a fair division of the bandwidth at bot-
tleneck links. In particular, connections with long RTTs do not get their fair shares of
the throughput. Moreover, the aforementioned mechanisms are vulnerable to attacks of
misbehaving flows that do not obey common congestion control rules.

The presented unfairness problem has been addressed from two distinct perspectives.
On one hand, more fair variants of the TCP congestion control algorithms have been
proposed. For instance, the Hybla TCP [1] achieves the fair bandwidth allocation by
means of overcompensation of the congestion window for connections with long RTTs.
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The Cubic TCP [32] improves the inter-flow fairness by using the real time (rather than
the RTT cycles) for the evolution of its congestion window.

On the other hand, there has been a lot of researches on how to provide the fairness at
the network level. Several fairness-driven active queue management (AQM) algorithms
were proposed (see [3] for an excellent survey of them). They use a wide range of
techniques to decide which flow is using more bandwidth than its fair share is and drop
more packets belonging to this detected flow. In some algorithms (e.g. CHOKe [4])
there is no explicit detection of flows consuming too much bandwidth – the balance
between the bandwidth consumption is maintained automatically due to ingenious queue
management algorithm.

Now, it must be stressed that most of the previous studies were focused on one type
of solution only, i.e. either on the network layer (AQM) or at the transport layer (TCP
congestion control). When a new AQM was proposed, it was tested with the classic
congestion control (New Reno or, rarely, Sack). Similarly, after a new TCP variant was
invented, it was evaluated with the classic queue management (drop-tail FIFO queue).
In this paper we present a study of the interactions between the TCP congestion control
mechanisms and the active queue management algorithms. To the best of our knowledge,
this is the first study of this type. In particular, we demonstrate the influence of the
newest Cubic TCP on the fairness provided by several AQMs, designed with New Reno
congestion control in mind. Moreover, basing on the large number of simulation results
we formulate recommendation on the best way to optimize inter-flow fairness using both,
network and transport layer solutions.

To achieve these goals, we built a simulation setup with diversified propagation de-
lays and traffic types. Then, we applied seven AQMs and seven TCP variants in this
setup and checked the resulting performance in three different congestion levels (this
made 147 distinct simulation scenarios in total). In each simulation scenario we ob-
served the inter-flow fairness index (Jain’s index), the per-flow throughput, the aggre-
gated throughput and the bottleneck queue size. Among many TCP variants described
in the literature, we chose seven that are actually implemented in modern operating
systems and commonly used: New Reno, Sack, Fack, Vegas, Westwood, H-TCP and
Cubic. As for the fair AQMs, we chose all the algorithms that have publicly available
code, namely CHOKe, SFB, CARE, RED, FRED, SRED and DT.

As regards the related work, the closest to our paper is [5]. The authors propose a
network rate management protocol (RMP) which, among other things1, computes the
target rates for a new TCP sliding-window-based congestion control algorithm. There-
fore, each TCP flow can adapt its window size to achieve the RMP suggested fair band-
width share. The authors tested the new solution by means of simulation of a network
comprising 74 core links and up to 768 flows, each using its own access link. They also

1The RMP protocol has also QoS-oriented functionalities and has been used in several QoS architectures
– see [6,7,8] for more details.
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carried out an actual implementation in the Linux kernel and performed experiments in a
WAN testbed network with six routers and long haul links running UDP flows and TCP
flows of different types. The obtained simulation and experimental results are very good.

The main difference in comparison with our paper is that [5] proposes a new com-
prehensive solution with new protocols at the network and transport layer, designed to
cooperate with each other. We on the other hand use the well-known algorithms (many
of them already widely used), and try to find a combination that solves the unfairness
problem. Naturally, a clean-slate solution enables obtaining better results, but it is also
harder in actual deployment.

Other two papers that are close to our study are [9] and [10]. In both of them interac-
tions between AQM algorithms and different TCP variants are studied as well. However,
only the general-purpose AQM algorithms are used there. In this paper we deal with dif-
ferent type of active queue management schemes – only the algorithms supporting the
inter-flow fairness are considered. Moreover, we evaluate the cooperation between the
AQM and TCP from this perspective (i.e. with fairness in mind).

