
Theoretical and Applied Informatics
ISSN 1896–5334

Vol. 25 (2013), no. 2
pp. 93–104

DOI: 10.2478/thai-2013-0007

GPU-Accelerated fl uid fl ow approximation
of the Active Queues Management algorithms

ADAM DOMAŃSKI1, JOANNA DOMAŃSKA2, TADEUSZ CZACHÓRSKI2

1 Institute of Informatics Silesian Technical University Akademicka 16, 44–100 Gliwice, Poland
adamd@polsl.pl

2 Institute of Theoretical and Applied Informatics
Polish Academy of Sciences

Baltycka 5, 44–100 Gliwice, Poland
{joanna,tadek}@iitis.gliwice.pl

Received 4 May 2013, Revised 10 June 2013, Accepted 17 July 2013

Abstract: In the article we study a model of TCP connection with Active Queue Management
in an intermediate IP router. We use the fl uid fl ow approximation technique to model the interactions
between the set of TCP fl ows and AQM algoithms. Computations for fl uid fl ow approximation model
are performed in the CUDA environment.

Keywords: Computer Networks, Active Queue Management, CUDA environment

1. Introduction

Design of technology for TCP/IP networks is one of the most important topics in
the fi eld of telecommunications networks. The main problem is still the modeling of
congestion control mechanisms. The development of new active queue management
(AQM) routers allows to increase the performance of Internet applications.

A number of analytical models of AQM in IP routers in open-loop scenario
– because of the diffi culty in analyzing AQM mathematically – was already pre
sented, [13], [6]. In this article we try to use the nonlinear dynamic model of TCP
[10], [19] to analyze the AQM systems. This model enables application of control
rules to address the basic feedback nature of AQM.

We use the fl uid fl ow modeling methodology based on mean value analysis. This
analytical method of modeling has a great potential in analyzing and understanding
various network congestion control algorithms [15]. The models based on fl uid fl ow

94

approximation are able to capture the dynamics of TCP fl ows [21] and allow to
analyze networks with a large number of fl ows. Here, we use this method to compare
routers having different active queue management principles and transmitting TCP/
UDP fl ows. The model allows to study not only the steady-state behavior of the
network, but also the transient behavior when a set of TCP fl ows start or fi nish
transmission. We concentrate on transient average router queue length for different
AQM strategies. In this paper we presents results of calculations obtained using the
GPU environment. The computation time in the CUDA environment are compared
with the time of calculation in standard CPU. For large matrix multiplication we
propose to use the CUBLAS module (Basic Linear Algebra Subprograms) prepared
by NVIDIA.

The rest of this article is organized as follows: section 2 describes the fl uid fl ow
model of AQM router supporting TCP/UDP fl ows, section 3 presents the obtained
results. The conclusions are drawn in section 4.

2. Fluid-fl ow model for the network case

This section presents a fl uid fl ow model the AQM router supporting TCP/UDP
fl ows.

The model presented in [15] demonstrates TCP protocol dynamics. This model
ignores the TCP timeout mechanisms and allows to obtain the average value of
key network variables. This model is based on the following nonlinear differential
equations [9]:

dWi(t)

dt
=

1
Ri(t)

− Wi(t)Wi(t−R(t))
2Ri(t−Ri(t))

p(t−Ri(t)) (1)

dq(t)
dt

=
n∑

i=1

Wi(t)
Ri(t)

− C (2)

where:
– Wi = expected TCP sending window size (packets) for i-fl ow,
– q = expected queue length (packets),
– R = round-trip time = q/C + Tp (secs),
– C = link capacity (packets/sec),
– Tp = propagation delay (secs),
– N = number of TCP sessions,
– p = packet drop probability.

95

The maximum values of q and W (queue length and congestion window size)
depend on the buffer capacity and maximum window size. The dropping probability
p depends on the queue algorithm. We do not distinguish explicitely TCP and UDP
connections, saying only that UDP connections infl uence the capacity C of the output
link.

