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Identification of the heat transfer coefficient in
phase change problems
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Abstract In this paper, an algorithm will be presented that enables
solving the two-phase inverse Stefan problem, where the additional infor-
mation consists of temperature measurements in selected points of the solid
phase. The problem consists in the reconstruction of the function describing
the heat transfer coefficient, so that the temperature in the given points of
the solid phase would differ as little as possible from the predefined values.
The featured examples of calculations show a very good approximation of
the exact solution and stability of the algorithm.
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Nomenclature

b – length of domain, m
c – specific heat, J/(kg K)
d – parameter in mutation operator
D – domain of the problem
Dl – subset of domain D
e – relative percentage error, %
J – functional
L – heat of solidification, J/kg

∗E-mail address: d.slota@polsl.pl



62 D. Słota

npop – population size
M – number of control points
N – number of generations
N1 – number of sensors
N2 – number of measurements from each sensor
pc – crossover probability
pm – mutation probability
r – random number
t – time, s
tk – time of end of solidification, s
t∗ – time of end of problem, s
T – temperature, K
T0 – initial temperature, K
T∞ – surrounding temperature, K
T ∗ – temperature of melting point, K
U – temperature measurements, K
V, Vα – sets of functions
x, z – space variable, m

Greek symbols

α – heat transfer coefficient, W/(m2 K)
γ – regularization parameter
Γij – boundary of domain
Γg – phase change moving interface (freezing front)
λ – thermal conductivity, W/(m K)
� – mass density, kg/m3

σ – standard deviation
σp – standard deviation in percentage of the average value
ξ – function describing position of the freezing front
τ – current generation number

1 Introduction

The two-phase Stefan problem is a mathematical model of solidification
of pure metals, where the distribution of temperature in solid and liquid
phases is described by a heat conduction equation with initial and boundary
conditions. The position of the freezing front (moving interface) is described
by Stefan condition and the condition of temperature continuity. The Stefan
problem consists in the determination of temperature distribution within
a domain and the position of the freezing front when the initial condition,
boundary conditions and thermophysical properties of a body are known.

The inverse Stefan problem consists in the determination of the ini-
tial condition, boundary conditions or thermophysical properties of a body.
Lack of a portion of input information is compensated for with additional



Identification of the heat transfer coefficient. . . 63

information about the effects of the initial conditions operation. In the
inverse Stefan problem, it is most often assumed that the additional infor-
mation is a partial knowledge of the moving interface position, its velocity
in a normal direction or temperature in selected points of a domain. The
problems where the additional information is the position of the moving
interface tend to be called the design problems.

It is possible to find an exact analytical solution of the inverse Stefan
problem only in few simple cases. In other cases we are left with approx-
imate solutions only (see for example [1–9]). In papers [3, 6], the authors
used the Adomian decomposition method or variational iteration method
for solving a single-phase inverse design Stefan problem. An advantage of
those methods was obtaining a solution in the form of continuous functions
and absence of the requirement of domain discretization. Their disadvan-
tage was that they could only be applied to solve a single-phase inverse
design Stefan problem. In paper [9], a solution of the inverse design Stefan
problem is found in a linear combination form of functions satisfying the
heat conduction equation. The coefficients of the combination are deter-
mined by the least square method to minimize the maximal defect in the
initial-boundary data. This method requires that the interface position is
known and therefore, it can only be applied in design problems and cannot
be used where we only know the temperature measurement in a considered
domain. The method described in paper [2] consists in minimization of
a functional, whose value is the norm of difference between the given po-
sitions of phase-change front and the positions reconstructed based on the
selected function describing the convective heat transfer coefficient. To find
the functional’s minimum, the Nelder-Mead method [10,11] was used.

In this paper, an algorithm will be presented that enables solving the
two-phase inverse Stefan problem, where the additional information con-
sists of temperature measurements in selected points of the solid phase.
The problem consists in the reconstruction of the function describing the
heat transfer coefficient, so that the temperature in the given points of the
solid phase would differ as little as possible from the predefined values.
Based on the given information about temperature measurement, a func-
tional was built defining the error of an approximate solution. To find the
functional’s minimum, a genetic algorithm was used [12–14]. Genetic algo-
rithms, based on mechanisms which rule the living creatures’ evolution, are
a very useful tool for solving the global optimization problems, including
ones with a large number of variable decisions. Recently, genetic algorithms
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have found growing applications in solving of direct and inverse problems
for different types of partial differential equations [15–19]. The application
of a genetic algorithm for the inverse design Stefan problem is considered in
papers [20,21]. The application of genetic algorithms improve the accuracy
of obtained results, compared to the results obtained in paper [2] when using
the Nelder-Mead method (see also [21]). To solve a direct Stefan problem,
the alternating phase truncation method was applied [22, 23].