All the conclusions drawn in this paper are based on simulation results. We did not
attempt mathematical analysis of the interactions between the aforementioned TCP vari-
ants and AQM algorithms due to the following reason. The AQM and TCP mechanisms
studied herein have typically a complex structure which is hard to mimic using solvable
mathematical models. Even the widely disputed RED algorithm has no good and solved
models. Some attempts to analyze RED, e.g. [11,12,13], are based on significant simpli-
fications2 and therefore their applicability is limited. Furthermore, some AQMs studied
herein are much more complex than RED. For instance, CHOKe has a built-in RED as a
part of its functionality. Now, the situation considered herein is even worse than in a pure
AQM study. To obtain analytical results we would have to combine the AQM models
with TCP models (also far from perfect), and solve the resulting combined models. This
seems to be far beyond the reach.

The remaining part of the paper is structured as follows. In Section 2, the fairness-
driven AQMs are presented. Section 3 describes the TCP congestion control algorithms
used in the paper. In Section 4, the details of the scenarios used in simulation experi-
ments are given. Then, in Section 5, the simulation results are presented and discussed.
Finally, in Section 6 the conclusions are gathered.

2. The queue management algorithms

The active queue management schemes can be classified in several ways. As the
network performance can be described by various characteristics (e.g. throughput, queue

2For instance, non of the aforementioned RED models take into account the moving average of the
queue size, which is crucial for the proper operation of a real RED router.
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size, fairness), different AQM algorithms are focused on optimizing one or more of these
characteristics. In this paper we deal with fair AQM schemes, that is with schemes that
focus on providing the best possible inter-flow fairness.

The fair AQMs can be further divided into three categories. Some schemes, like Fair
RED (FRED) [14], Longest Queue Drop (LQD) [15], or Balanced RED (BRED) [16],
consume lots of memory, as they require to store all per-flow information. Therefore
their scalability is limited. Stabilized RED (SRED) [17], Capture-Recapture (CARE)
[18], and Blacklisting unresponsive flows (BLACK) [19], are examples of AQM mecha-
nisms estimating the number of active flows instead of storing full per-connection infor-
mation. Naturally, this approach is more efficient and decreases the memory consump-
tion by far. Algorithms belonging to the last group are less resource consuming – they
don’t even require to estimate the number of active flows. Examples of such schemes are
Random Early Detection (RED) [20], Stochastic Fair Blue (SFB) [21], and CHOKe [4].

2.1. Drop tail queue

Drop Tail (DT) is the only algorithm used herein, which is not in fact an active
queue management scheme. It appears in this paper because it is still the most popular
algorithm implemented by router vendors. The operation of DT algorithm is very simple:
if the queue is full, incoming packets are dropped, otherwise packets are accepted. All
packets are treated with the same priority and there is no distinction between packets
coming from distinct flows.

2.2. Random Early Detection

This is the widely known AQM that is able not only to reduce the queue sizes and
desynchronize TCP flows but also it deals surprisingly well with the fairness issue. The
idea behind Random Early Detection (RED) [20] is to calculate the average queue length
each time a packet arrives and decide randomly whether to drop the packet. The larger
the average queue length is, the bigger the probability of dropping the incoming packet.
RED introduces two additional parameters: maximum and minimum threshold. If the
average queue length is less than minimum threshold the packet will be enqueued with
probability 1. Similarly, if the average queue length is bigger than maximum threshold,
the packet will be dropped with probability 1.

As far as fairness is concerned, such approach is much better than simple tail drop
procedure because it does not discriminate short lasting connections. It drops packets
randomly almost all the time which results in bigger probability of dropping packets
from the more active connections.
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2.3. Fair RED

FRED [14] is a modification of RED algorithm created to further improve the fair-
ness among different flows. For each flow it stores the queue length (qlen) as well as
the number of times the flow does not respond to congestion (strike). Such information
is sufficient enough to decide whether to drop a new incoming packet belonging to a
given flow. Two additional parameters are available: minq and maxq. By using minq

it is possible to specify the minimum buffer space equally, what helps low-speed flows.
maxq on the other hand is responsible for limiting very fast flows. Finally, to man-
age unresponsiveness, flows with high strike value cannot exceed the average per-flow
queue length.