For the RED algorithm, dropping probability pRED is growing linearly from
0 to pmax:

 pRED = pmax
x−Minth

Maxth −Minth
 (3)

For the CHOKe algorithm, the probability pCHOKE depends on the number of
packets of the i-stream relative to the total buffer occupancy. For simplicity, the model
assumes that the number of packets belonging to a single stream in the queue is the
same for all streams, hence the probability of packet loss is inversely proportional to
the number of the streams,

 pCHOKe =
1
N

 (4)

An extension of the fl uid fl ow aproximation model allows to calculate the
transmission parameters for the network of transmission nodes [11]. The extended
model assumes that the network V consists of K routers. The queues are represented
by vectors Q and X. The probability of packet dropping is represented by vector P (x).
Matrix A represents the structure of the network V. The rows of the matrix correspond
to the fl ows in the network. The columns of the matrix represent individual nodes. If
the fl ow i travels through a node k, the element aik is set to 1, otherwise it is set to 0.

Matrices A and P (x) are used to create a new matrix AP [15]. The rows of matrix
AP are obtained by multiplying rows od matrix A with the proper item of vector P.
This matrix is used to obtain the complete loss probability for packets on the path (for
all fl ows). The row of the matrix AP describes the drop probability for all routers on
path. The total packet drop probability is a combination of the individual probabilities
for the routers along the path from the source to the destination. An easier solution
is to calculate the probability of correct packet transmission from the source to the
target. Hence, the dynamics of the TCP window for the network of nodes can be
represented as:

dWi(t)

dt
=

1
Ri(t)

− Wi(t)Wi(t−R(t))
2Ri(t−Ri(t))

(1−
K∏

n=0

(1−AP (x)i)) (5)

96

3. Results

The computations were made with the use of PyLab (Python numeric computation
environment) [18], a combination of Python, NumPy, SciPy, Matplotlib, and IPython.
The graphs shown below present transient system behavior, the time axis is drawn
in seconds. The access to Nvidia’s CUDA parallel computation API [22] is obtained
using PyCUDA.

The parameters of AQM buffer:

– M inth = 10,
– M axth = 15,
– buffer size (measured in packets) = 20,
– weight parameter α = 0.007.

The parameters of TCP connection:

– transmission capacity of AQM router: C = 0.075,
– propagation delay for i-th fl ow: Tpi = 2,
– initial congestion window size for i-th fl ow (measured in packets): Wi = 1.

The obtained mean queue lengths for TCP connections are presented in table 1.

Algorithm Nb of streams Nb of packets

CHOKE 1 7.98664081264

CHOKE 2 8.63146812018

CHOKE 5 10.0998514529

CHOKE 10 11.0167546717

CHOKE 11 11.7731309893

RED 1 8.57089136683

RED 2 9.05376778822

RED 5 10.3805817389

RED 10 11.1549893996

RED 11 11.7731309893

Table 1. The obtained mean queue lengths Q(t)

97

Figure 1 shows the queue behavior in case of one TCP fl ow and the CHOKe [8]
queue. The size of congestion window increases until the buffer reaches Minth. The
algorithm draws “CHOKe victim” always with success, hence the probability of packet
loss is equal to the one. Packets are dropped, the size of congestion window decreases
causing a slow decrease of the queue length – this pattern is repeated periodically. The
similar situation exists for the two streams (fi gures 3, 4). The probability of removing
a packet is equal to 1

2
. Probability of removing the packet by RED mechanism is in

both cases much smaller. Comparing the behavior of the CHOKe algorithm to the
RED, it is clear that CHOKe algorithm is better in the case of aggressive (stealing
most of the bandwidth) streams.

Fig. 1. CHOKe queue 1 TCP/UDP fl ow

In fl uid fl ow aproximation, we calculate the dynamic of the window dWi / dt
for all TCP/UDP streams and then we calculate the queue occupacy. In the CUDA
environment we can perform these calculations in parallel. A simple program using
pucuda is presented below:

98

Fig. 2. RED queue 1 TCP/UDP fl ow

#Import modules

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler
import SourceModule import numpy

#preparing matrix 4x4 of random numbers:
a = numpy.random.randn(8,8)
a = a.astype(numpy.fl oat32)
#Memory allocation in GPU
a_gpu = cuda.mem_alloc(a.nbytes)
#transfer to GPU
cuda.memcpy_htod(a_gpu, a)

Simple program written in nvcc
gpu_rozkaz=’’’
 global
void doublify(fl oat *a)
{
int idx = threadIdx.x + threadIdx.y*4;
a[idx] *= 2;
}
’’’

99

Fig. 3. CHOKe queue 2 TCP/UDP fl ows

#program execution
mod = SourceModule(gpu_rozkaz)
func = mod.get_function(“doublify”)
func(a_gpu, block=(4,4,1))

#data transfer from gpu to cpu
a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a

Listing 1. Simple program using pycuda

The execution of the calculations consists of four steps:

– input data preparation (array of 32-bit fl oat),
– transport data to GPU,
– calculation in GPU,
– downloading data from GPU to CPU.