The inverse Stefan problem belongs to the ill-posed problems, i.e. its
solution is unstable due to errors of input data. This means that errors
that are small at the beginning may cause huge problems at the end. In or-
der to avoid such behaviour, appropriate stabilizing procedures are applied.
The most frequent ones are: the function specification method [24] and the
Tikhonov regularization method [25, 26]. In this paper, the Tikhonov reg-
ularization method has been used due to the accuracy and stability of the
results obtained. To determine the regularization parameter, the discrep-
ancy principle, proposed by Morozov, has been used [25, 26].

2 Governing equations

Let us consider a vertical device for continuous casting, working in an undis-
turbed cycle, assuming that the cross-section of an ingot is a circle with a ra-
dius of b. In addition, let us assume that the cooling conditions, changing
in relation to the ingot casting direction, are identical throughout the ingot
circumference. Let us also assume that the heat flux takes place only in
the direction perpendicular to the ingot axis. This assumption results from
the fact that the amount of heat conducted in the ingot’s motion direction,
compared to the amount of heat conducted in a direction perpendicular to
the ingot axis, is scanty [27, 28]. With such assumptions, as well as due to
thermal symmetry of the ingot’s domain, the heat exchange process is de-
scribed by a two-phase Stefan problem, where the time, t, and ingot casting
speed, v, are bound by the relation: t = z/v, where z is a spatial variable
along the ingot’s length.

Let the boundary of domain D = Ω× [0, t∗] be divided into five compo-
nents (Fig. 1a):

Γ11 = {(0, t); t ∈ [0, tk)} , Γ21 = {(b, t); t ∈ [0, tp)} ,

Γ12 = {(0, t); t ∈ [tk, t∗]} , Γ22 = {(b, t); t ∈ [tp, t∗]} ,

Γ0 = {(x, 0); x ∈ [0, b]} ,
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for which an initial condition and boundary conditions are predefined. Let
D1 denote the subset of domain D, which is occupied by a liquid phase, and
let D2 denote the domain occupied by a solid phase. The freezing front will
be denoted as Γg. Let us assume that it is described by function x = ξ(t).

(a)

Γ0

Γ11

Γ12

Γ21

Γ22

Γg

D1

D2

t

x

tp

tk

t∗

b0
(b)

Figure 1. Domain of the two-phase problem (a) and positions of measurement points (b).

With the known values of temperatures in selected points of the solid
phase ((xi, tj) ∈ D2):

T2(xi, tj) = Uij , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, (1)

where N1 denotes the number of sensors and N2 denotes the number of
measurements from each sensor, function α(t) defined on boundaries Γ2k

(k = 1, 2) is to be determined, and function ξ(t) describing the freezing front
position and the distribution of temperatures Tk in domains Dk (k = 1, 2),
which inside domains Dk (for k = 1, 2) fulfil the heat conduction equation:

ck �k
∂Tk

∂t
(x, t) =

1
x

∂

∂x

(
λk x

∂Tk

∂x
(x, t)

)
, (2)

on boundary Γ0, they fulfil the initial condition (T0 > T ∗):

T1(x, 0) = T0, (3)
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on boundaries Γ1k (k = 1, 2), they fulfil the homogeneous second kind
boundary conditions:

∂Tk

∂x
(x, t) = 0, (4)

on boundaries Γ2k (k = 1, 2), they fulfil the third kind boundary conditions:

−λk
∂Tk

∂x
(x, t) = α(t)

(
Tk(x, t) − T∞

)
, (5)

whereas on the freezing front Γg, they obey the temperature continuity
condition and the Stefan condition:

T1

(
ξ(t), t

)
= T2

(
ξ(t), t

)
= T ∗, (6)

L �2
dξ(t)
dt

= −λ1
∂T1(x, t)

∂x

∣∣∣∣
x=ξ(t)

+ λ2
∂T2(x, t)

∂x

∣∣∣∣
x=ξ(t)

, (7)

where ck, �k and λk are the specific heat, mass density and thermal con-
ductivity in the liquid phase (k = 1) and solid phase (k = 2), respectively,
α is the heat transfer coefficient, T0 is initial temperature, T∞ is the sour-
rounding temperature, T ∗ is temperature of melting point, L is heat of
solidification, and t and x refer to time and spatial location, respectively.

