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Abstract Two phase flow experiments with different superficial veloc-
ities of gas and water were performed in a vertical upward isothermal co-
current air-water flow column with conditions ranging from bubbly flow,
with very low void fraction, to transition flow with some cap and slug bub-
bles and void fractions around 25%. The superficial velocities of the liquid
and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s,
respectively. Also to check the effect of changing the surface tension on the
previous experiments small amounts of 1-butanol were added to the water.
These amounts range from 9 to 75 ppm and change the surface tension.
This study is interesting because in real cases the surface tension of the wa-
ter diminishes with temperature, and with this kind of experiments we can
study indirectly the effect of changing the temperature on the void fraction
distribution. The following axial and radial distributions were measured in
all these experiments: void fraction, interfacial area concentration, interfa-
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cial velocity, Sauter mean diameter and turbulence intensity. The range of
values of the gas superficial velocities in these experiments covered the range
from bubbly flow to the transition to cap/slug flow. Also with transition
flow conditions we distinguish two groups of bubbles in the experiments,
the small spherical bubbles and the cap/slug bubbles. Special interest was
devoted to the transition region from bubbly to cap/slug flow; the goal was
to understand the physical phenomena that take place during this transi-
tion A set of numerical simulations of some of these experiments for bubbly
flow conditions has been performed by coupling a Lagrangian code, that
tracks the three dimensional motion of the individual bubbles in cylindrical
coordinates inside the field of the carrier liquid, to an Eulerian model that
computes the magnitudes of continuous phase and to a 3D random walk
model that takes on account the fluctuation in the velocity field of the car-
rier fluid that are seen by the bubbles due to turbulence fluctuations. Also
we have included in the model the deformation that suffers the bubble when
it touches the wall and it is compressed by the forces that pushes it toward
the wall, provoking that the bubble rebound like a ball.

Keywords: Bubbly flow measurements; Eulerian and Lagrangian models; Interfacial
area concentration

Nomenclature

a(X(t), t) – drift term of the stochastic differential equation
b(t) – difussion coefficient of the stochastic differential equation
CD – drag coefficient
Cv – coefficientt of virtual mass force
D – tube diameter, and conductivity probe diameter
db – bubble diameter
dneedle – tip diameter
Eo – Eötvos adimensional number
ê – unit vector
fi – interfacial force per unit volume
F – force
g – gravitational acceleration
j – superficial velocity
k – turbulent kinetic energy
Mg – molecular weight of the gas
N(0, 1) – normal distribution of zero mean and unity variance
Nµ – viscosity adimensional number
�nI,j – unit vector normal to the j-th interface
p – pressure
r – radial coordinate
R – tube radius
Rb – bubble radius
Rg – universal constant of the gases
Re – Reynolds number
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S – area
∆S0k – distance from the front tip to the k-th rear tip
T – temperature
Ti – (i = 1, 2, 3, 4) tips of the conductivity probe sensors
t – time
u – velocity
u∗ – friction velocity
u′ – fluctuating component of the velocity
�um,0k – measured velocity in the direction of the unit vector ê0k

V – volume
W – work
W (t) – Wiener process at time t
y – distance from the bubble centre to the wall
z – axial coordinate

Greek symbols

α – void fraction
αl – liquid fraction
∆ – time integration step
κ – Von-Karman constant
θ – azimuthal coordinate
µ – viscosity
ρ – density
ν – kinematic viscosity
σ – surface tension
σr – normal stress in the radial direction
ξ – Gaussian random number with N(0,1) distribution
τw – shear stress of the fluid at the wall
τL – Lagrangian time scale
�ω – vorticity of the liquid velocity field

Subscripts

b – bubble
D – drag
Def – deformation
d – distorted
f – continuous fluid phase (liquid)
g – gas
l – liquid
r – component in the radial direction
WL – wall lubrication
L – lift
z – component in the axial direction
w – wall
θ – component in the azimuthal direction
t – turbulent
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1 Introduction

The recent interest in two phase flow arises from its extreme importance
in several industrial applications, such as chemical reactor, nuclear reac-
tor cooling, oil transportation and many others [1]. The dynamics of two
phases consists in a set of phenomena that must be considered simultane-
ously. It involves all the difficulties associated to describing single phase
flows plus a set of two-phase aspects such as interfacial boundary locations,
inter-phase momentum exchange, heat and mass transfer between phases,
turbulence induced by the gas phase on the liquid phase. In order to have
good predictions of the bubble’s motion in two phase problems there is re-
quired a correct description of the interactions that take place between the
dispersed and continuous phases in both the near-wall and the unbounded
flow regions [2]. Many experimental measurements and numerical simula-
tions have been performed in recent years to better understand the bubble
behaviour in vertical gas-liquid flows. Important contributions in this area
have been performed by different research groups [2–6].

A better knowledge of the different forces that act on the bubbles moving
in a continuous turbulent random fluid field is of importance for a complete
description of the bubble’s motion and to obtain the radial and axial distri-
butions of void fraction, interfacial area concentration, and the gas phase
velocity inside the reactor channels [7]. Normally for bubbly flow the lift
force produces a radial force that pushes the small size bubbles toward
the wall. Near the wall the lubrication and the deformation forces tend to
separate the bubbles from the wall, producing a peak in the void fraction
near the wall that is called the wall peak. But if one considers these forces
only, the height of the wall peak that results is normally too high as com-
pared with the experimental data. For this reason, it is necessary to have
a model that diffuses the bubbles away from the wall peak. This effect is
accomplished by adding a 3D random walk model that takes on account the
fluctuation in velocity of the continuous phase (liquid), produced by turbu-
lence. Here it is important to consider the turbulence due to the liquid and
the turbulence induced by the bubbles.