FRED is the only algorithm examined in this article that requires information on the
queue size assigned to every flow.

2.4. Stabilized RED

Another modification of RED algorithm is the Stabilized RED [17]. In contrast to
FRED, it does not require full per-flow state information, so its memory usage is lower.
The idea is to estimate the number of active flows by maintaining a data structure called
zombielist. Such structure contains information about M recently arrived packets with
their Count as well as timestamps. When the zombielist is full, new packets are
compared with a randomly chosen entry from the zombielist. If they belong to the
same flow, the Count variable is increased. Otherwise, the randomly chosen entry is re-
placed with certain probability p ("hit") and obviously the zombielist is left unchanged
with probability of 1 − p ("no hit"). This information allows to estimate the number
of active flows as well as identify mis-behaving flows without maintaining all per-flow
information. Using this information the probability of dropping incoming packet pzap is
calculated as follows:

pzap = psred(q)×min

(
1,

1
(256× P (t))2

)
×

(
1 +

Hit(t)
P (t)

)
,

where:

psred(q) =





pmax if 1
3B ≤ q < B,

1
4 × pmax if 1

6B ≤ q < 1
3B,

0 if 0 ≤ q < 1
6B,

Hit(t) =
{

0 if no hit,
1 if hit,

P (t) – the hit frequency at the time of t-th packet,
q – the current SRED queue length,
B – the buffer size.
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SRED seems to be really good modification of RED scheme. The drawback of this
approach is that it is assumed that all flows have the same intensity. However, the authors
of SRED showed several points where the algorithm could possibly be improved.

2.5. Capture-Recapture

CARE algorithm [18] is another example of AQM which estimates the number of
active flows. It uses Mh CR Model (see [22]) in conjunction with Jackknife estimator
to compute the fair share and the actual sending rates. After these values are calculated,
CARE can drop packets from flows which occupy more than the fair share value.

Because CARE algorithm performs a lot of calculations, it is not a good choice
for fast network nodes. Moreover, to achieve best results CARE has to capture large
amount of data. Having in mind that there are no methods employed for freeing up
memory, the space complexity may also become a serious problem. The advantage of
CARE is that it uses an original (taken directly from the biological science) idea for the
estimation process. It is also possible that some optimizations may reduce its time and
space complexity.

2.6. CHOKe

CHOKe algorithm [4] is also an extension of Random Early Detection scheme. It
is basing on a simple but ingenious idea. Algorithm 1 presents the way of operation of
CHOKe AQM. The most important part (not present in RED algorithm) is implemented
in lines 5 to 8.

It can be easily noticed that unresponsive flows will usually have more packets in
a standard FIFO queue than the others. Thus the probability of choosing a packet be-
longing to a misbehaving flow is greater. This is why the newly arrived packet is being
compared with a random packet from the queue. If they both belong to the same flow
they are dropped to penalize the unresponsive flow.

The drawback of the basic version of the algorithm is that its quality deteriorates
with growing number of flows. To handle multiple flows, the authors propose choosing
several drop candidates for one arriving packets, depending on how large the average
queue size is. This makes the algorithm more powerful with not to much computation
overhead.

2.7. Stochastic Fair Blue

SFB [21] main goal is to distinguish and penalize unresponsive flows. It uses a set
of hash tables for identifying each flow. When a packet arrives, its flow identifier is
hashed by all hash functions incrementing the appropriate element in all hash tables.
The higher the element of some table is, the higher its dropping probability pm gets. The
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Algorithm 1 CHOKe
1: Arriving packet q
2: if avgq ≤ minth then
3: Enqueue packet q
4: else
5: Draw a random packet qrandom from queue
6: if Flow(q) = Flow(qrandom) then
7: Drop both packets
8: else
9: if avgq ≤ maxth then

10: Enqueue packet q with probability p
11: else
12: Drop packet q
13: end if
14: end if
15: end if

final value of dropping probability for an incoming packet is the minimum value of pm

corresponding to that packet from all tables.
SFB can deal quite well with the fair bandwidth division, but again, its performance

depends strongly on the number of flows, number of hash tables and hash function gen-
eration scheme. Generally, it will work properly for a small number of flows. With
an increasing number of flows the probability of mis-identifying a responsive flow in-
creases as well. However, with good selection of parameters, SFB may come with very
satisfactory results.