The direct Stefan problem resulting from equations (2)–(7) for a given
heat transfer coefficient was solved via the alternating phase truncation
method [22,23]. As a result, the temperature distribution in the solid phase
was obtained, constituting the reference point for a comparison of results.
From the distribution, temperatures Uij, simulating the temperature mea-
surements, are obtained. Further in the paper, the so obtained temperatures
will be treated as accurate.

Function α(t), describing the heat transfer coefficient, will be sought
in the form of a function dependent (in a linear or non-linear way) on n
parameters:

α(t) = α(t;α1, α2, . . . , αn). (8)

Let V denotes a set of all functions in the form of (8), where αi ∈ [αl
i, α

u
i ]

for i = 1, . . . , n. For the determined function α(t) ∈ Vα, the problem
(2)–(7) becomes a direct Stefan problem, the solution of which allows find-
ing the courses of temperatures Tij = T2(xi, tj) corresponding to function
α(t). By taking advantage of the calculated temperatures Tij and the given
temperatures Uij , we can build a functional which will determine the error
of the approximate solution:

J
(
α(t)

)
=

∥∥T − U
∥∥2 + γ

∥∥α(t)
∥∥2

, (9)
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where γ is the regularization parameter and

∥∥T − U
∥∥2 =

N1∑
i=1

N2∑
j=1

(
Tij − Uij

)2 and
∥∥α(t)

∥∥2 =
∫ t∗

0

(
α(t)

)2
dt.

To determine the regularization parameter, the discrepancy principle
proposed by Morozov was used, according to which the regularization pa-
rameter is determined from the equality:∥∥T − U

∥∥ = δ, (10)

where δ is the error estimation of the input data U . In practice, for a
selected set of values γj, j = 0, 1, . . . , n of the regularization parameter,
there is element uδ

γj
minimizing the Tikhonov functional (9). Next, as the

sought regularization parameter value, such value of γj0 is selected, for which
equation (10) is satisfied with the required accuracy.

3 Genetic algorithm

For minimization of the Tiknonov functional (9), genetic algorithms were
used. These algorithms, based on mechanisms which rule the living crea-
tures’ evolution, are a very useful tool for finding the extremes of the func-
tion [12–14]:

f : D → R, D ⊂ R
n. (11)

Function f is also called an objective function and the set D, a feasible set.
Genetic algorithms process a set of chains of a determined length, called the
chromosomes. A single element of the chain is called the gene. In a classic
algorithm, genes take on one of the values: zero or one. This is the so-called
binary encoding. In this case, the length of the chromosome depends on the
size of the domain D and on the accuracy to which we want to find the solu-
tion. Also, floating-point encoding (real number representation) is applied,
where chromosomes are chains with as many components as the number of
variables in the objective function, with each gene assuming real values from
a relevant interval. In this case, the length of the chromosome depends on
the number of variables of the objective function only, and does not depend
on the accuracy to which we want to find the solution. The accuracy of the
solution only depends on the accuracy of the floating-point representation
used by the applied compilator. In the case of binary encoding, the chro-
mosome is longer (except where decision variables may assume two values
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at the most) than in the case of floating-point encoding, which results in
the algorithm performing slower [13]. A set of all processed chromosomes is
called a population. At the beginning of execution of algorithm, the initial
population is created at random, based on a feasible set D (domain of func-
tion f). Next, for each chromosome, a fitness function value is calculated.
This value reflects how good an approximation of the sought solution is the
decision variables vector (i.e. the vector composed of function f arguments)
represented by a given chromosome. The fitness function can be equal to
the objective function (11) or it may depend on the objective function in
a different way [13, 14]. Based on the fitness function value, selection of
chromosomes for further processing takes place. The selection consists of
selecting a set of chromosomes from the actual population. A set of a size
identical to that of the initial population is selected (some chromosomes
may be selected many times). During the selection process, each chromo-
some is first assigned a probability of being selected to the new population
and next, based on such probability, a new population is selected (at ran-
dom).

