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Institute of Informatics, Silesian University of Technology
ul. Akademicka 16, 44-100 Gliwice, Poland

Krzysztof.Siminski@polsl.pl

Received 16 March 2012, Revised 2 October 2012, Accepted 5 October 2012.

Abstract: The correspondence between support vector machines and neuro-fuzzy systems is very
interesting. The full equivalence for classification and partial for regression has been formally shown.
The equivalence has very interesting implication. It is a base for a new method of initialization of neuro-
fuzzy systems, ie. for creating of fuzzy rule base. The commonly used methods are based on reversion
of item: the premises of fuzzy rules split input domain into region, thus premises of fuzzy rules can be
elaborated by partition of input domain. This leads to three main classes of partition of input domain. The
above mentioned equivalence results in new way of creating the rule base. Now the input domain is not
partitioned, but the premises of fuzzy rules are extracted from support vector. The objective of the paper
is to examine the advantages and disadvantages of this new method for creation of fuzzy rule bases for
neuro-fuzzy systems.
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1. Introduction

The objective of the paper is the research of equivalence of support vector machines
(SVM) and neuro-fuzzy systems (NFS) and testing the possibilities that are created by
that equivalence.

The neuro-fuzzy systems are known for good generalisation abilities. The crucial
part of the NF system is the fuzzy rule base. It comprises fuzzy implications (or fuzzy
rules). The premises of fuzzy rules split the input domain into regions. The creation of
fuzzy rule bases is done in reversed order: first the input domain is split into subregions,
then the subregions are then transformed into premises of fuzzy rules.

There are three main methods of domain partition [8,1]:
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1. In grid partition the values of each attribute (dimension) are split into a priori es-
tablished number of intervals. This method is vulnerable to curse of dimensional-
ity – the number of regions is in exponential relation with number of dimensions.
This leads to the supernumerosity of regions, what needs subsequent reduction
[12,13].

2. The scatter partition is based on clustering. This approach avoids the curse of
dimensionality, but has two main disadvantages. Firstly the number of clusters
has to be proposed before the clustering procedure starts. Most often the data
are clustered into various number of groups and then the best number is selected
[5,9]. Secondly this partition may leave some area of the input domain that are not
covered by any region.

3. The hierarchical partition splits he input domain into regions and if needed the
regions are recursively split into subregion [11,17,18,14,15]. This approach joins
the advantages of above mentioned method: number of clusters does not need to
be proposed before partition and the are no areas uncovered by any rule.

The papers [2,4] analyses the equivalence between support vector machines (SVM)
and neuro-fuzzy systems (NFS). The most important conclusion from this paper is the
new method of creation of fuzzy rule base. This new method is based on different idea
that above described methods. This method does not split input domain into regions,
but creates premises of fuzzy rules basing of support vectors. The support vectors are
selected from the presented data by SVM for classification or regression (respectively to
the task). So this method is quite a new class of creation of fuzzy rule base for neuro-
fuzzy systems. The above mentioned papers [2,4] list the advantages of this approach.
The number of support vector (and number of fuzzy rules) is not greater than the number
of data tuples in the data set. The SVM are capable of handling high dimensional tasks,
so the paper [2] claims this is the way to avoid the curse of dimensionality.

The objective of this paper is the analysis of applicability of this very interesting
method in neuro-fuzzy systems.

The paper is organised in the following way. First the fuzzy models and support vec-
tor machines for classification and regression are presented in sections 2 and 3. Sec. 4.1
introduces data sets and Sec. 4.2 discusses the elaborated results. Finally Sec. 5 presents
conclusions.

2. Fuzzy models

The paper [2] analyses the zeroth order TSK [20,19] fuzzy system. This system uses
the fuzzy rules of the form:

Rj : IF A1
j AND A2

j AND . . . AND An
j THEN bj , (1)
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where Ak
j is the fuzzy set with membership functions µk

j . Fuzzy conjuction (AND)
operator (T-norm) is product, fuzzy aggregation operator – adding and COA defuzzi-
fication. To avoid the situation in which the data example is not covered by any rule,
the extra rule is added. This rule is always fired and the consequence of the rules is a
constant value.