Experiments specifically designed to understand the forces that act on
the bubbles are a tool necessary to validate the models that predict the
forces acting on the bubbles and to develop new ones. With this goal
in mind, an upward isothermal cocurrent air-water flow in a vertical pipe
(52 mm inner diameter) has been experimentally investigated. Local mea-
surements of void fraction, interfacial area concentration (IAC), interfacial
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velocity and the Sauter mean diameter were performed using a four sen-
sor conductivity probe. Liquid velocity and turbulence intensity were also
measured using the laser Doppler anemometry (LDA). Different air-water
flow configurations were investigated for liquid superficial velocities ranging
from 0.491 to 3 m/s and a void fraction up to 25%. For each two-phase flow
configuration 15 radial position and three axial locations were measured by
the conductivity probe methodology, and several radial profiles were also
measured with LDA at different axial positions.

The reason to perform detailed experiments near the transition region
with void fractions around 25% is that the bubbles becomes larger due to
the coalescence produced by the interaction between neighboring bubbles
that is a more probable event when the void fraction increases. In this
case for these larger bubbles the lift force reverses its sign and pushes these
larger bubbles toward the centre of the pipe, producing the so called core
peak distribution because the void fraction is larger at the central region
than near the walls.

An important issue is to understand how the flow regime map, changes
the size of bubbles and the bubble distribution when temperature rises as
happens in nuclear energy reactors, or any other energy system. Normally
these changes are produced mainly by the reduction of the surface tension
with temperature. In order to understand the physics behind these changes
we have performed a set of experiments where we have reduced the sur-
face tension by adding small quantities of 1-butanol. The surface tension
has been reduced in these experiments between 4 and 8% depending of the
amount of 1-butanol added. Interesting modifications of the void fraction
distribution and the flow map have found in these experiments and will be
explained in Section 4 of this paper.

A set of numerical simulations of these experiments for bubbly flow con-
ditions were performed by coupling a Lagrangian code, that tracks the 3D
motion of the individual bubbles under the buoyancy, lift, drag and near
wall forces to an Eulerian model that computes the continuous phase. Also,
we incorporate a 3D Langevin-type model to account for the random motion
of the individual bubbles in the turbulent velocity field of the carrier liquid.
This type of models denoted as continuous random walk models are used
to predict the turbulent diffusion of the bubbles in the fluctuating velocity
field of the carrier fluid [8–10]. Also we have considered the deformations
that suffer the bubbles when they touch the walls of the pipe and are com-
pressed until they rebound.
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The velocity and turbulence fields of the liquid phase were computed
by solving the time dependent mass, energy, and momentum conservation
equations in its Reynolds averaged Navier-Stokes (RANS)equations form .
The turbulent kinetic energy k, and the dissipation rate ε transport equa-
tions were simultaneously solved by using the k-ε model in a (r,z) grid
using the finite volume method using the SIMPLER algorithm [34]. Both
Lagrangian and Eulerian calculations were performed in parallel taking into
account the turbulence induced by the bubbles on the liquid phase. Also
the Lagrangian and 3D random walk models were coupled to a 3D Eulerian
solver in order to study the differences produced by considering the sim-
plifying assumption of considering an axisymmetric Eulerian model for the
continuous phase.

The paper has been organized as follows: Section 2.1 is devoted to ex-
plain the Lagrangian model and the different forces acting on the bubbles
including the deformation one near the walls. Section 2.2 explains the 3D
continuous random walk model, used to compute the instantaneous fluid
velocities that are seen by the bubbles in a Lagrangian frame and the im-
portance of the turbulence induced by the bubbles in this model. Also
we explain the connection with the Eulerian computational fluid dynamics
(CFD) model for the continuous phase in 2D and 3D dimensions. Section
2.3 explains the governing equations for the continuous Eulerian CFD model
in cylindrical geometry. Section 3 is devoted to explain the details of the
experimental facility, instrumentation used in experiments, signal process-
ing, methods used to obtain the physical magnitudes from the signals and
the set of experiments performed to measure the void fraction, velocity dis-
tribution of both phases and other typical magnitudes of the biphasic flow.
Section 4 is devoted to explain the experiments where we have diminished
the surface tension of water by adding small quantities of 1-butanol. Finally
Section 5 presents the computational results and the comparison with some
experimental results and Section 6 the conclusions.
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2 Lagrangian, Eulerian, and 3D random walk
models

2.1 Lagrangian model for the bubbles

In cylindrical coordinates (r, θ, z)the motion equations for the bubbles are
given by [11]:

(ρg + Cvρl) Vb

(
r̈ − rθ̇2

)
b
=
∑

i

Fi,r , (1)

(ρg + Cvρl) Vb

(
rθ̈ + 2ṙθ̇

)
b
=
∑

i

Fi,θ , (2)

(ρg + Cvρl) Vb z̈b =
∑

i

Fi,z , (3)

where Fi,r, Fi,θ, Fi,z are the radial, azimuthal and axial components of the
i-th force acting on the bubble, and the dot on the coordinate components
means derivation with respect the time. The components of the veloc-
ity of the bubble in cylindrical coordinates are denoted by (ur, uθ, uz)b =
(ṙ, rθ̇, ż)b. Cv is the coefficient of the virtual mass force which is assumed
equal to 0.5, Vb is the volume of the bubble.

The main forces that act on the bubble are the buoyancy force, drag
force, lift force, wall-lubrication force and the deformation force. The buoy-
ancy force acting on the bubble is directed in the positive axial direction
and its components are given by:

Fbr = 0, Fbθ = 0, Fbz = Vb (ρl − ρg) g , (4)

where ρl and ρg are liquid and gas density, and g is the gravitational accel-
eration. The drag force (�FD) acting on the bubble depends on the relative
velocity between the bubble and the continuous phase (liquid), and is given
by the following expression:

�FD = −3
8
CD

1
Rb

ρl Vb |�urel| �urel , (5)

where �urel = �ub − �ul is the relative velocity that acts on the bubble at
a given position in the liquid velocity field and Rb is the bubble radius, we
note that the liquid velocity in expression (5) is computed as the average
velocity of the liquid computed by the Eulerian code plus the fluctuating
velocity due to turbulent eddies computed by the 3D random walk model,
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as we will explain later. For the drag coefficient (CD) we have used the
expression given by [12]:

CD = max
[
min

{
16
Reb

(
1 + 0.15Re0.687

b

)
,

48
Reb

}
,

8
3

Eob

Eob + 3

]
, (6)

where Reb and Eob are the bubble Reynolds and the bubble Eötvos numbers,
respectively.

