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Abstract: Traffi c classifi cation is an important tool for network management. It reveals the source 
of observed network traffi c and has many potential applications e.g. in Quality of Service, network 
security and traffi c visualization. In the last decade, traffi c classifi cation evolved quickly due to the raise 
of peer-to-peer traffi c. Nowadays, researchers still fi nd new methods in order to withstand the rapid 
changes of the Internet. In this paper, we review 13 publications on traffi c classifi cation and related 
topics that were published during 2009-2012. We show diversity in recent algorithms and we highlight 
possible directions for the future research on traffi c classifi cation: relevance of multi-level classifi cation, 
importance of experimental validation, and the need for common traffi c datasets.
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1. Introduction

Internet traffi c classifi cation—or identifi cation—is the act of matching IP packets 
to the application that generated them. Traffi c classifi cation is important for managing 
computer networks: for example, it is used for traffi c shaping, policy routing, and 
packet fi ltering. From business point of view, it provides valuable marketing 
information via customer profi ling [1], whereas scientifi c and government agencies 
employ it to identify global Internet trends [2, 3].

Given just a single IP packet it is diffi cult to classify it—there is no application 
name in the protocol headers. In the past, the service port number was used for 
discriminating the traffi c class [4], but this became ineffective in the early 2000s due 
to peer-to-peer (P2P) traffi c [5]. Another popular and de facto standard classifi cation 
method is Deep Packet Inspection (DPI): pattern matching on full packet contents. 
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Despite being accurate, it is computationally expensive and brings privacy concerns. 
Moreover, traffi c encryption makes DPI increasingly irrelevant [6].

Instead, novel classifi ers investigate groups of packets-in order to fi nd 
distinguishing features of entire application protocols. Usually, a fl ow of packets is 
statistically summarized [7] (e.g. by average packet size and inter-packet arrival time) 
and the resultant feature vector is classifi ed using Machine Learning (ML) [8] (e.g. 
Neural Network or Support Vector Machine). Such methods are largely resistant to 
misuse of the port number and to encryption: the overall behavior of a particular 
protocol or host is examined instead of seeking for a strict match in a single packet.

Latest methods tackle the problem of classifi cation from many perspectives: 
counting packets [9], analyzing the DNS context [10], adopting multi-classifi cation 
[11], and more. Our “Multilevel Traffi c Classifi cation” project (MuTriCs) [12] 
develops an algorithm that combines different methods to increase classifi cation 
completeness and accuracy.

The aim of this work is to discuss diversity in classifi cation methods. We also 
share our fi ndings on the quality of traffi c classifi cation papers. For the review, we 
selected publications that: (a) present differentiated methods, (b) were published 
recently (2009-2012), and (c) are interesting in our opinion.

Comparing with existing surveys-namely [13], [14], and [3]-our paper focuses 
on different time span. We review newer works that were not mentioned in these 
studies: they represent novel developments in traffi c classifi cation (e.g. [9–11, 15]). 
Moreover, our paper gives the reader a quick insight into the methods for extracting 
traffi c features (summarized in Table 3). We show that combining these different 
methods into one system can be an interesting avenue for future research on traffi c 
classifi cation.

We assume basic knowledge of the reader on traffi c classifi cation. For a general 
introduction, we refer to the works cited in the next section: particularly, [13] presents 
required background on traffi c classifi cation and ML.

The paper is organized as follows: in section 2., we reference related surveys 
and analysis papers; in section 3., we give the review; in section 4., we discuss our 
fi ndings and fi nally we conclude in section 5.. This paper reviews 13 papers, but 
an accompanying web site [16] also offers an extended comparison of 21 works in 
a tabular form.

2. Related works

In an widely cited and comprehensive survey of traffi c classifi cation using ML 
[13], Nguyen et al. review works published during 2004-2007. The authors claim that 
ML was used for the fi rst time for classifying traffi c in 1994 [17], and that it was the 
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starting point for much of the further work. However, many works fundamental to the 
state of the art appeared about a decade later, e.g. [6, 18–22].

A survey by Callado et al. [14] divides traffi c analysis into packet- and fl ow-
based, and references several traffi c classifi cation papers published during 2004-2007. 
Four algorithms are compared in terms of completeness and accuracy: BLINC [6], 
Bayesian [19], “On The Fly” [22], and Payload Analysis [23]. The authors conclude 
with recommendations for traffi c classifi cation and pose eight research questions.