3. TCP congestion control algorithms

The base TCP standard described in RFC793 does not provide any congestion con-
trol mechanism. To avoid the congestion collapse, [23], it was necessary to introduce
modifications so that the transmission rate would be adjusted to the network condition.
Beginning with the TCP Tahoe algorithm [24] which was the first solution employing
well-known modes like Slow Start, Congestion Avoidance and Fast Retransmit, the TCP
congestion control mechanism has evolved throughout the years and many different so-
lutions have been proposed. In this article, we focus on seven TCP variants, namely:
New Reno, Sack, Fack, Vegas, Westwood, H-TCP and Cubic. This set consists of algo-
rithms that are actually implemented in modern operating systems and commonly used.
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3.1. TCP New Reno and Sack

These are classic and most popular variants of the TCP protocol. Their properties
and performance are well known and were described in a large number of papers and
books (e.g. [25,26,27]).

3.2. TCP Vegas

TCP Vegas was proposed in [28] as an alternative to TCP Reno. The main difference
is that Vegas uses the changing value of Round-Trip Time as an indication of congestion
instead of a packet drop (as TCP Reno and its descendants do).

3.3. TCP Westwood

TCP Westwood [29], was proposed as a sender side modification to the TCP New
Reno algorithm. It enables better bandwidth utilization by allowing faster recovery in
large pipes. The sender maintains the available bandwidth estimate (BWE) and basing
on this estimate sets the congestion window and slow start parameters.

3.4. TCP Fack

After defining the selective ACKs, another variant of TCP congestion control mech-
anism, called Forward Acknowledgments, has been proposed [30]. This approach uses
the information about delivered packets to detect losses and to control transmission rate
accordingly, without employing Reno’s fast recovery.

To control the transmission rate Fack maintains three parameters: R – number of
retransmitted packets, F – the forward-most received packet and H – the highest packet
sent. These parameters can be used to approximate number of packets sent which are
not yet delivered as H − F + R. Finally, this value is used by Fack algorithm to decide
how much data can still be send.

Experiments have proved that Fack outperforms Reno and New Reno in recovery
from errors. This is the reason why Fack algorithm is being widely used all over the
world and has been included to the Linux kernel beginning with version 2.1.92. The
Fack algorithm was the default Linux TCP until the kernel 2.6.19.

3.5. H-TCP

One of several high speed TCP variants is H-TCP [31]. It has been implemented in
Linux 2.6 kernels as an optional module. In contrast to BIC or HS-TCP, after a packet
loss, it increases its aggressiveness with time. This allows to utilize high-speed links and
additionally increases the fairness somewhat. The latter effect is connected with the fact
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that the rate increase does not depend on window size what makes new flows achieve
their fair bandwidth share faster.

3.6. TCP Cubic

Since the kernel 2.6.19, the Cubic algorithm [32] is the default Linux TCP variant. It
is an extension of TCP BIC [33] which is supposed to improve fairness and simplify the
BIC window control. As most high-speed implementations of TCP, Cubic modifies the
well-known Tahoe window function with a function which utilizes the bandwidth faster.
It uses a cubic function of time elapsed since last packet loss:

Wcubic = C(t−K)3 + Wmax,

with
C – scaling factor,
t – real time elapsed since last window reduction,
Wmax – window size before last reduction,
K = 3

√
Wmaxβ/C,

β – constant multiplication decrease factor.
This function was chosen because of its stability and scalability. Basing on real time

instead of RTT makes the algorithm independent and TCP-friendly for both short and
long RTT paths.