In the fl uid aproximation we prepare arrays of Wi (t), Wi (t − R(t), Ri, Ri (t − R(t)),
we send this arrays to GPU and make calculations. Then we download the array of
the new Wi (t).

100

Fig. 4. RED queue, 2 TCP/UDP fl ows

Figure 5 shows the comparison of calculation time in GPU and CPU environments
depending on the number of streams. This time is strongly indetermined. Our
experiments were repeated one hundred times, and the graph shows the mean values.
At the beginning of the computation in GPU, the time is relatively large. This is
related to the time required to initialize the GPU. In a later stage, the time slightly
depends on the number of processed fl ows.

Fig. 5. Calculation time in GPU and CPU environments

The fl uid fl ow approximation for a large number of nodes involves the
multiplication of large matrices. These calculations can also be performed in a GPU

101

environment. Figure 6 shows times of matrices multiplication (depending on matrices
size). The computation time increases very slowly with the increase of the size of the
matrix. This calculation was performed using a *single* block of threads, therefore
we can multiplicate only matrices of size 22x22.

Fig. 6. Times of matrices multiplication in GPU environment

Additional Python bindings to simplify matrix multiplication operations can be
found in the program pycublas [23]. CUBLAS is an implementation of BLAS (Basic
Linear Algebra Subprograms) on top of the NVIDIA CUDATM runtime. It allows the
access to the computational resources of NVIDIA GPUs. The library is self-contained
at the API level, that is, no direct interaction with the CUDA driver is necessary.
CUBLAS attaches to a single GPU and does not auto-parallelize across multiple GPUs.

PyCUBLAS multiplies matrices smaller than 65536-by-65536 [23]. The matrix
multiplication using pycublas is very simple, as presented below:

import numpy
from pycublas import CUBLASMatrix

A = CUBLASMatrix(numpy.mat([[1,2,3],[4,5,6]],numpy.
fl oat32))
B = CUBLASMatrix(numpy.mat([[2,3],[4,5],[6,7]],numpy.
fl oat32))
C = A*B

Listing 2. Matrix multiplication using pycublas

102

Fig. 7. Times of matrices multiplication

All CUBLAS alloc and free calls are mapped to the CUBLAS Matrix object’s
life in Python, hence the memory management is limited to fi lling the card. For
matrices multiplication of size (4160x4160) Cublas is 43x faster in comparison to the
calculation using the library “numpy”. Figure 7 shows times of matrices multiplication
(using CUBLAS) depends on matrices size.

4. Conclusions

The results presented above confi rm the superiority of of the CHOKe algorithm
over standard RED algorithm in presence of aggressive streams but the use of CHOKE
is insignifi cant in the case of a large number of streams with the similar intensity.
In this article we also present how to perform calculations in GPU environment: we
used GPU block of thread we calculated dynamic of conguestion window for all
streams in one step and we used a *single* block of threads, therefore we were able
to perform the model for 600 streams. The use pyCUBLAS was proposed for matrix
multiplication used in extended network model.

Acknowledgements

This research was partially fi nanced by Polish Ministry of Science and Higher
Education project no. N N516479640

103

References

 1. D. R. Augustyn, A. Domański, J. Domańska, Active Queue Management with non linear
packet dropping function, 6th International Conference on Performance Modelling and
Evaluation of Heterogeneous Networks HET-NETs 2010.

 2. D. R. Augustyn, A. Domański, J. Domańska, A Choice of Optimal Packet Dropping
Function for Active Queue Management, Communications in Computer and Information
Science, vol. 79, Springer 2010.