Later on, the sampled chromosomes are subjected to crossover and mu-
tation operators. These operators correspond to the processes taking place
during the evolution of living creatures: crossover of parents’ chromosomes
and mutation of genes. The purpose of the crossover is an exchange of part
of the genetic material between the chromosomes, which may lead to obtain-
ing a new chromosome with a better fitness function value. The purpose of
the mutation is a change of the value of a single gen, meaning an introduc-
tion of a new "genetic material" to the population, which material could not
be obtained via using a crossover operator alone. In a genetic algorithm,
two numbers from the [0, 1] interval are determined, the so-called crossover
probability, pc, and the mutation probability, pm. These numbers reflect the
probability of applying a crossover or mutation operator to chromosomes or
their genes. A genetic algorithm may also adopt an elitist model, consisting
in the protection of the best chromosomes from the previous population.
As a result of such operations, a new population is created, which is then
subjected to the same transformations. The performance of an algorithm
is stopped at the moment a suitable criterion has been fulfilled (e.g. an ap-
propriate function value or number of populations has been achieved, etc.).

There are lots of different selection methods and crossover or mutation
operators described in the literature [12–14]. In the genetic algorithm ap-
plied in the calculations, for the representation of the decision variables
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vector, a chromosome was used in the form of a vector of real numbers (real
number representation). A tournament selection and the elitist model were
applied in the algorithm. This selection is carried out so that two chromo-
somes are drawn and the one with better fitness goes to a new generation.
There are as many draws as individuals that the new generation is supposed
to include. In the elitist model, the best individual of the previous genera-
tion is saved and, if all individuals in the current generation are worse, the
worst of them is replaced with the saved best individual from the previous
population.

As the crossover operator, arithmetical crossover was applied, where as
a result of crossing of two chromosomes α1 = (α1

1, α
1
2, . . . , α

1
n) and α2 =

(α2
1, α

2
2, . . . , α

2
n), their linear combinations are obtained:

α1′ = r α1 + (1 − r)α2, (12)

α2′ = r α2 + (1 − r)α1, (13)

where parameter r is a random number with a uniform distribution from
the domain [0, 1].

In the calculations, a nonuniform mutation operator was used as well.
During mutation, the αi gene from chromosome α = (α1, . . . , αi, . . . , αn) is
transformed according to the equation:

α′
i =

{
αi + ∆(τ, αu

i − αi),
αi − ∆(τ, αi − αl

i),
(14)

and a decision is taken at random which from the above formulas should be
applied, where:

∆(τ, x) = x
(
1 − r(1− τ

N
)d

)
, (15)

and r is a random number with a uniform distribution from the domain [0, 1],
τ is the current generation number, N is the maximum number of genera-
tions and d is a constant parameter (in the calculations, d = 2 was assumed).
A flow diagram of the applied genetic algorithm is presented in Fig. 2.
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Figure 2. Flowchart of the genetic algorithm.

In calculations parameters used for the genetic algorithm are as follows:

• population size npop = 70,

• number of generations N = 500,

• crossover probability pc = 0.7

• mutation probability pm = 0.1.

Calculations were carried out for ten different initial settings of a random
numbers’ generator. The operators and the values of the genetic algorithm
parameters applied in the calculations were selected on the basis of a num-
ber of numerical experiments carried out for an design inverse Stefan prob-
lem [29–31].

4 Numerical example

Let us present the examples illustrating the exactness and stability of the
discussed algorithm. The following parameter values were assumed:
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b = 0.08 m, λ1 = 33 W/(m K), λ2 = 30 W/(m K), c1 = 800 J/(kg K),
c2 = 690 J/(kg K), �1 = 7000 kg/m3, �2 = 7500 kg/m3, L = 270000 J/kg,
T ∗ = 1773 K, T∞ = 323 K and T0 = 1813 K.

In the alternating phase truncation method, the finite difference method
was utilized, and the calculations were carried out on a grid with discretiza-
tion steps equal ∆t = 0.1 and ∆x = b/500. A change of the grid density
did not have any significant influence on the results obtained.

Function α(t) was sought in the form:

α(t) =

⎧⎪⎨
⎪⎩

α1 for t ∈ [0, tα1 ],
α2 for t ∈ (tα1 , tα2 ],
α3 for t ∈ (tα2 , t

∗],
(16)

where tα1 = 38 s, tα2 = 93 s. The set of constraints Vα was determined in
the following way:

Vα =
{
α(t); α1 ∈ [1000, 1500], α2 ∈ [500, 1000], α3 ∈ [100, 500]

}
.