A paper by M. Zhang et al. [3] and its accompanying website [24] present a list of 
68 traffi c classifi cation papers published during 1994-2009 together with a catalog of 
86 datasets used in these works. The authors propose a structured taxonomy of traffi c 
classifi cation and use it to answer the question on the global share of P2P traffi c-
basing on the results found in the reviewed papers.

Kim et al. in [8] give an insightful comparison of three general approaches to 
traffi c classifi cation: ports-based, host-behavior-based, and fl ow-features-based. The 
authors evaluate these methods on a strong, few-terabyte dataset collected at diverse 
geographical locations. Their fi ve key fi ndings were: 1) port number can still constitute 
a relevant feature; 2) behavior-based classifi cation can be ineffective on backbone 
links and 3) it may exhibit low byte accuracy; 4) backbone traffi c classifi cation needs 
unidirectional TCP fl ow features; 5) their classifi er based on Support Vector Machine 
(SVM) outperformed other ML algorithms and produced robust results once it was 
trained with a representative, unbiased training set.

In a recent study, Dainotti et al. [7] anticipate future directions in traffi c 
classifi cation. The authors show the evolution and current state of the fi eld, and draw 
attention to the taxonomy of fl ow objects and traffi c classes. Four challenges are 
discussed: 1) lack of common, representative traffi c datasets labelled with ground 
truth; 2) inadequacy of current methods to the three trends in network protocols: 
encapsulation, encryption, and multi-channel communication; 3) poor scalability of 
algorithms to high-bandwidth links; 4) lack of standard procedures and benchmarks 
for method evaluation. The authors argue for further research on multi-classifi er 
systems and for development of open-source traffi c classifi cation tools.

3. Review of selected papers

In this section, we review selected works related to traffi c classifi cation. We put 
our fi ndings into four categories: 1) traffi c classifi cation, 2) detection of a particular 
protocol, 3) obtaining ground truth data, and 4) related.
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3.1. Traffi c classifi cation

In this category, we collect papers that describe algorithms for identifying any 
network protocol, or at least a few protocols (e.g. group of P2P-TV protocols). For 
instance, such algorithms can be deployed on a router to provide statistics on the 
traffi c passing through it.

Fig. 1: Feature extraction in the KISS algorithm: for each packet in an 80-packet window (a), the fi rst 
12 bytes of UDP payload are divided into 24 groups of 4 bits each (b). Number of occurrences of 

distinct values in given group is counted for the whole packet window (c).

1) KISS: Stochastic Packet Inspection Classifi er for UDP Traffi c: The work by 
A. Finamore et al. [15] published in 2010 (extends the original 2009 paper [25]) 
presents a payload inspection classifi er for UDP traffi c. The authors exploit the fact 
that protocols running over UDP must implement an application-specifi c header at 
the beginning of the packet payload, due to stateless nature of UDP communication.

For each 80-packet window in a given fl ow, the KISS algorithm counts occurrences 
of distinct 4-bit groups in the fi rst 12 bytes of the packet payload; see Fig. 1 for 
an illustration. For each of 24 groups, a χ2-like test is used in order to measure 
the distance between distribution of observed values and the uniform distribution, 
according to Equation 1:

 Xi =

11112∑

v=00002

(Oi
v − E)2

E
, (1)
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where: Xi is the distance for group offset i, v is the value, Oi
v  is the number of observed 

occurrences for value v on offset i, and E is the expected value (E = 80
24

= 5). The 
symbols 00002 and 11112 represent binary numbers: 0 and 15 in decimal system, 
respectively.

Thus, a characterization of randomness in the application header is obtained, in 
form of a 24-element feature vector. This vector is used in an SVM decision process, 
i.e. it is used for training and classifi cation in a typical manner.

The authors evaluated the algorithm on a ca. 100GB dataset of real and testbed 
network traffi c, obtaining respectively 99.6% and <1% of True Positives and False 
Positives, on average.

2) K-Dimensional Trees for Continuous Traffi c Classifi cation: In an interesting 
work published in 2010 by V. Carela-Español et al. [26], the authors revisit the idea 
by L. Bernaille et al. [22] of early traffi c classifi cation by analyzing the size and 
direction of the fi rst few packets of a TCP connection.

However, in this new work the authors apply the K-dimensional trees algorithm 
[27] instead, which resulted in relatively small times for training and classifi cation. 
The proposed system operates in real-time and can be continuously retrained. 
A preliminary evaluation was performed, using a ca. 1TB dataset of 12 types of real 
network traffi c.