The experiments that have been performed in vertical pipes with bubbly
flow showed that the relatively small bubbles tend to migrate toward the
wall while the large bubbles tend to migrate toward the centre. This radial
motion is attributed to the so called lift force, and is due to the motion
of a particle in a fluid field with a velocity gradient in the lateral direc-
tion to the main axial motion; this gradient causes a shear field and the
motion of the particle in this shear field produce a lateral force. The first
analytical expression for the lift force was deduced by Auton [13] for the
case of a spherical particle moving in a velocity gradient of an inviscid fluid.
Then this expression was extended by Tomiyama et al. who considered the
interaction between the bubble and the shear field of the fluid [12], and
also considered the deformation of the bubble. This lift force acting on the
bubbles is given according to Tomiyama [14] by the following expression:

�FL = −CT Vb ρl (�ub − �ul) × �ω , (7)

where �ω is the vorticity of the liquid velocity field, �ω = �∇× �ul, and CT is
the Tomiyama lift force coefficient that takes into account the interaction
between the distorted bubble and the shear field of the liquid phase and is
given by:

CT =

⎧⎨
⎩

min [0.288 tanh (0.121Reb), f(Eod)] for Eod < 4,
f(Eod) for 4 < Eod < 10,
−0.27 for Eod > 10,

(8)

where Eod denotes an Eötvos modified number, given in terms of the max-
imum horizontal dimension of the bubble dhb by:

Eod = g(ρl − ρg)d2
hb

σ ,

with
dhb = db

3
√

1 + 0.163Eo0.757 ,

(9)
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and f(Eod) is the function defined by Tomiyama [12]:

f(Eod) = 0.00105Eo3
d − 0.0159Eo2

d − 0.0204Eod + 0.474 . (10)

We note that the coefficient CT , defined by Tomiyama in Eq. (8), becomes
negative when the bubble diameter becomes bigger than 5.8 mm. This
means that for big bubbles the lift force has opposite direction than for
small bubbles.

The vorticity in cylindrical coordinates is computed by means of the
expression:

�ω =
1
r

∣∣∣∣∣∣∣∣
êr rêθ êz

∂
∂r

∂
∂θ

∂
∂z

0 0 ulz(r)

∣∣∣∣∣∣∣∣
= −∂ulz(r)

∂r
êθ . (11)

Because the CFD simulations shows that the velocity profile can be ap-
proximated by a logarithmic one, we have assumed that the average fluid
velocity profile in the z-direction that is being used to compute the vor-
ticity depends on the radial coordinate in the developed flow region and is
given by:

ulz(r) =
{

1
κ ln

(
(R − r)u∗

ν

)
+ B

}
u∗ for 0 < r < R − 5ν

u∗ ,

ulz(r) =
{

(R − r)u∗
ν

}
u∗ for R − 5ν

u∗ < r < R ,
(12)

where u∗ =
√

τw/ρl, being τw the shear stress at the pipe wall, and the
constants B and κ are: B = 5, and κ = 0.41 is the von Karman constant.
Being R the pipe radius, and ν is the kinematic viscosity.

Therefore on account of Eqs. (7), (11) and (12) the expression for the
lift force is given in cylindrical coordinates:

�FL ≈ −CT Vb ρl(ubz − ulz)ωθêr , (13)

where ωθ represents azimuthal vorticity component. We have neglected
the axial component of the lift force because is completely negligible in
comparison with the axial buoyancy force.

On account of Eq. (11) for the vorticity and Eqs. (12) and (13), the lift



12 J.L. Muñoz-Cobo, S. Chiva, M. Essa and S. Mendes

force inside a pipe can be computed by means of the following expression:

�FL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CT Vb ρl (ubz − ulz)
[

u∗
κ (R − r)

]
êr , 0 < r < R − 5ν

u∗ ,

CT Vb ρl (ubz − ulz)
[
(u∗)2

ν

]
êr , R − 5ν

u∗ < r < R .

(14)

The next force considered in the model is the bubble deformation force.
According to Zaruba et al. [7], we need to take into account this force to
prevent the displacement of the bubble centre of mass to be unrealistically
close to the wall. To compute this force we have assumed a bubble that when
approaching and touching the walls deforms and adopts an oblate elipsoidal
shape as displayed in Fig. 1. We have assumed that the deformation of the
bubble conserves the volume.

Figure 1. Bubble deforming while its gravity centre approach to the wall.

The work that is needed to deform the bubble from the spherical form
to the ellipsoidal oblate one with distance y from the wall to the bubble
centre is:

W (y) = σ ∆S = σ
[
S(y) − S(y = Rb)

]
, (15)

where σ is the surface tension, and S(y) is the surface area of the oblate
ellipsoid displayed in Fig. 1 with the two semi axes parallel to the wall
equal to a, and the semiaxis orthogonal to the wall equal to y. The volume
conservation imposes the restriction:

4
3
π R3

b =
4
3
π a2y . (16)
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Therefore the corresponding force acting on a single bubble with y = R− r
is given on account that êy = −êr by:

�FDef = −∂W (y)
∂y

êy = 2πRbσ

(
Rb

y

)2

fD

(
Rb

y

)
êr , (17)

where we have defined the following function that depends only on Rb/y,

fD

(
Rb
y

)
= −1 + 1

2
sinh−1 µ′

µ′

(
Rb
y

)−3/2
+

+3
2

(
Rb
y

)3/2 1
µ′5/2

(
sinh−1 µ′ − µ′

(1 + µ′2)1/2

)
.

(18)

This deformation force (�FDef ) is directed toward the centre of the tube and
after the bubble compression can provoke the bouncing of the bubble as
showed in Zaruba et al. experiments [7]. We also note that µ′=(R3

b/y
3−1)1/2.