The membership function µ used in premises of fuzzy classifier is a function gen-
erated by location transformation of reference function. The reference function [6] is
a function a : R → [0, 1] non-increasing on [0,∞) for which a(x) = a(−x) and
a(0) = 1. Location transformation of reference function a generates membership func-
tion µ for location parameter v

µ(x) = a(x− v). (2)

The paper [2] lists examples of reference functions, among them the gaussian one. For
gaussian function

µ(x) = exp
(
−(x− v)2

s2

)
(3)

the extraction of parameters (core value v and fuzziness s) is needed. The core value is
easily extracted from support vectors. The values of attributes of support vectors become
cores (centres) of gaussian functions. The paper [4] states that fuzziness parameter for
gaussian function is calculated in the way described in paper [21]. Unfortunately it is
not obvious how the authors determine the desired values.

The theoretical considerations are accompanied by experiments. In [4] the SVM-
NFS correspondence is discussed also for regression. Some solutions proposed in the
paper are discutable.

3. SVM

The SVM can be used for initialization of fuzzy system both for classification and
regression. Let X = {(x1, y1) , (x2, y2) , . . . , (xX , yX)} denote the set of data tuples in
form

(x, y) = [x1, x2, . . . , xA, y] . (4)

For classification y ∈ {−1, +1}, for regression y ∈ R. In classification the SVM
tries to find the separation hyperplanes H+ and H− for which the distance between them
is maximised. The hyperplanes are expressed by formulae:

H+ : 〈w,xi〉+ w0 = +1, (5)

H− : 〈w,xi〉+ w0 = −1, (6)
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where 〈w,x〉 stands for results of function k : RA ×RA → R. It may be scalar product
of vectors or some kernel function.

Maximising of distance between hyperplanes H+ and H− is equivalent to minimis-
ing of ‖w‖ with constrains

yi (〈w,xi〉+ w0) > 1, i = 1, 2, . . . , X, (7)

where X is number of data tuples.
For regression the slack variables ξ+ and ξ− are introduced. The SVM approach

minimises the fuction

L =
1
2
‖w‖2 + C

X∑

i=1

(
ξ+
i + ξ−i

)
, (8)

with constraints

yi − 〈w,xi〉 − w0 6 ε + ξ+
i (9)

−yi + 〈w,xi〉+ w0 6 ε + ξ−i (10)

ξ+
i > 0 (11)

ξ−i > 0 (12)

where ξ+ and ξ− are slack variables, C > 0 determines the tradeoff, ε corresponds to
ε-insensitive loss function (Vapnik’s linear loss function with ε-insensitivity)

Eε(∆t) =

{
0, |∆t| 6 ε

|∆t| − ε, |∆t| > ε
(13)

or
Eε(∆t) = max (0, |∆t| − ε) . (14)

Both for classification and regression the Langrange multipliers and quadratic pro-
gramming are used to minimise the above mentioned values. For the support vectors the
values of multipliers α are greater than 0, other vector (data tuples) have α = 0. This
means that only support vectors determine the hyperplanes.

4. Experiments

The SVM used for experiments is SVM-Light [7], the NFS used is ANNBFIS [5].

4.1. Data sets

In experiments we used ‘Mackey-Glass’, ‘TwoSpirals’ and ‘Iris’ data sets shortly
described below.
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4.1.1. ‘Mackey-Glass’

The data sets represents chaotic time series generated by differential equation [10]:

dx

dt
(t) =

ax(t− τ)
1 + x10(t− τ)

− bx(t), (15)

where a = 0.2, b = 0.1 and τ = 17. The data tuples are created with template

x = [x (t−8) , x (t−7) , . . . x (t0) , x (t1)] . (16)

The last item of the tuple x (t1) is the value predicted on the base of previous 9 items.
The train data set is composed by 200 tuples x(501) − x(700), the test set comprises
tuples x(701)− x(1000).

4.1.2. ‘TwoSpirals’

‘TwoSpirals’ data set represents the widely known problem of two class classifica-
tion. The spirals are created according to formula:

x(t) = r(t) cos α(t) (17)

y(t) = r(t) sinα(t) (18)

where

r(t) = r0 + at. (19)

The angle is calculated separately for + and − classes:

α+(t) = ∆α · t, (20)

α−(t) = ∆α · t + π. (21)

In our data set r0 = a = 2, ∆α = π
16 . The data set has 96 points in each spiral. Each

spiral has 3 rotations. The Fig. 1 presents the ‘TwoSpirals’ data set.