3) Abacus: Accurate behavioral classifi cation of P2P-TV traffi c: In 2011, 
P. Bermolen et al. [9] published an exhaustive work on a classifying P2P-TV traffi c, 
preliminarily introduced in [28].

The authors present a method that counts the number of packets received by 
a given host from each of its peers. Histogram of packet counts received in a 5-second 
window is used as a feature vector for an SVM classifi cation algorithm.

Bermolen et al. present an excellent experimental analysis of performance, 
portability, and parameter sensitivity. The authors evaluated the system on a ca. 26GB 
dataset of testbed P2P-TV traffi c (SopCast, TVAnts, PPLive, and Joost) and on a ca. 
4GB of real “background” traffi c: they report 95% of True Positives and less than 
0.1% of False Positives in the worst case—for packets, bytes, and peers.

4) TCP Traffi c Classifi cation Using Markov Models: In a work published in 2010 
by G. Münz et al. [29], a lightweight method for classifi cation of TCP fl ows using 
observable Markov chains [30] is presented. The discretized packet length, direction, 
and position within the fl ow are mapped to a state. For each application of interest, 
a Markovian model is generated in the training stage. During classifi cation, the 
a-posteriori probability of observed packets is calculated for each model, and the 
maximum value is chosen.

The authors performed experimental validation on a small dataset and compared 
the results to the well-established work by L. Bernaille et al. [22]; however, these two 
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methods are inherently different. The Markov chain method yielded better stability 
of the results, with similar average precision and recall values. The authors extended 
their method in [31] by introducing a special “end of connection” Markov state, 
which improved the accuracy (validated on a larger dataset).

5) Early Classifi cation of Network Traffi c through Multi-classifi cation: The work 
by A. Dainotti et al. [11] published in 2011 presents an innovative approach of multi- 
classifi cation: the traffi c is simultaneously processed by an ensemble of several stand- 
alone classifi ers, and the fi nal result is obtained using a decision combiner algorithm [32].

Label Classifi er (see [33, 34]) Overall performance Selected?

J48 J48 Decision Tree 97.2% ۷

K-NN K-Nearest Neighbor 95.9% ۷

R-TR Random Tree 96.3% ۷

RIP Ripper 97.0% ۷

MLP Multi Layer Perceptron 82.3% ۷

NBAY Naive Bayes 43.7% –

PL PortLoad [35] 83.7% ۷

PORT Port number 15.6% –

Table 1: Stand-alone classifi ers used in [11]. The “Overall performance” column presents the overall 
classifi cation accuracy, as reported by the authors; the “Selected?” column indicates which classifi ers 

were used in the fi nal system.

Label Combiner Reference in [32] Best performance

NB Naive Bayes [36] pp. 126 93.5%

MV Majority Voting [37] pp. 112 90.8%

WMV Weighted Majority Voting [38] pp. 123 91.0%

D-S Dempster-Shafer [39] pp. 175 97.0%

BKS Behavior Knowledge Space [40] pp. 128 97.9%

WER Wernecke [41] pp. 129 97.9%

Table 2: Algorithms for combining pattern classifi ers, as applied in [11]. The “Best performance” 
column gives classifi cation accuracy for the best selection of stand-alone classifi ers working in an 

ensemble, as reported by the authors (see Table 1).
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The authors connect eight stand-alone classifi ers (see Table 1) using six state-
of-the-art combiners (see Table 2). Experimental validation on a 59GB dataset of 
real traffi c yielded the best accuracy for the BKS combiner and an ensemble of 6 
classifi ers: J48, K-NN, R-TR, RIP, MLP, and PL.

The authors highlight that in case we limit feature extraction to just the fi rst 
few packets in a fl ow, their method brings signifi cant performance improvements, 
comparing to the best results of stand-alone classifi ers working alone: for example, in 
case of just the fi rst packet being used, a 20.8% improvement. The authors chose to 
use the fi rst 4 packets, obtaining the fi nal accuracy of 98.4%; supplementary metrics 
were not reported.

6) CUTE: Traffi c Classifi cation Using TErms: In 2012, S.H. Yeganeh et al. 
published a paper [42] in which they propose a payload inspection classifi er that 
automatically fi nds protocol signatures.