The last force considered in the Lagrangian model is the wall lubrication
force. This force is originated as a consequence of the drainage of liquid
around a bubble that is moving in the vicinity of the pipe wall. The no-slip
condition at the wall should slow the drainage rate between the bubble and
the wall, at the bubble-wall side, while the drainage of liquid is increased
on the opposite side of the bubble. Therefore we have a asymmetrical
drainage of liquid for a bubble moving close to the wall. As a consequence
the bubble suffers a hydrodynamic force known as wall lubrication force.
The expression for this force was first deduced by Antal et al. [15], and
then improved by Tomiyama et al. [5]:

�FWL = −CWL Vb ρl |ubz − ulz|2 fwL(r) êr . (19)

The coefficient of Tomiyama and Hosokawa [14] for the wall lubrication
force is given in terms of the bubble Reynolds number and the Eotvos
bubble number, which is the ratio of the buoyancy to surface tension forces
acting on the bubble:

CWL = max
{

7
Re1.9

b

, 0.0217Eob

}
, (20)

and the function fwL(r) that defines the wall lubrication forces near the
wall is:

fwL(r) = db

{
1

(R − r)2
− 1

(R + r)2

}
, (21)

being R the tube radius and db the sphere equivalent diameter of the bubble.
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2.2 The continuous 3D random walk model

An approach commonly used to simplify the calculations is to predict the
time-averaged velocity of the carrier liquid and the turbulence properties of
the continuous phase by solving the random averaged Navier-Stokes equa-
tions, and then to use the turbulence parameters values k-ε obtained at the
different points of the space �r to build a statistical model that gives the
instantaneous fluid fluctuation velocities that are seen by the bubbles in
the Lagrangian frame. If �rb(t) denotes the trajectory of the bubble then the
turbulence and the dissipation rate seen by the bubbles must be computed
at the trajectory points were the bubbles are located, that obviously change
with time. Additionally, we must take also into account the turbulence in-
duced by the bubbles themselves that depends of its position inside the pipe
and the bubble distribution.

Therefore, the average velocity of the carrier liquid is computed by solv-
ing the random averaged Navier-Stokes equations with the k-ε model or any
other turbulence model in cylindrical coordinates. However the liquid ve-
locity �ul = �̄ul + �u′

l that appears in Eqs. (5), (7), (13), and (22) is composed
of an average part �̄ul that is computed solving the RANS equations and
a fluctuating part �u′

l due to the eddies, that is obtained by means of a con-
tinuous random walk model in 3D, with homogeneous isotropic turbulence,
that in the region where the flow is completely developed we have assumed
obeys the following stochastic differential equation (SDE) [16–18]:

d�u′
l = − �u′

l

τL(r, z)
dt +

(
2

τL(r, z)

)1/2
√

2k(r, z)
3

d �W , (22)

where k(r,z) denotes the turbulent kinetic energy per unit mass at point
(r,z), and we have assumed, to simplify the calculations, that there is no
azimuthal dependency by the symmetry of the problem, τL(r, z) is the char-
acteristic time of the Lagrangian time scale correlation [19], that depends of
the position, and because of the symmetry of the problem we also assume
does not depend of the azimuthal coordinate. We note that because Eq. (22)
is in cylindrical coordinates we must include the variations of the unitary
vectors of curvilinear coordinates along the fluid particle trajectories. Fi-
nally the vector d �W denotes the infinitesimal increment of a vector valued
Wiener process with the well known mean and covariance properties [16]:

〈d �W 〉 = 0 and 〈dWidW j〉 = δij dt , (23)
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where δij is the Kronecker delta and symbols 〈·〉 means averaging.
In cylindrical coordinates the components of Eq. (22) can be expressed

in the form:

du′
l,r = − u′

l,r

τL(r, z)
dt +

(
u′

l,θ

)2

r
dt +

(
2

τL(r, z)

)1/2
√

2k(r, z)
3

dWr , (24)

du′
l,θ = − u′

l,θ

τL(r, z)
dt −

(
u′

l,ru
′
l,θ

)
r

dt +
(

2
τL(r, z)

)1/2
√

2k(r, z)
3

dWθ , (25)

du′
l,z = − u′

l,z

τL(r, z)
dt +

(
2

τL(r, z)

)1/2
√

2k(r, z)
3

dWz , (26)

where according to Oestele and Zaichik [20] the Lagrangian time scale (τL)
is a parameter of primary importance, since it represents the asymptotic
value of the time scale of the fluid seen by zero inertial particles, a correc-
tion in this time scale must be performed for real particles or bubbles [21].
The model given by Eqs. (22) assumes isotropic turbulence. The character-
istic time τL is computed away from the boundary layer by the following
expression:

τL(r, z) = 0.14
k(r, z)
ε(r, z)

for y+ =
(R − r)u∗

νl
> 100d . (27)

At the boundary layer we have used the expression obtained by direct nu-
merical simulation (DNS) by Kallio and Reeks [22].

To integrate the stochastic differential equation system formed by Eqs.
(24)–(26), we define first the column vector X ≡ column(u′

l,r, u
′
l,θ, u

′
l,z) .

Then we write the SDE system in the form:

dX = a(X(t), t) dt +
3∑

j=1

b(j) dW (j)(t) , (28)

where a(X(t), t) is the drift vector function, and the coefficients b(j) are
the diffusion coefficients, that on account of Eqs. (24)–(26) and (28) are
given by:

a(X(t), t) =

⎡
⎢⎢⎢⎢⎣

−X1
τL

+ X2
2

r

−X2
τL

− X1X2
r

−X3
τL

⎤
⎥⎥⎥⎥⎦ , (29)
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b(1) =

⎡
⎣ (2/τL)1/2

√
2k/3

0
0

⎤
⎦ , b(2) =

⎡
⎣ 0

(2/τL)1/2
√

2k/3
0

⎤
⎦ ,

b(3) =

⎡
⎣ 0

0
(2/τL)1/2

√
2k/3

⎤
⎦ . (30)

The stochastic differential equation system (28) can be integrated using the
Îto-Taylor expansion methods developed by Kloeden, Platen et al. [23–25].
The simplest of such methods is the Euler-Maruyama integration scheme
that as we shall show later agrees with the integration method used by
Bocksell and Loth when the integration step is much smaller than the La-
grangian turbulent time scale. The k-th component of the Euler scheme is
given by [23]:

Xk(tn + ∆) = Xk(tn) + ak(X(tn), tn)∆ +
3∑

j=1

b
(j)
k (tn)∆W (j) , (31)

where ∆ is the time integration step, and ∆W (j) is the increment of the
j-th Wiener process given by:

∆W (j) =

tn+∆∫
tn

dW (j)(s) ds =
√

∆ ξj , with ξj ∈ N(0, 1) (32)

being ξj a Gaussian random variable with normal sistribution with zero
mean and unit variance, the range of n is the number Ns of time steps.