4. Experimental setup

All experiments described in this study were performed using ns-2 simulator ver.
2.34, on a dumb-bell topology with a single bottleneck link between two routers (see
Fig. 1). The propagation delays N1-RA, . . . , RB-N6 are taken from the TCP evaluation
suite [34]. The resulting delays of nine possible transmission paths, N1-N4, . . . , N3-N6,
are supposed to mimic delay distribution in the Internet. Both routers A and B use the
AQM scheme being investigated. All links in the topology have the capacity of 100Mb/s.

Fig. 1. Experimental topology with one-way propagation delays
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Because we used AQMs, relatively small buffers (of the size of 10% of the
Bandwidth-delay product) were used.

Three congestion scenarios, depending on the number of flows, were simulated:

• Uncongested link scenario: 10 flows,

• Mild congestion scenario: 100 flows,

• Heavy congestion scenario: 1000 flows.

As it was said, there are nine paths, N1-N4, N1-N5, . . . , N3-N6, in the presented
topology. Now, all the simulated connections were uniformly distributed among them.
It means that in the heavy congestion scenario, there were 111 flows on every path
(one remaining flow was assigned randomly to one of the paths). Similarly, in the mild
congestion scenario, there were 11 flows on every path, etc.

To simulate the real Internet traffic, different types of data transfers were simulated,
including traffic characteristics induced by the application level (HTTP-like short flows
and FTP-like long flows). Namely, in each simulation 90% of all flows were TCP flows
sending 1500B packets. Furthermore, 25% of these were short-lived flows which were
starting randomly according to the Poisson process with rate of 0.125, 1.25 and 12.5 in
the heavy congestion, mild congestion and uncongested network scenario, respectively.
Every such short flow was transferring a small file of Pareto-distributed size (with aver-
age avg=50kB and shape α=1.3). The rest of 1500-byte-packet flows were long-lived
flows which transmitted continuously during the whole simulation time. Remaining 10%
of all flows were TCP flows sending smaller, 536B, packets.

To make the simulation realistic, it is important to introduce the reverse traffic.
Therefore, 10% of the total bandwidth available was used for the UDP (CBR) traffic
in the backward direction.

The simulations lasted for 100s but the first 30s were used for stabilization. All
measurements were taken from the 30-th second of the simulation.

All the parameters of the AQMs and TCP variants used were set for the default,
recommended by their authors values. We did not manipulate these parameters at all.
Naturally, it is possible to obtain better results in some scenarios by a proper tuning of
some AQM and TCP parameters. However, such tuning often causes deterioration of the
performance in other scenarios.

5. Results

Now the results can be presented and discussed. Firstly, the Jain’s fairness index is
presented in Tab. 1 (exceptionally good results are printed in green bold font, exception-
ally bad results are printed in red italic font). We see at once that the best results were
obtained using Cubic algorithm. Only a bit worse results are produced using H-TCP.
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AQM
algo-
rithm

Flows
count

TCP
New
Reno

TCP
Sack

TCP
Fack

TCP
Vegas

TCP H-
TCP

TCP
West-
wood

TCP
Cubic

DT
10 0.88 0.82 0.85 0.80 0.88 0.79 0.91
100 0.83 0.83 0.84 0.84 0.88 0.71 0.88
1000 0.84 0.84 0.80 0.80 0.79 0.76 0.80

RED
10 0.83 0.87 0.84 0.67 0.96 0.81 0.98
100 0.93 0.92 0.89 0.93 0.98 0.87 0.95
1000 0.92 0.93 0.92 0.92 0.92 0.91 0.92

SRED
10 0.75 0.75 0.80 0.79 0.93 0.79 0.92
100 0.89 0.87 0.89 0.87 0.92 0.86 0.92
1000 0.88 0.89 0.86 0.87 0.89 0.87 0.86

FRED
10 0.81 0.84 0.89 0.83 0.82 0.75 0.84
100 0.85 0.80 0.82 0.82 0.86 0.72 0.86
1000 0.87 0.87 0.86 0.86 0.85 0.83 0.84

CHOKe
10 0.81 0.89 0.82 0.79 0.87 0.89 0.96
100 0.89 0.88 0.86 0.89 0.94 0.84 0.94
1000 0.94 0.93 0.91 0.93 0.93 0.88 0.93