For the training, the algorithm extracts common terms shared by fl ows of a given 
protocol: it aligns the fl ows and fi nds all common substrings of at least b bytes. Next, 
for each protocol, it assigns weights to terms, according to Equation 2:

 W p
t =

{
(

f t
p∑

p∈P f t
p
)ρ fp

t ≥ T

0 fp
t < T

, (2)

where fp
t  is the frequency of term t in protocol p, P is the set of all protocols, and  

W p
t  is the term weight; ρ and T are the algorithm parameters. Terms that are unique 

to protocol have weights close to 1, whereas common terms have weights close to 0.
During classifi cation, for each protocol, the algorithm searches the packet payload 

for the learned terms, and computes the average weight. The protocol with the 
maximum value is chosen as the target class.

Yeganeh et al. show by means of theoretical analysis and experimental validation, 
that in case of pattern matching for traffi c classifi cation, occurrences of terms in 
network fl ows are more important than their relative order. In practice, this means 
that it is enough to use term sets instead of lists: one can identify a certain protocol by 
checking for occurrence of terms in any order. This makes CUTE inherently simpler 
and faster than similar algorithms that employ term lists, e.g. LASER [43].

The authors used two traffi c traces from Tier-1 ISPs for experimental analysis, 
i.e. tuning the classifi cation system and validating its accuracy. They report precision 
and recall metrics above 90% for almost all protocols considered in the experiment.
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3.2. Single application detection

In this subsection, we put the algorithms that aim at single application or certain 
traffi c kind. For instance, such algorithms can be deployed on a network fi rewall in 
order to block access to given service. We maintain the numbering of papers for easy 
referring in Table 3.

7) Tunnel Hunter: Detecting application-layer tunnels with statistical 
fi ngerprinting: In a paper published in 2009 [44], M. Dusi et al. present a reliable 
method for detecting HTTP and SSH tunnels.

The algorithm is trained with legitimate (non-tunneled) HTTP and SSH traffi c. 
Each fl ow is characterized by a signature consisting of packet size, inter-arrival 
time, and arrival order. During classifi cation, a fl ow “anomaly score” is computed by 
comparing the fl ow signature to fi ngerprints of legitimate traffi c. If the value is above 
a certain level, the fl ow is considered as carrying tunneled traffi c. The authors claim 
nearly 100% completeness and accuracy (verifi ed experimentally).

8) Skype-Hunter: A real-time system for the detection and classifi cation of Skype 
traffi c: The paper by D. Adami et al. published in 2012 [45] introduces a novel 
method for identifi cation of the Skype protocol.

The authors present a detailed, packet-level analysis of the Skype traffi c and 
propose a relevant detection algorithm that combines signature-based and statistical 
procedures. The method is experimentally validated on several datasets—compared to 
standard statistical classifi ers and to a state-of-the-art Skype classifi er [46], it yielded 
better performance results.

3.3. Obtaining ground truth data

Below we describe the papers on datasets for verifying the accuracy of classifi cation 
methods.

In a typical scenario, an author of a new method will work on a trace of network 
traffi c while developing the algorithm. The traffi c composing the trace needs to be 
representative for the scope of interest of a particular research effort. The dataset 
should also indicate the real application that generated each fl ow in the dataset, so the 
researcher is able to compare the results of the algorithm with the right answer: this 
information is called ground truth.

9) GT: picking up the truth from the ground for Internet traffi c: In a 2009 paper 
published by F. Gringoli et al. [47], the authors present a distributed system for 
capturing Internet traffi c in a computer network. The system keeps the names of 
applications that generated the traffi c.

A special software agent “gt” is installed on each machine taking part in the 
experiment. The agent periodically queries the operating system for a list of opened 
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network sockets and the names of applications that own them. For each socket, it 
stores a piece of information with current time-stamp, local and remote IP address and 
port number, transport protocol, and application name. At the same time, a standard 
packet sniffer is run on the gateway router, so that all the traffi c coming from and into 
the local network is captured.

Finally, a post-processing tool “ipclass” is run. The tool connects the socket 
information collected by gt with the traffi c captured on the router. As the result, 
a traffi c trace fi le annotated with ground truth is produced. The authors validated the 
method on a 218GB dataset. For the completeness metric, they report more than 99% 
of bytes and 95% of fl ows.

10) Quantifying the accuracy of the ground truth associated with Internet traffi c 
traces: In 2011 M. Dusi et al. [48] published a paper that compares their gt tool [47] 
to traditional port- and DPI-based ground truth establishment methods.