From Eq. (31) and on account of the expressions for the components of
the drift and diffusion terms we can write:

u′
l,r(tn + ∆) = u′

l,r(tn)− u′
l,r(tn)
τL

∆ +

(
u′

l,θ(tn)
)2

r
∆ +

(
2
τL

)1/2
√

2k
3

∆Wr ,

(33)

u′
l,θ(tn +∆) = u′

l,θ(tn)− u′
l,θ

τL
∆−

(
u′

l,ru
′
l,θ

)
r

∆+
(

2
τL

)1/2
√

2k
3

∆Wθ , (34)

u′
l,z(tn + ∆) = u′

l,z(tn) − u′
l,z

τL
∆ +

(
2
τL

)1/2
√

2k
3

∆Wz . (35)
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We must notice that the values of the turbulent kinetic energy k and the
characteristic Lagrangian time τL depend on the position seen by the bubble
at time tn. Also is very easy to check that when in the integration scheme
used by Bocksell and Loth [8] to account for the fluid fluctuations, we
expand the exponentials exp(−∆/τL) and exp(−2∆/τL) in Taylor series
retaining only the first order terms, then we obtain the Euler-Maruyama
integration scheme that we have used previously.

In computing the turbulence kinetic energy that appears in Eqs. (22) we
must consider the turbulence induced by the bubbles in the liquid phase. We
have considered that the turbulence kinetic energy induced by the bubbles
depends on the void fraction and the Reynolds number for the bubbles so
we write for the total turbulence to be considered in (22):

k = kb + kl , (36)

where the turbulence kb induced by the bubbles is given by the expression:

kb = CIb αReb , (37)

where α is the vaoid fraction. The value of CIb is chosen equal to 5.5×10−5,
which provides good results for the experiments performed at a liquid ve-
locity of 2 m/s, as we will display later. However if we assume that this
constant depends also on the gradient of the void fraction we may write:

CIb = CIb1 + CIb2∇α , (38)

where CIb1= 2.0×10−5, CIb2= 5.5×10−4, and ∇ denotes the gradient oper-
ator. These values provided good results for the experiments performed at
2 and 3 m/s.

To finish this section we must say that when the bubbles move in the
axial direction inside the pipe they expand its size because the pressure
exerted by the liquid column diminishes. This expansion is computed by the
program SAMBUTORY [11] by taking into account the pressure exerted by
the water column over the bubble that depends on the vertical distance from
the bubble surface to the free surface in the upper tank and of the average
void fraction above the bubble < α >, and is given by ρlg(1− < α >)(H−z).
Because the difference of pressures between the gas and the liquid is given
by:

pg − pl = pg −
[
ρlg(1− < α >)(H − z) + p0

]
=

2σ
Rb

, (39)
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where p0 is the pressure in the upper part of the column. The bubbles
are created in a mixing chamber were we inject air through a porous sinter
material as described in detail in Section 3. Each bubble of a given radius,
Rb, contains, when it leaves the mixing chamber, a mass of air that we
denote by m0, and that it is conserved. If pg0 = pg(z = 0) denotes the gas
pressure inside the bubble at z = 0. Then applying the perfect gas law and
on account that the gas mass m0 (mainly air) inside the bubble practically
does not change, we may write that the gas pressure at an arbitrary height,
z, satisfies the equation:

pg(z)Vb(z) =
m0

Mg
Rg T ⇒ pg(z) =

m0
4
3π R3

b(z)
Rg

Mg
T , (40)

where Vb is the bubble volume, Mg is the molecular weight of gas, and Rg

is the universal constant of the gas.
Substituting the expression for pg(z) obtained from the gas law into Eq. (24),
there is obtained the following cubic equation in Rb(z):

R3
b(z) +

{
2σ

ρlg(1− < α >)(H − z) + p0

}
R2

b(z) −
3m0RgT

4π Mg(ρlg(1− < α >)(H − z) + p0)
= 0 , (41)

where H is the distance from the entrance of the pipe, to the free surface
of the tank located above the pipe. When Eq. (41) is solved, it is found
that it has one real and two imaginary solutions, therefore we can obtain
the variation of the bubble radius with the height [11].

2.3 Governing RANS equations for the continuous CFD
model in 3D cylindrical geometry

We have coupled the previous Lagrangian and 3D random walk models
to an Eulerian model described by the time dependent Reynolds averaged
governing equations for the momentum of the liquid continuous phase. In
this model no condensation is included and we have assumed that the liquid
phase behaves as a Newtonian incompressible fluid with stresses dominated
by the turbulence. Two different codes were coupled. The first one was
a 2D Eulerian model in (r,z) coordinates and with azimuthal symmetry,
whereas the second one was a 3D Eulerian code in (r, θ, z) coordinates. The
conservation equations were solved by the finite volume method and the
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simpler algorithm in both codes. The equations solved in the 3D case were
the following ones:

• radial component of the momentum equation

αlρl

(
∂ūl,r

∂t
+ �̄ul.�∇ūr

)
= −αl

∂p

∂r
+ ρl

1
r

∂

∂r

(
−αl ru

′2
l,r

)
+

+ρl
∂

∂z

(
−αlu

′
l,ru

′
l,z

)
+ ρl

1
r

∂

∂θ

(
−αlu

′
l,ru

′
l,θ

)
+ fi,r , (42)