 3. W. Chang Feng, D. Kandlur, and D. Saha, Adaptive packet marking for maintaining
end to end throughput in a differentiated service internet, IEEE/ACM Transactions on
Networking, vol. 7, no. 5, 1999.

 4. J. Chen, F. Paganini, R. Wang, M.Y. Sanadidi, M. Gerla, Fluid-fl ow Analysis of TCP
Westwood with RED, GLOBECOM 2004.

 5. T. Czachórski, K. Grochla, F. Pekergin, Stability and Dynamics of TCP-NCR (DCR)
protocol in presence of UDP Flows, in: Wireless Systems and Mobility in Next
Generation Internet, LNCS no. 4396, pp. 241-254, Springer 2007.

 6. J. Domańska, A. Domański, T. Czachórski, The Drop-From-Front Strategy in AQM’,
Lecture Notes in Computer Science, vol. 4712/2007, Springer Berlin/Heidelberg, 2007.

 7. J. Domańska, A. Domański, T. Czachórski, Implementation of modifi ed AQM
mechanisms in IP routers’, Journal of Communications Software and Systems, vol. 4,
no. 1, March 2008.

 8. A. Eshete, Y. Jiang, Generalizing the CHOKe fl ow protection, Computer Network
Journal, 2012.

 9. C. V. Hollot, V. Misra, D. Towsley, A control theoretic analysis of RED, IEEE/
INFOCOM, 2001.

 10. C. V. Hollot, V. Misra, D. Towsley, W.-B. Gong, On Designing Improved Controllers
for AQM Routers Supporting TCP Flows, IEEE INFOCOM 2002.

 11. C. V. Hollot, V. Misra, D. Towsley, W.-B. Gong, Fluid methods for modeling large
heterogeneus. NTIS, 2005.

 12. C. Kiddle, R. Simmonds, C. Williamson, B. Unger, Hybrid packet/fl uid fl ow network
simulation, Parallel and Distributed Simulation, 2003.

 13. C. Liu, R. Jain, Improving explicit congestion notifi cation with the mark-front strategy.
Computer Networks, 35(2-3), 2000.

 14. M. May, C. Diot, B. Lyles, J. Bolot, Infl uence of active queue management parameters
on aggregate traffi c performance, Technical report, Research Report, Institut de
Recherche en Informatique et en Automatique, 2000.

104

 15. V. Misra, W.-B. Gong, D. Towsley, Fluid-based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED, ACM SIGCOMM, 2000.

 16. R. Pan, B. Prabhakar, K. Psounis, CHOKe, A stateless AQM scheme for approximating
fair bandwidth allocation, IEEE INFOCOM, 942-952, 2000.

 17. Pengxuan Mao, Yang Xiao, Shaohai Hu, Kiseon Kim, Stable parameter settings for
PI router mixing TCP and UDP traffi c, IEEE 10th International Conference on Signal
Processing (ICSP), 2010.

 18. www.scipy.org.

 19. S. Rahme, Y. Labit, F. Gouaisbaut, An unknown input sliding observer for anomaly
detection in TCP/IP networks, Ultra Modern Telecommunications & Workshops, 2009.

 20. L. Wang, Z. Li, Y.-P. Chen, K. Xue, Fluid-based stability analysis of mixed TCP
and UDP traffi c under RED, 10th IEEE International Conference on Engineering of
Complex Computer Systems, 2005.

 21. T. K. Yung, J. Martin, M. Takai, R. Bagrodia, Integration of fl uid-based analytical
model with Packet-Level Simulation for Analysis of Computer Networks, SPIE, 2001.

 22. NVIDIA Corporation. CUDA Programming Guide. NVIDIA Corporation, 2012. http://
www.nvidia.com/

 23. http://kered.org/blog/2009-04-13/easy-python-numpy-cuda-cublas/

Aproksymacja płynna algorytmów AQM – wspomagana przez GPU

Streszczenie

Artykuł opisuje zastosowanie aproksymacji płynnej do modelowania interakcji
pomiędzy zbiorem strumieni TCP, a mechanizmami aktywnego zarządzania buforami
(AQM). Obliczenia zostały przeprowadzone w środowisku GPU. Wyniki przedsta-
wione w artykule potwierdzają przewagę algorytmu CHOKe nad standardowym algo-
rytmem AQM: mechanizmem RED.