Basing on evaluation on a ca. 200GB dataset, the authors claim that—depending 
on the protocols composing a trace—ground truth information can be incorrect for up 
to 91% bytes for port-based and 26% for DPI-based methods. The authors speculate 
that the error one might commit while applying these well-established methods to 
publicly available anonymized traces is signifi cant, especially for modern traffi c like 
Streaming, Skype, or P2P.

11) Tracedump: A Novel Single Application IP Packet Sniffer: A paper by 
P. Foremski published in 2012 [49] introduces a packet sniffer that captures traffi c of 
a single Linux process only. This solves the problem of ground truth accuracy, as the 
application name is immediately known.

The author explains implementation of a single-process packet sniffer and provides 
an architectural view on the proposed solution. The “tracedump” utility captures all 
application traffi c in real-time, including DNS traffi c. A short evaluation on BitTorrent 
traffi c is presented.

The “tracedump” tool can run a computer program in a fully controlled manner—
for instance, Graphical User Interface (GUI) testing tools can be applied to create 
a kind of specialized traffi c generator (preliminary results available at [50]).

3.4. Related works

In the last subsection, we present works that analyze IP traffi c and are similar to 
traffi c classifi cation.

12) Taking a Peek at Bandwidth Usage on Encrypted Links: In a 2011 paper 
[51], M. Dusi et al. present a simple regression-tree-based algorithm that monitors the 
amount of data that protocols transmit over encrypted tunnels (incl. IPSec).

During the training phase, both the cipher- and plain-text transmissions are visible 
to the algorithm; the plain-text is used for ground truth information. As traffi c features, 
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the authors employed probability mass function of packet sizes, and statistics related 
to changes in packet direction. During the operation phase, the algorithm extracts 
fl ow features each few seconds, and applies a regression tree algorithm in order to 
give estimates on the traffi c carried within the tunnel.

The authors evaluated their method on a ca. 50GB dataset and reported an 
acceptable accuracy: the performance depends on the differences in the networks used 
for training and testing.

13) DNS to the Rescue: Discerning Content and Services in a Tangled Web: In 
2012, I. Bermudez et al. published a paper on inferring Internet traffi c by analyzing 
its DNS context [10]. The work introduces “DN-Hunter”, a system that tags traffi c 
fl ows with their associated domain name, based on the fact that each new fl ow is 
anticipated by a DNS query.

The system consists of two modules: a fl ow sniffer, which reconstructs traffi c 
fl ows, and a DNS resolver, which maintains mapping between clients, domains, and 
servers. The authors verifi ed that fl ow tagging can be accomplished in most cases 
and could not be replaced by making a reverse DNS lookup or inspecting TLS 
certifi cates—this would fail in 94% or 86%, respectively. The key property of this 
novel method is that it can identify traffi c before the actual fl ow starts.

Using capabilities of DN-Hunter, the authors provide a detailed analysis of Content 
Delivery Networks (CDNs) in 5 datasets of total 64 million fl ows, covering thousands 
of ISP customers in US and Europe. Analysis of real traffi c revealed domains handled 
by hundreds of servers that change with time. The authors discovered a diurnal pattern 
of more machines during late evenings; a similar phenomenon was noticed for CDNs 
and their domains. For an 18-day observation period about 100,000 new domains 
emerged each day, which refl ects the rapid growth of the Internet.

DN-Hunter can map distribution of particular content across CDNs—the authors 
found that LinkedIn was hosted by Edgecast (59% of fl ows), Akamai (17%), 
CDNetworks (3%), and on own servers (22%). The system can also reveal the 
domains of a specifi c CDN: top three domains provided by Amazon EC2 in Europe 
were cloudfront.net (20%), playfi sh.com (16%), and sharethis.com (5%). Finally, 
DN-Hunter can tell the most popular services delivered on a given IP port number—
for port 25 the authors observed service tags of “smtp”, “mail”, “mxN”, and several 
others. Interestingly, they also identifi ed several BitTorrent trackers running on the 
Google Appspot service.

4. Discussion

1. |There are many ways to classify the traffi c. Each work reviewed in sections 
3.1. and 3.2. presents a different approach to classifi cation: analysis of packet 
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count, length, payload, etc.—see Table 3 for a summary. We speculate that 
each modern Internet protocol exhibits so many phenomena that it has plenty 
of observable traffi c characteristics that can reveal its generating application. 
Moreover, A. Dainotti et al. in [11] (sect. 3.1.) proved that it is possible to 
combine multiple different classifi ers into one system that unveils high 
performance.