• axial component of the momentum equation

αlρl

(
∂ūl,z

∂t
+ �̄ul.�∇ūl,z

)
= −αl

∂p

∂z
+ ρl

1
r

∂

∂r

(−αl r u′
l,ru′

z

)
+

+ρl
1
r

∂

∂θ

(
−αl u′

l,ru
′
θ

)
+ +ρl

∂

∂z

(
−αl u

′2
l,z

)
− αlρlg + fi,z , (43)

• azimuthal component of the momentum equation

αlρl

(
∂ūl,θ

∂t
+ �̄ul.�∇ūl,θ

)
= −αl

1
r

∂p

∂θ
+ ρl

1
r

∂

∂r

(
−αl r u′

l,ru
′
l,θ

)
+

+ρl
1
r

∂

∂θ

(
−αl u

′2
l,θ

)
ρl

∂

∂z

(
−αl u

′
l,zu

′
l,θ

)
+ fi,θ , (44)

where fi,r, fi,θ and fi,z are the components of the interfacial forces per
unit volume in the radial, azimuthal and axial directions respectively, being
αl = 1 − α the fraction of liquid phase and a bar means averaging.

The Reynolds shear and normal stresses in the k-ε model are modeled
by the effective viscosity formulation, which is a direct extension of the
laminar deformation law:

(τr z)t = −ρl u′
l,ru

′
lz = µt

(
∂ūl,r

∂z
+

∂ūl,z

∂r

)
, (45)

(τr θ)t = −ρl u′
l,ru

′
lϑ = µt

(
1
r

∂ūl,r

∂θ
+

∂ūl,θ

∂r

)
, (46)

(τθ z)t = −ρl u′
l,θu

′
lz = µt

(
∂ūl,θ

∂z
+

1
r

∂ūl,z

∂θ

)
, (47)

σr = −ρl u
′2
l,r = 2µt

(
∂ūl,r

∂r

)
− 2

3
ρl k , (48)
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σz = −ρl u
′2
l,z = 2µt

(
∂ūl,z

∂z

)
− 2

3
ρl k , (49)

σθ = −ρl u
′2
l,θ = 2µt

(
1
r

∂ūl,θ

∂θ

)
− 2

3
ρl k , (50)

where the turbulent eddy viscosity is given according to Launder and Spald-
ing [26] by:

µt,l = cµ ρl
k2

ε
, (51)

and subscript t referes to turbulent flow.
According to Dhotre, Smith and Niceno [27] the incorporation of the

bubble induced viscosity µIb,l to µt does not alter the simulation results,
so in this model we have not considered this contribution to the effective
viscosity. Finally, we have used to calculate the turbulence energy and the
dissipation rate the standard k-ε model with the model constants suggested
by Launder and Spalding [26].

3 Layout of the experimental facility, instrumenta-
tion, measurement techniques, processing of the
signals and experiments

Figure 2 displays the outline of the experimental facility used to perform
the experimental work. It is a thermohydraulic loop, with a test section,
a lower plenum where air bubbles and water are mixed in a chamber that
produces bubbly flow or cap/slug flow, and an upper plenum where the air
is separated from the liquid. The test section is a round transparent tube
made up of plexiglas with constant area, the inner diameter is 52 mm and
the length of the section is 3340 mm. We use purified water as working fluid,
and the water circulation is provided by two centrifugal pumps controlled
by a frequency controller. The air is supplied by an air compressor and
it is introduced to the test section through a porous sinter element with
an average pore size of 40 µm installed below the mix chamber at the
lower plenum. The air and water temperature is kept constant during the
test. The conductivity probe measurements were performed at three axial
locations, z/D = 2, 36 and 56, (where D is the tube diameter), named port
INF, MED and SUP, as displayed in Fig. 3, also we display the layout of
each port. At each port the pressure is measured by a precision pressure
transmitter.
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Figure 2. PUMA facility layout and detail of the test section.

Figure 3. Design of the ports for the sensor conductivity probe and location of the ports
in the test pipe.

3.1 Four-sensors conductivity probe design

The four-sensor probe is basically a phase identifier. The model developed
at the Polytechnic University of Valencia (Spain) together with the Jaume
I University of Castellón (Spain) consists of four sensors made of stainless
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steel, coated with gold, with a diameter of 0.26 mm. The vertical distance
between the front tip and the rear sensors was about 1.5 mm. Each sensor
is insulated using an insulating varnish except on its tips. Figure 4 displays
the schematic design of the probe with the larger tip at one side denoted as
FOA, also this figure displays the automatic positioning mechanism of the
conductivity probe by means of a stepper driver.

Figure 4. Four-sensors conductivity probe scheme FOA and automatic positioning of the
probe by means of a stepper driver.

The sensor geometric configuration of the probes can change from one
design to another. For this work we choose the design F0X, with the large tip
in the center, and F0A, with the largest tip at one side as displayed in Fig. 4.
The largest sensor shown as upper one in cross-sectional view of the probe
(Fig. 4 sensor disposition) is called the front sensor or upstream sensor
because is the first one that touches the bubble, and the other sensors which
are shorter are located in the same plane, are called the rear or downstream
sensors. Both geometrical configurations give good and very similar results.
The F0X configuration gives better results in positions very close to the wall,
with more robust physical sense. The second configuration, F0A, gives the
best results when we need to detect large bubbles or when velocity of the
liquid is high. More experimental work and a detailed redesign have to be
done in order to give more answers about the selection of a suitable design.

The probe was attached to a mechanical traverse mechanism moved by
a stepper driver along the radial direction of the test section as displayed
in Fig. 4. The National Instruments acquisition board of 16 bits was used
to acquire the voltage signal of the probe. The sampling frequency was set
to 45 kHz for each sensor of the probe, with a sampling time of 45 s.



Experiments performed with bubbly flow in vertical pipes. . . 23

3.2 Signal processing

The signal processing technique is very important for using the conductivity
probe. We can divide this process into two parts; the first one is the condi-
tioning process that consists in filtering, normalizing the signal to convert
the signal into a squared one, and finally applying the interface-pairing pro-
cess. This signal conditioning is very similar to the one proposed by Kim
[28]. The second part concerns the processing itself, where the calculation
of the physical magnitudes is performed.