4.1.3. ‘Iris’

This commonly known data set consists of 150 samples of Iris plants divided into
three classes. Each data tuple is represented by 4 attributes (sepal length, sepal width,
petal length and petal width).
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Fig. 1. ‘TwoSpirals’ data set. Points represented by dots are labelled with −, croses denote points labelled

with +

4.2. Discussion of results

Paper [3] presents the results elaborated for the commonly used data set ‘Mackey-
Glass’ with support vector regression with two values of insensitive parameter (ε =
0.07|0.02). The results cited from article [3] are presented in left part of Tab. 1. This
results are suprisingly poor in two aspects. Firstly: the number of support vector (what
implies the same number of rules in fuzzy rule base of NFS). Such high number of rules
is totally incompatible with the idea of intelligibility of neuro-fuzzy systems. Secondly:
the high error. For the same data set the results elaborated by ANNBFIS neuro-fuzzy
system [5] for five rules (premises of rules are elaborated by clustering) are 0.000255948
for train data set and 0.000311285 for test data set (both values represent RMSE – root
mean square error). The right part of Tab. 1 gathers the results elaborated by ANNBFIS
system. The table contains the errors for 13 and 30 rules – these numbers of rules where
taken from [4]. The fuzzy models created with clustering as a method of partition of
input domain is much more accurate that model described in [4].

The best result is precission 98.38% with more than 35 rules. The ANNBFIS system
achieves precision 97.33% (146 examples classified correctly out of 150) with only three
rules. Further examples of fuzzy model created with SVM are present in [2,4,3]. These
models also comprise high number of rules.

The system has two important parameters: insensitive parameter ε (cf. Eqq. 9 and
10) and tradeoff C (cf. Eq. 8). The manipulation with this values can influence to some
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SVM-NFS [4] number ANNBFIS

ε train test of rules train test

5 0.0002559 0.0003112

0.07 0.0505 0.0478 13 0.0004905 0.0011990

0.02 0.0134 0.0127 30 0.0003453 0.0035762
Tab. 1. The results elaborated for ‘Mackey-Glass’ data set. The left part of the table presents

the results from [3] achieved with support vector machine, the right part – the results
elaborated by ANNBFIS system with scatter partition of input domain.

The abbreviation RSME stands for ‘root square mean error’.

precision mean number of SV

95.46% 62.49

96.22% 47.5

96.38% 35.46

95.97% 28.695

95.55% 26.69

Tab 2. Precision of classification and number of
support vectors published in [3]. Tradeoff C = 100

extend the number of rules. To examine this influence to experiments were executed for
‘Mackey-Glass’ and ‘TwoSpirals’ data sets.

Fig. 2. Number of support vectors selected from ‘TwoSpirals’ data set in function of ε values
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Fig. 3. Number of support vectors selected from ‘TwoSpirals’ data set in function of ε values. The figure

presents the details of the Fig. 2

Fig. 4. Number of support vectors selected from ‘Mackey-Glass’ data set in function of ε values

The results reveal that the change of number of SV changes in a drastic way (for
‘TwoSpirals’ the critical value of ε is 1 and for ‘Mackey-Glass’ some low positive value).
The relatively small change in values of ε triggers extreme change in number of selected
support vectors – this feature is illustated by Figures 2, 3 for ‘TwoSpirals’ data set and
Figure 4 for ‘Mackey-Glass’. This feature can be regarded as a disadvantage of the
method, because the manipulation with ε is very difficult. We get extreme values of
number of SV’s: either very low or unacceptably high. Manipulation with ε to get
appropriate number of rules in fuzzy rule base, so that the system is precise enough and
the rule base is intelligible.

The system is not very vulnerable to the changed of the second parameter – tradeoff
C. The experiments show that changed of C does not lead to significant changes in
number of SV. The paper [3] presents the results elaborated for ‘Iris’ data set which
we cite in Tab. 3. Some other attempts have been done to examine the vulnerability to
tradeoff C. This time for the value of ε where the number of selected SV’s has some
value between extreme ones. For this the value ε = 0.995 has been selected. The results
are presented in Fig. 5. For ‘Mackey-Glass’ data set the influence of tradeoff on number
of SV’s for ε = 0.01 is shown in Fig. 6.