SFB
10 0.88 0.86 0.82 0.86 0.88 0.65 0.90
100 0.85 0.83 0.83 0.83 0.81 0.54 0.80
1000 0.88 0.88 0.86 0.87 0.86 0.86 0.86

CARE
10 0.89 0.92 0.92 0.92 0.95 0.86 0.96
100 0.94 0.93 0.94 0.94 0.93 0.88 0.94
1000 0.84 0.84 0.81 0.83 0.80 0.79 0.82

Table 1: Fairness index (Jain’s index). In green bold font – results at least four percent better than the average of the row.
In red italic font – results at least four percent worse than the average of the row.

The advantage of these two TCPs is more visible in low and moderate congestion sce-
narios. The improvement offered by Cubic and H-TCP is significant. Even an increase
of the fairness index by 5 percent is makes a difference, while we can observe an in-
crease by as much as 31 percent in some cases (e.g. RED+Vegas vs RED+Cubic in the
low congestion scenario).

The fairness can be also studied using detailed per-flow characteristics. Namely, in
Figures 2-7 the throughput of every distinct flow is presented in six selected scenarios. In
order to demonstrate the dependence on the RTT, the flows are sorted with respect to the
path propagation delay, which varies from 0.067s to 0.165s. Naturally, the flatter each
graph is, the fairer bandwidth division it represents. In Figs. 2 and 3 we can compare
the fairness of the RED+New Reno configuration with the RED+Cubic configuration.
We see at once, that the RED+Cubic case is fairer. What is more, in the RED+Cubic
case the dependence of the per-flow throughput on the RTT is rather weak, while in
the RED+New Reno we can see a strong, almost linear dependence. Similarly, in the
mild congestion scenario (e.g. Figs. 4 and 5 for the CHOKe algorithm), applying Cubic
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Fig. 2. The per-flow throughput in the RED+New Reno configuration in the uncongested scenario. The
number assigned to each flow denote the propagation delay (in seconds) of the path that the flow used

(in other words, it is RTT/2)

Fig. 3. The per-flow throughput in the RED+Cubic configuration in the uncongested scenario

Fig. 4. The per-flow throughput in the CHOKe+Fack configuration in the mild congestion scenario
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improves the fairness and reduces the dependence on the RTT. However, in the heavy
congestion scenario such an improvement is not observed (compare Figs. 6 and 7 for the
FRED queueing).

Finally, note that from Tab. 1 it follows that the three most fair configurations are
RED+H-TCP, RED+Cubic and CHOKe+Cubic.

Fig. 5. The per-flow throughput in the CHOKe+Cubic configuration in the mild congestion scenario

Fig. 6. The per-flow throughput in the FRED+Sack configuration in the heavy congestion scenario

Now we should check other than the fairness index characteristics. In Tab. 2 the total
throughput achieved at the bottleneck link is shown. Generally speaking, configurations
with H-TCP, Westwood and Cubic perform significantly better than others. For low and
mild congestion levels, this improvement can sometimes be dramatic, compared with
New Reno (e.g. the throughput can be doubled, like in the SRED+Cubic configuration
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Fig. 7. The per-flow throughput in the FRED+Cubic configuration in the heavy congestion scenario

vs SRED+New Reno configuration). This effect can be further observed in Figs. 8 and
9. We see that by applying Cubic not only we improve the fairness (flatter graph) but
also the total throughput (the points are higher on the graph).

Taking only the total throughput into account, we see that the best configurations
are: CHOKe+Westwood, RED+Westwood and CHOKe+Cubic. If we compare this with
three most fair configurations, i.e. RED+H-TCP, RED+Cubic and CHOKe+Cubic, we
see that the only configuration that provides fair bandwidth share and high bandwidth
utilization at the same time is CHOKe+Cubic. Therefore it can be recommended as the
best configuration among all considered in this paper.