The first step is to apply a moving average filtering to the raw signal
to eliminate the high frequency noise, mainly produced by the electronic
devices. The next step is the generation of squared signals. This step is
performed as follows, first we determine the maximum and minimum values
of the signal, and the signal values are categorized in six levels. Then, the
most probable values for the lowest and highest signal levels are used to
normalize the signal. Then, the signal is binarized using a threshold value.
This threshold value is very useful to avoid the noise in the measurement.
In our experimental facility the best value for the threshold, based on ex-
perimental observations, is about 10% of the voltage supply to the probe,
and it matches with the value proposed by Kim [28]. Also it is necessary to
take into account the slope of the signal near the threshold value to correct
the apparent residence time of the i-th bubble denoted by ∆ti as displayed
in Fig. 5, with a correction time ∆tc,i that is the time that the sensor tip
is touching the bubble but the signal value (V ) is below the threshold, i.e.
Vwater < V < Vthreshold. We have considered an averaged value for this
extra time of the bubble residence time.

When the signals are normalized and are converted into squared signals,
we initiate the interface-pairing signal process that consists in the determi-
nation of the initial time in the front sensor. To begin this process we
record the initial time of each squared signal for each sensor. Then, we take
these time values from the front sensor, and for each time value we look
for the signal produced by the same bubble in the downstream sensors. To
achieve this goal, we estimate the interfacial velocity using a very simple
drift flux model, and with the distance among the sensors, we estimate the
flying time of this bubble from the front to the rear sensors. Then, within
a range of 20% of this time we look for initial times in the signals of the rear
sensors. If all the rear sensors have signals into this range, then we consider
that the bubble signal is pairing, and the bubble signal is considered an
effective one. If some of the rear sensor signals are missed, then the bubble
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Figure 5. Slope of the signal near the thereshold value.

signal is considered as a missing bubble. When the process is finished, we
consider the signals that touch the rear sensors and not the front sensor,
which are called non-pairing rear sensors signals. Now, for each rear sensor
signal time, we look for its correspondent pair in the other rear sensors,
considering the range of time from the time of the sensor to a maximum of
the time taken by the bubble to travel from this sensor to the farther one,
with a 20% of margin. We consider both directions, the bubble coming to
the sensor or the bubble going away to the other sensors. When this pairing
process is finished for one of the rear sensor, the process is rerun for the
others signals without considering the signals pairing. At the end, we get
the bubble effective signals, and all the missing bubble signals.

The second part concerns the processing itself, where the calculation of
the magnitudes is performed.

3.3 Classification of the bubbles in groups

The chord length for each bubble obtained from the signal of the front
sensor is used to classify the bubbles in three groups: spherical, distorted
and cap/slug. The limits of the groups are obtained from the following
formulas [29]:

1. The upper limit of spherical bubbles is given by:

Dspherical = 4
√

2σ

g ∆ρ
N1/3

µf
with Nµ =

µf(
ρfσ

√
σ

g ∆ρ

)1/2
(52)
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with Nµ being the viscosity number, ∆ρ is the difference between the
liquid and gas densities and µf is the liquid viscosity.

2. Upper limit of distorted bubbles

Ddistorted = 4
√

σ

g ∆ρ
. (53)

3. Upper limit of cap bubbles

Dcap−max = 40
√

σ

g ∆ρ
. (54)

For practical effects the bubbles are classified in two groups: group 1 or
spherical/distorted bubbles, and group 2 or cap/slug bubbles.

3.4 Determination of the local void fraction and the inter-
facial area concentration

The void fraction is obtained from summation over all the residence times
of the bubbles touching the front probe, by means of the expression:

α =

Nb∑
i=1

(∆ti + ∆tc,i)

Tsample
, (55)

where ∆ti is the apparent residence time, and ∆tc,i is the correction to
the apparent residence time as explained previously; Tsample, is the total
sampling time, and Nb is the number of bubbles recorded by the sensor
during the sampling time. The interfacial area concentration is obtained
from the expression [30–32]:

āI(�r) =
1

Tsample

Nint∑
j=1

1
|�uI,j · �nI,j| , (56)

where Nint is the number of interfaces crossing the point �r during the time
Tsample, �uI,j is the interfacial velocity of the j-th interface crossing the point
�r, and �nI,j is the unit vector normal to the j-th interface at point �r.

With the four sensor conductivity probe we can measure the interfacial
area concentration as follows [31]:
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Figure 6. Geometry of the four sensor conductivity probe, (0) is the front sensor and (1),
(2), and (3) the rear sensors.

1. First from the geometry of the four sensor conductivity probe, we can
obtain the unit vectors �e0k in the directions from the front tip (0) to
the rear tips (1), (2) and (3). The components of these unit vectors
are according to Fig. 6:

�eok =
�rk − �r0

∆S0k
= (cos ηx0k, cos ηy0k, cos ηz0k) , k = 0, 1, 2, 3 (57)

2. The measured velocities �um,0k in the directions of the previous unit
vectors are given by the following expressions:

�um,0k =
∆S0k

∆t0k
�e0k (58)

being ∆S0k the distance between the front sensor and the k-th rear
sensor and ∆t0k the time needed by the interface to travel from the
front sensor to the k-th rear sensor.

3. Then we use the interfacial measure theorem [29,30], that gives us
the projection of the interfacial velocity on the normal to the bubble
surface in terms of the known measured velocities �um,0k and that can
be expressed in the form:

�nI,j · �um,0k = �nI,j · �uI,j = un,j . (59)
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This theorem can be expressed on account of Eq. (58) as follows:

�nI,j · �um,0k = �nI,j · �e0k um,0k = un,j . (60)

The previous equation is equivalent to the following system of four equations
with four unknowns:⎡
⎣ cos ηx01 cos ηy01 cos ηz01

cos ηx02 cos ηy02 cos ηz02

cos ηx03 cos ηy03 cos ηz03

⎤
⎦
⎡
⎣ cos ηx

cos ηy

cos ηz

⎤
⎦

j

=

⎡
⎣ un,j/um,01

un,j/um,02

un,j/um,03

⎤
⎦ ,

cos2 ηx + cos2 ηy + cos2 ηz = 1 ,

(61)

where the rows of the matrix are the components of the unit vectors �e0k

and (cosηx, cosηy, cosηz) are the components of the unit vector�nI,j , normal
to the j-th interface. The system of equations (38) can be solved easily by
the Kramer’s rule to obtain the components of �nI,j in terms of un,j then
using the fact that �nI,j is a unit vector we obtain un,j, that is given by:

un,j =
A0√

A2
1,j + A2

2,j + A2
3,j

, (62)

where we have defined the following determinants:

A0 =

∣∣∣∣∣∣
cos ηx01 cos ηy01 cos ηz01

cos ηx02 cos ηy02 cos ηz02

cos ηx03 cos ηy03 cos ηz03
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(63)
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(64)
Once we have obtained the projections of the velocities on the normal i.e.
un,j, then we can obtain the interfacial area concentration using Eq. (35).