The exact values of the sought coefficients αi were:

α1 = 1200, α2 = 800, α3 = 250.

Table 1. Number of control points.

Position/Time 1 s 5 s 10 s

A 387 78 39

B 375 75 38

C 361 73 37

It was also assumed in the calculations that there was one thermocouple
in the considered domain (N1 = 1) placed, respectively, at the distance
of 5 mm (A), 10 mm (B) and 15 mm (C) from the domain boundary
(Fig. 1b). The temperature readings were taken every 1 s, 5 s or 10 s. The
number of measurements from sensor (N2; also called the number of control
points) is presented in Tab. 1. The calculations were based on the exact
temperature values and on the values disturbed by a random error with
normal distribution equal to 0.5%, 1% and 2%.
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Tables 2 and 3 compile the calculation results for the case of placing the
sensor in position A and, successively, in C. The mean (derived from ten
start-ups of the genetic algorithm) values of the reconstruction of the heat
transfer coefficient, relative percentage error, standard deviation expressed
as the weighted average percentage are shown in the tables. Accordingly,
in the case of the input data given without perturbation, the heat transfer
coefficient is reconstructed very well and with a minimal error, which may
be further reduced by increasing the maximal number of generations in
the genetic algorithm; however, such procedure is time consuming. Also,
the distribution (scatter) (measured by standard deviation) of the obtained
results is very small. For the input data burdened with errors, the derived
results contain an error that is generally considerably smaller than the input
data errors and never exceeds their values. Still, the scatter of the results
is not big and only in four cases its percentage value exceeds a half of the
input data errors percentage value. The accuracy of reconstruction of the
heat transfer coefficient is insignificantly decreased with the sensor moved
further from the domain boundary. Such response is consistent with the
expectations, as the impact of boundary conditions is smaller at farther
distance from the boundary. For the sensor in position B, similar results
were obtained.

Figure 3. Exact (solid line) and reconstructed (dots) distributions of the temperature
in the measurement points for temperature control every ten seconds and for
perturbation equal to 2%.
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Table 2. Results of the calculations (position A, α – reconstructed values of the heat
transfer coefficient, e – relative percentage error, σ – standard deviation, σp –
standard deviations in percent of mean value).

Per. α e [%] σ σp [%]

1 s 0% 1200.00
800.00
250.00

0.000073
0.000195
0.000200

0.002690
0.005465
0.001969

0.000224
0.000683
0.000787

0.5% 1196.50
800.39
250.22

0.291535
0.048948
0.089267

1.377100
0.595400
0.109240

0.115094
0.074389
0.043657

1% 1199.69
800.90
250.16

0.025521
0.112969
0.066133

1.075164
0.850492
0.135278

0.089620
0.106191
0.054075

2% 1200.29
802.37
249.99

0.023979
0.296188
0.004000

0.221830
0.435958
0.046710

0.018481
0.054334
0.018685

5 s 0% 1199.69
800.26
249.95

0.026056
0.032708
0.018700

1.215977
0.765004
0.163492

0.101358
0.095594
0.065409

0.5% 1195.25
799.78
250.01

0.395910
0.027146
0.003800

0.320031
1.194997
0.150159

0.026775
0.149415
0.060061

1% 1194.98
801.57
250.05

0.418431
0.195760
0.020033

0.068284
0.766809
0.200388

0.005714
0.095664
0.080139

2% 1199.30
801.54
249.06

0.058292
0.192042
0.377100

1.646662
1.285823
0.185303

0.137302
0.160420
0.074402

10 s 0% 1199.69
800.42
249.92

0.025840
0.052719
0.031800

1.065134
0.825494
0.174393

0.088784
0.103132
0.069779

0.5% 1199.61
799.62
250.30

0.032375
0.046937
0.118933

1.194603
0.582495
0.154738

0.099582
0.072846
0.061822

1% 1195.50
800.39
250.07

0.375063
0.049208
0.029467

0.234386
0.438346
0.126111

0.019606
0.054766
0.050430

2% 1195.26
805.05
248.83

0.394743
0.631583
0.469767

0.102938
0.656153
0.163678

0.008612
0.081504
0.065780
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Table 3. Results of the calculations (position C; notations the same as in Tab. 2 above).