 We argue that:

 (a)  there are many traffi c features yet to be found (anticipated e.g. by 
[9,10,15]);

 (b)  traffi c classifi cation algorithms can be combined so they complement each 
other (e.g. [15] for UDP and [31] for TCP traffi c);

 (c)  there is much room for improvement in the design of traffi c classifi ers that 
analyze several kinds of traffi c features at the same time, i.e. multi-level 
traffi c classifi ers (e.g. [6, 11]).

2.  Classifi cation methods need thorough validation. New services appear 
rapidly on the Internet, and the application protocols get more sophisticated 
[7], hence modeling of new kinds of traffi c gets harder. For instance, at the 
time of this writing, there is no adequate traffi c model for the SPDY [54] 
protocol, introduced by Google and deployed for its popular “Gmail” service. 
Consequently, robust traffi c classifi cation methods need thorough experimental 
validation, as purely theoretical approach is insuffi cient. A certain sign of 
a high-quality paper is a detailed section on validation, employing an up-to-
date traffi c trace.

 We give our recommendations for validating classifi cation methods:

 (a)  usage of large, representative, and geographically diverse datasets with 
relevant amounts of background traffi c (e.g. [8, 15]);

 (b)  presentation of the results in terms of well-established and complementary 
performance metrics—e.g. the recall metric together with precision, or 
True Positives together with False Positives (e.g. [15, 31]);

 (c)  analysis of parameter sensitivity of the algorithm (e.g. [9, 42]).

3.  The problem of common traffi c datasets is still unsolved. Several respected 
scientists demanded publication of common, packet-level traffi c datasets labeled 
with ground truth: e.g. [55] in 2007 and [7] more recently. This would enable 
systematic and fair comparison of classifi cation methods, but the problem still 
remains largely unsolved. Some authors published their datasets, but none of 
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them satisfi es all of the postulated requirements1. Others, like CAIDA [57] or 
MAWI [58] publish datasets without ground truth and packet payload, which 
limits their usability.

 However, authors of the studies referenced in section 3.3. made ground truth 
data collection simpler and more comprehensible. Particularly, the “gt” [47] 
software agent seems to be a candidate for the standard ground truth tool for 
current and future research on Internet traffi c.

Paper Traffi c features Experimental dataset

1) Finamore et al. [15] For 80-packet windows: amount 
of randomness in the fi rst 12 bytes 
of payload

100GB of real and testbed traffi c 
(P2P-TV, Skype)

2) Carela-Español et al. [26] Size of the fi rst few packets; port 
numbers

<1TB of real traffi c from CoMo-
UPC [52]; ground truth set with 
DPI

3) Bermolen et al. [9] Histogram of packet counts 
received from each peer, in a time 
window (5s)

26GB of testbed traffi c from 
30 peers; <4GB of real traffi c 
without P2P-TV

4) Münz et al. [29] For the fi rst few TCP packets: 
payload size, packet direction, 
position in stream

Self-made traces: 
300 connections for training, 
500 for testing

5) Dainotti et al. [11] Various Self-made 59GB trace of real 
traffi c (Oct 2009); ground truth 
set with DPI

6) Yeganeh et al. [42] Existence of precomputed terms in 
packet payload

Two 30-minute traces from tier-1 
ISPs on different continents; no 
encrypted fl ows

7) Dusi et al. [44] Packet size and logarithm of inter-
arrival time (quantized values)

Self-made HTTP and SSH traffi c 
(legitimate and tunneled)

8) Adami et al. [45] Packet size, packet payload 
(signatures), inter-arrival times

Self-made dataset, Tstat Skype 
traces [53], and DARPA dataset

12) Dusi et al. [51] For time-windows: histogram of 
packet sizes; vector of packet 
counts and sizes until change in 
transmission direction occurs

Self-made, real traffi c: 36GB 
captured with “gt” [47] (Oct 
2009), 10GB with ground truth 
set using DPI (Jul 2010)

13) Bermudez et al. [10] DNS response received within 
a time-window preceding the IP 
fl ow

5 diverse sets of real traffi c from 
EU and US; 64 million TCP 
fl ows, almost 2 days of traffi c

Table 3. Summary of the reviewed papers: traffi c features and datasets used for experimental validation

1 A short list of published datasets can be found at [56]
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5. Conclusions

In this paper, we reviewed 13 signifi cant papers on traffi c classifi cation and 
related matters, published during 2009-2012. We presented the review in 4 categories: 
general traffi c classifi cation (sect. 3.1.), single protocol detection (sect. 3.2.), the 
ground truth problem (sect. 3.3.), and related works (sect. 3.4.). We showed diversity 
in methods for characterizing modern IP traffi c and discussed a few important issues, 
giving our recommendations. We also presented a succinct “review of reviews” in 
traffi c classifi cation in section 2.