Fig. 8. The per-flow throughput in the SRED+Sack configuration in the uncongested scenario

This result is most likely caused by the fact that both algorithms, Cubic and CHOKe
have built-in mechanisms supporting fairness and high bandwidth utilization at the same
time. Firstly, due to usage by Cubic of the real time instead of send-ACK cycles, the
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AQM
algo-
rithm

Flows
count

TCP
New
Reno

TCP
Sack

TCP
Fack

TCP
Vegas

TCP H-
TCP

TCP
West-
wood

TCP
Cubic

DT
10 37.23 52.55 46.48 51.97 96.59 73.03 86.43
100 93.22 96.15 96.45 96.78 94.73 99.98 99.48
1000 99.98 99.96 99.97 99.97 99.99 99.99 99.98

RED
10 98.00 98.58 97.80 99.88 90.96 99.97 99.50
100 98.18 98.28 98.95 99.92 96.10 99.95 92.78
1000 99.97 99.87 99.71 99.15 99.78 99.48 99.95

SRED
10 42.34 48.52 52.38 65.32 70.05 95.26 86.30
100 85.25 86.70 85.68 86.66 92.87 99.85 93.81
1000 99.97 99.91 99.31 99.64 99.90 99.81 99.97

FRED
10 17.40 21.30 20.79 28.42 55.26 72.01 54.68
100 76.25 79.05 80.37 85.89 92.28 97.41 92.59
1000 99.38 99.16 99.07 99.08 99.04 98.83 99.46

CHOKe
10 91.17 86.96 96.79 93.14 83.33 99.92 97.66
100 98.28 98.53 98.97 99.66 96.25 99.96 99.76
1000 99.95 99.95 99.79 99.99 99.99 99.98 99.97

SFB
10 9.18 10.20 10.91 12.41 29.27 47.28 22.06
100 49.50 48.89 51.22 52.08 69.66 74.70 69.45
1000 99.56 98.35 96.60 96.79 98.07 97.34 99.06

CARE
10 39.92 47.34 49.75 47.11 63.53 79.00 64.35
100 84.89 88.91 89.46 89.91 93.58 99.97 96.63
1000 99.98 99.97 99.97 100.00 99.98 99.97 99.98

Table 2: Throughput [Mb/s]. In green bold font – results at least four percent better than the average of the row. In red
italic font – results at least four percent worse than the average of the row.

Fig. 9. The per-flow throughput in the SRED+Cubic configuration in the uncongested scenario
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AQM
algo-
rithm

Flows
count

TCP
New
Reno

TCP
Sack

TCP
Fack

TCP
Vegas

TCP H-
TCP

TCP
West-
wood

TCP
Cubic

DT
10 1.5 2.6 2.1 1.6 7.8 30.1 10.4
100 25.2 31.9 32.4 30.0 39.1 74.3 50.9
1000 82.7 81.1 79.0 78.8 80.9 80.1 82.7

RED
10 54.8 58.7 54.7 36.2 107.1 76.9 76.5
100 97.3 99.1 97.2 98.2 103.7 98.6 98.1
1000 102.0 98.0 99.8 99.3 98.5 97.6 98.7

SRED
10 1.8 1.8 2.5 2.7 27.8 26.9 14.0
100 10.3 10.8 10.6 8.1 25.9 37.0 15.3
1000 45.4 40.1 28.3 30.8 46.1 34.8 32.1

FRED
10 0.1 0.2 0.2 0.3 1.8 3.0 1.4
100 5.7 6.5 7.1 6.7 12.3 16.6 10.4
1000 26.4 26.0 25.1 24.9 25.6 24.9 25.6

CHOKe
10 28.7 22.7 32.7 21.9 23.6 73.7 48.7
100 72.0 70.0 75.4 79.5 69.7 85.9 83.0
1000 101.0 98.7 91.3 98.9 99.8 99.3 100.0

SFB
10 0.03 0.03 0.04 0.03 0.24 0.52 0.1
100 0.7 0.8 0.9 0.8 1.9 2.4 1.7
1000 16.4 12.4 9.1 9.2 10.7 9.6 11.7

CARE
10 1.8 2.1 2.7 1.2 7.4 14.7 5.6
100 14.9 19.2 20.7 14.0 38.7 77.0 36.6
1000 93.9 92.2 89.8 90.4 91.3 90.7 93.8

Table 3. Mean queue size [pkts].