Per. α e [%] σ σp [%]

1 s 0% 1200.60
799.38
250.05

0.049667
0.077875
0.021733

1.736398
1.809117
0.203791

0.144628
0.226316
0.081499

0.5% 1202.18
796.85
250.28

0.181431
0.393563
0.111200

3.536819
2.903134
0.189426

0.294201
0.364326
0.075686

1% 1201.91
795.16
250.38

0.159278
0.605167
0.151233

2.787576
2.527743
0.225868

0.231929
0.317892
0.090211

2% 1199.85
793.03
250.38

0.012799
0.871167
0.153033

0.053556
1.365088
0.219896

0.004464
0.172136
0.087824

5 s 0% 1200.03
799.81
250.03

0.002847
0.023979
0.013933

0.076617
1.466149
0.328218

0.006385
0.183313
0.131269

0.5% 1199.99
798.93
250.37

0.000382
0.134344
0.149733

0.236845
1.054698
0.136987

0.019737
0.132015
0.054713

1% 1200.04
793.97
250.87

0.003465
0.753854
0.346633

0.131360
1.024561
0.247203

0.010946
0.129043
0.098540

2% 1200.93
811.05
247.75

0.077826
1.380698
0.898900

2.534864
2.728191
0.433034

0.211074
0.336379
0.174785

10 s 0% 1200.01
799.97
249.97

0.000917
0.004156
0.010567

0.070804
1.380651
0.224098

0.005900
0.172589
0.089649

0.5% 1200.07
797.62
250.54

0.005556
0.296969
0.214533

0.099598
1.282471
0.233734

0.008299
0.160786
0.093293

1% 1199.99
802.37
249.46

0.000813
0.296781
0.217333

0.025862
0.770827
0.156865

0.002155
0.096068
0.062883

2% 1208.36
800.34
248.84

0.696757
0.043042
0.462900

11.24376
8.100852
0.646168

0.930497
1.012171
0.259669
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Figure 3 illustrates the exact and reconstructed temperature distribu-
tion at the control points when the temperature was read every ten seconds,
with perturbation equal to 2%. Accordingly, the calculations rendered very
big consistency between the exact and the reconstructed temperature dis-
tribution. The mean percentage error of temperature reconstruction (in
comparison with the exact data), in the case of placing the sensor in posi-
tion A was 0.07%. In such case, the maximal percentage error of tempera-
ture reconstruction at a single control point was 0.14%, mean absolute error
was 0.77 K, whereas the maximal absolute error equalled 1.46 K. For the
location of the sensor in position B the errors were: 0.14%, 0.3%, 1.54 K
and 3.09 K. For the position C: 0.05%, 0.57%, 0.6 K and 8.46 K. In each
case, the maximal percentage error was considerably smaller than the input
data errors, which in the discussed case, equalled to 2%. Nonetheless, the
mean errors were very small. The increase of maximal errors occurred when
the sensor moved further from the domain boundary. A similar response
was also observed in the reconstruction of the freezing front. In this case,
the mean percentage errors were: 0.12% when the sensor was in position A,
0.31% for position B and 0.34% for position C. In Fig. 4 the exact and
reconstructed position of the freezing front are shown for the calculations
involving the sensor in position C, temperature control performed every five
and ten seconds, and perturbation equal to 2%. In other cases, the tem-
perature distributions and location of the freezing front were reconstructed
very well.

(a) (b)

Figure 4. Exact (solid line) and reconstructed (dots) position of the freezing front for
calculation for sensor in position C, temperature control every five (a) and ten
seconds (b) and for perturbation equal to 2%.
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5 Conclusions

In this paper, an algorithm has been presented that enables solving the
two-phase inverse Stefan problem where the additional information consists
of temperature measurements in selected points of the solid phase. The
problem consists in the reconstruction of the function describing the heat
transfer coefficient, so that the temperature in the given points of the solid
phase would differ as little as possible from the predefined values. In nu-
merical calculations, the alternating phase truncation method, the genetic
algorithm and the Tikhonov regularization were used.

The featured examples of calculations show a very good approximation
of the exact solution and stability of the algorithm in terms of the number
of control points and the input data errors. Another important thing is
a small scatter of the results obtained during calculations for different initial
settings of the pseudorandom numbers’ generator.
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