It is almost a decade since fi rst major publications on traffi c classifi cation appeared 
[13], but the authors of the reviewed papers proved that it is still possible to fi nd 
new algorithms [10, 15], or signifi cantly improve the existing ones [26]. In order to 
classify an IP fl ow, one can choose to either focus on a specifi c traffi c feature (packet 
counts [9], lengths [26], payload characteristics [15, 42], etc.), use many features 
at once (e.g. [31, 45]), or combine several approaches in a multi-classifi er system ( 
[11] in sect. 3.1.). Especially for the latter technique we speculate a vast space for 
improvement.

Classifi cation methods need to be verifi ed on real IP traffi c. The problem of 
obtaining adequate traces labeled with ground truth (introduced in sect. 3.3.) is still 
largely unsolved. This limits systematic and fair comparison of existing methods: there 
are no “reference benchmarks” in traffi c classifi cation. Besides, the authors of [48] 
suggest that there may be a signifi cant error in self-made traffi c traces anyway. Two 
utilities— “gt” [47] and “tracedump” [49]—can be applied to assure the accuracy of 
ground truth data.

Let us conclude with an observation that we are able to tell things apart if we can 
see the differences among them, i.e. the more one can see, the more has he the power 
to discriminate. Our paper showed diversity in methods for classifying IP traffi c—in 
our opinion, an interesting direction for future research on traffi c classifi cation.
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O wielu sposobach klasyfi kacji ruchu internetowego: 
krótki przegląd wybranych publikacji

Streszczenie

Artykuł prezentuje przegląd 13 wybranych prac z dziedziny klasyfi kacji 
ruchu internetowego pod kątem różnorodności w zastosowanych metodach. Prace 
zostały wybrane z najciekawszych naszym zdaniem publikacji z ostatnich kilku lat 
(2009–2012). W porównaniu do istniejących przeglądów literaturowych – np. [13], 
[14], czy [3] – niniejszy artykuł dotyczy nowszych badań, oraz wykazuje, że łączenie 
wielu metod klasyfi kacji w jeden system może być ciekawym kierunkiem dla przy-
szłych badań w tej dziedzinie.

Klasyfi kacja ruchu internetowego polega na odgadnięciu nazwy protokołu komu-
nikacyjnego lub aplikacji, która wygenerowała dany ciąg pakietów IP. Informacja 
ta jest przydatna np. w zarządzaniu ruchem w sieciach internetowych, gdy potrzeba 
kształtować ruch w zależności od jego rodzaju. Klasyfi kacja ruchu znajduje zastoso-
wanie także w zagadnieniach sieciowych związanych z wdrażaniem zasad bezpieczeń 
stwa (np. zakaz stosowania aplikacji Skype), monitorowaniem natężenia ruchu (np. 
wykrywanie ataków DoS), oraz wielu innych.

Przegląd literatury został podzielony na 4 kategorie: klasyfi kacja ruchu (rozdział 
3.1., prace nr 1–-6), detekcja pojedynczych aplikacji (rozdział 3.2., prace nr 7–8), 
metody pozyskiwania „wiedzy bazowej” (ang. ground truth, rozdział 3.3., prace 
nr 9–11), oraz inne (rozdział 3.4., prace nr 12 i 13). Wszystkie prace zostały podsu-
mowane w Tabeli 3.

W ostatnim rozdziale (str. 10) prezentujemy wyniki przeglądu. Pokazujemy na 
przykład, że istnieje wiele metod klasyfi kacji, które mogą być połączone w jeden 
system i wzajemnie się uzupełniać – przez multiklasyfi kację (ang. multi-classifi cation) 
lub obsługę różnych części ruchu (np. [31] dla TCP i [15] dla UDP). Podajemy także 
nasze rekomendacje dotyczące walidacji metod klasyfi kacji i zbierania śladów ruchu 
internetowego.