The number of support vectors is severely dependent on type of reference function used
in system. The paper [3] presents results where number of SV’s varies from 391 to 685.
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tradeoff C precision

100 96.81%

1000 96.61%

10000 96.45%

Tab 3. Number of support vectors for various values of tradeoff C parameter for ‘Iris’ data set.
The results are taken from [3]. Numbers of support vectors are not provided

Fig. 5. Number of support vectors selected from ‘TwoSpirals’ data set in function of C; ε = 0.995

Fig. 6. Number of support vectors selected from ‘Mackey-Glass’ data set in function of C; ε = 0.01

5. Summary

The correspondence between support vector machines and neuro-fuzzy systems is
very interesting. The full equivalence for classification has been shown in [3,2]. For
regression the equivalence is only partial [3]. The equivalence has very interesting im-
plication. It is a base for new method of initialization of neuro-fuzzy systems, ie. for
creating of fuzzy rule base. The commonly used methods are based on reversion of ob-
vious item: the premises of fuzzy rules split input domain into region, thus premises
of fuzzy rules can be elaborated by partition of input domain. This leads to three main
classes of partition of input domain. The above mentioned equivalence results in new
way of creating the rule base. Now the input domain is not partitioned, but the premises
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of fuzzy rules are extracted from support vector. The paper [3] shows simple transforma-
tion of SV to premises of fuzzy rules (unfortuately this transformation is not described
precisely in all aspects).

This new way of creating is very interesing and may lead to amelioration of results
elaborated by NFS. Unfortunately this method has some very important disadvanteges:

1. The very large number of support vector what implies large number of rules. This
makes the fuzzy rule base far from intelligible.

2. Although the rule base contain many rules, the results are significantly poorer then
in neuro-fuzzy systems with scatter partition of input domain.

3. There is some possibility of reducing number of support vector for regression by
precise tuning of insensibility parameter ε. But it is very difficult to tune the
parameter without many experiments.

4. The tradeoff C seems to have lower influence on number of support vectors. This
parameter is used in [3] for tuning the system. Our experience points that first the
proper value of ε has to be found then C can be manipulated.

5. Creating of premises of fuzzy rules with SVM requires selection of kernel function
for SVM.

6. The selection of membership functions for premises in fuzzy rules has been
analysed, some remarks can be found in [16].
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Analiza nowej metody inicjalizacji systemów neuronowo-rozmytych
z wykorzystaniem maszyn wektorów wspierających

Streszczenie

Związek pomiędzy maszynami wektorów podpierających i systemami neuronowo-
rozmytymi jest bardzo interesujący. Została wykazana pełna odpowiedniość między
tymi systemami dla klasyfikacji i częściowa dla regresji. Odpowiedność ta ma bardzo
ważną konsekwencję. Jest podstawa do opracowania nowego sposobu tworzenia
bazy reguł dla systemu neuronowo-rozmytego. Dotychczasowe metody opierają się
na podziale przestrzeni wejściowej, a następnie przekształcenia tak powstałych re-
gionów w przesłanki rozmytych reguł. Tutaj możliwe jest przekształcanie wektorów
wspierających na przesłanki reguł rozmytych. Celem artykułu jest przebadanie możli-
wości stosowania takiego podejścia do inicjalizacji systemów neuronowo-rozmytych.
Eksperymenty wykazują dość istotną wadę tego podejścia. W jego wyniku pow-
stają bardzo liczne zbiory reguł rozmytych, co zupełnie przeczy idei interpretowal-
ności wiedzy w systemach neuronowo-rozmytych. Manipulacja pewnymi parametrami
umożliwia zmiejszenie liczby reguł, jednak manipulacja ta jest trudna i wymaga wielu
prób. Drugą dość istotną wadą jest wyraźnie wyższy błąd wypracowywany przez sys-
temy inicjalizowane przez SVM w porównaniu do systemów, których bazy reguł two-
rzone są poprzez podział przestrzeni wejściowej.
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