algorithm is fairer than other TCPs. In the Reno algorithm and its descendants, the
congestion window of a connection with long RTT increases very slowly, which causes
bandwidth underutilization. This problem is removed in the Cubic algorithm, as the
congestion window grows with the same speed for connections with different RTTs.
This positive effect is then strengthen by the CHOKe mechanism presented in lines 5-8
of Algorithm 1, which further reduces any remaining unfairness. Secondly, Cubic has the
well-known ability for high bandwidth utilization. This is connected with the shape of
the cubic function used for congestion window expansion after a packet loss. The cubic
window function consists of a quick phase of recovery from the window reduction, a
stabilization phase, and a quick phase of probing for new available bandwidth. CHOKe
on the other hand has built-in RED algorithm, which supports high bandwidth utilization
by desynchronization of TCP sources and preventing consecutive window reductions due
to buffer overflows.

As for the queue size at the bottleneck link, the average results are given in Tab. 3,
while sample queue length processes for the CHOKe+Sack and CHOKe+Cubic are de-
picted in Figs. 10 and 11, respectively. In Tab. 3 we can see that the configurations with
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Fig. 10. The queue size evolution in the CHOK+Sack configuration, uncongested scenario

Fig. 11. The queue size evolution in the CHOK+Cubic configuration, uncongested scenario

Cubic algorithm induce usually higher, than in New Reno case, queue sizes (but typi-
cally shorter than in Westwood case). However, in all cases, this change is not important
from the practical point of view. For instance, the increase of the queue size from 28
to 48 packets (CHOKe+New Reno vs CHOKe+Cubic) is not significant, because both
values represent low queue sizes anyway. Moreover, when the number of flows grows,
we observe that the queue size is more or less the same for every AQM used.

6. Conclusions

In this paper we presented a study on the impact of seven TCP variants on the per-
formance of fairness-driven queue management algorithms.

The good news is that almost all studied AQMs perform well in the presence of
the newest Cubic TCP, which is becoming popular in the Internet. In fact, although
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not designed purposely to cooperate with it, the AQMs work much better when used
with Cubic than when used with other TCPs. In particular, the fairness index and the
overall throughput are improved at the cost of minor increase of the average queue size.
Moreover, applying Cubic reduces the dependence of the per-flow throughput on the
flow’s RTT.

Taking into account the fairness index and achieved throughput the best cooperation
between network and transport layer was obtained in the CHOKe+Cubic configuration.
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O poprawie sprawiedliwości podziału pasma pomiędzy przepływy w Internecie

Streszczenie

Wszystkie znane z literatury algorytmy aktywnego zarządzania kolejkami (AQM)
ukierunkowane na zapewnienie sprawiedliwego podziału pasma pomiędzy przepływy
w Internecie były opracowywane z myślą o współpracy z (klasycznym dziś) algorytmem
kontroli zatłoczenia TCP, tzn. New Reno. W ostatnich latach można zauważyć w In-
ternecie istotne zwiększanie się udziału nowych algorytmów kontroli zatłoczenia TCP
(jak np. algorytmu Cubic). Dlatego też pojawia się naturalne pytanie: czy algorytmy
sprawiedliwego podziału pasma zaprojektowane dla New Reno będą równie dobrze
działać w obecności tych nowych wariantów TCP?

Aby uzyskać odpowiedź na to pytanie, przeprowadzone zostały szeroko zakrojone
studia symulacyjne. Studia te uwzględniały siedem najważniejszych algorytmów AQM
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do sprawiedliwego podziału pasma, siedem wersji TCP (w tym najnowocześniejsze
warianty), różne scenariusze zatłoczenia sieci oraz czasy RTT połączeń TCP. Uzyskane
wyniki pozwoliły nie tylko udzielić odpowiedzi na sformułowane powyżej pytanie, ale
także wskazać, które wersje TCP i AQM najlepiej realizują ideę optymalizacji między-
warstwowej w celu zapewnienia sprawiedliwego podziału pasma pomiędzy przepływy
w Internecie.
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