3.5 Experiments

The flow conditions have been chosen measuring the superficial liquid and
air velocities and the average void fraction at position z/D = 56 for each run



28 J.L. Muñoz-Cobo, S. Chiva, M. Essa and S. Mendes

condition. All the run conditions (Tab. 1) are in the bubbly flow regime,
and only for the highest void fractions appear some large cups, near the
transition from bubbly to cap/slug regime. For each liquid velocity condi-
tions we have performed the experiments with at least five gas conditions
ranging from 5 to up 25%, except in the case when the superficial liquid
velocity jf = 0.5 m/s where an extra case was tested near the transition
from bubbly to cap/slug regime. At the setup of each run the void fraction
was also measured by a pressure sensor at z/D = 56. Details about the
experiments and the facility can be found in Mendez thesis [29].

To check the methodology used in the measurements, the experiments
F01G01 and F01G02 were also performed with boundary conditions close
to that of the experiments performed by Hibiki, Ishii and Xiao [34]. The
distributions of void fraction and interfacial area concentration measured in
our experiments were compared with the distributions obtained by Hibiki,
Ishii and Xiao [33], the results in general agree pretty well as displayed
in Fig. 7.

We also performed the measurements with two types of conductivity
probes as we mentioned earlier in section 3.1: with the large tip in the center
denoted as FOX, and with the large tip in one side denoted FOA. In Fig. 8
we display the void fraction and the interfacial area concentration (IAC),
versus the relative radial distance to the center of the pipe r/R, where R is
the tube radius for the case F03 with jf = 2 m/s, at the upper port with
z/D = 56. We observe in this experiment that when the void fraction is
small the void fraction distribution have the typical peak distribution near
the wall, known as wall-peak. This distribution is produced by the small
bubbles that tend to migrate to the wall due to the lift force. The height
of the peak is mainly determined by the balance between the lift force on
the bubbles that push them toward the wall and the wall lubrication and
deformation forces that have the opposite direction. Also is very important
in this balance the motion of the bubbles due to the turbulent diffusion
that tends to diminish the height of the peak. We also notice in Fig. 8
that when the void fraction increases to values of the order of 0.25, then
the void fraction distribution becomes a core peak distribution. This is due
to the presence of a bigger number of larger bubbles (cap/slug) due to the
increase of the void fraction; also we have more bubbles coalescence and
this phenomenon also increases the size of the bubbles. The lift force when
acting on larger bubbles pushes them toward the center and in this way this
produces a core peak.
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Figure 7. Comparison of experiments performed by Hibiki, Ishi and Xiao for the void
fraction and the interfacial area concentration [25], with the experimental re-
sults of Chiva et al. [26], for the conditions of experiments F01G01 and F01G02,
displayed in Tab. 1.

Table 1. Experimental flow conditions for test F.

jf =0.5 [m/s] jf =1.0 [m/s]
Run jg [m/s] < α > [%] Run jg [m/s] < α > [%]

F01G00 0.00 0.00 F02G00 0.00 0.00
F01G01 0.075 5.14 F02G01 0.121 4.84
F01G02 0.075 10.38 F02G02 0.135 9.36
F01G03 0.077 15.73 F02G03 0.144 14.97
F01G04 0.081 21.10 F02G04 0.173 22.35
F01G05 0.122 25.86 F02G05 0.232 29.88
F01G06 0.144 26.87

jf =2.0 [m/s] jf =3.0 [m/s]
jg [m/s] < α > [%] jg [m/s] < α > [%]

F03G00 0 0.00 F04G00 0.00 0.00
F03G01 0.209 3.69 F04G01 0.363 5.04
F03G02 0.231 8.18 F04G02 0.407 9.76
F03G03 0.268 14.90 F04G03 0.444 14.7
F03G04 0.280 20.1 F04G04 0.499 19.5
F03G05 0.336 26.2 F04G05 0.571 24.3
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Figure 8. Void fraction versus r/R and IAC versus r/R for case FO3 with jf = 2 m/s, at
the upper port z/D = 56. Solid symbol correspond to F0A probe configuration,
and without symbol (continuous line) to F0X probe. Black (•) G01, Red (♦)
G02, (X) G03, Green (�) G04, Violet (�) G05.

4 Experiments performed changing the surface
tension

A set of experiments denoted with the letters C, D, E were performed adding
small amounts of 1-butanol and with the same boundary conditions than
experiment B (no 1-butanol added). These amounts were 9, 39, and 75 ppm
for experiments C, D, and E respectively. The goal of these experiments
was to study the effect of changing the surface tension on the two phase
flow local parameters. The effect of adding small amounts of 1-butanol is
to reduce the surface tension of the liquid phase. Obviously this affects the
size of the bubbles by reducing their size. For each one of the experimental
series the liquid superficial velocities were 0.5, 1 and 2 m/s. In addition,
for each liquid superficial velocity, the gas superficial velocity was varied to
have void fraction values close to 5, 10, 15 and 20%. Table 2 displays the
flow conditions for the set of experiments B. Similar conditions were used
for tests C, D and E.

Now we display the results of the tests B and D in the same figures,
in order to see the effect of the changes in the surface tension on the void
fraction distribution. Test D was performed with a 1-butanol concentration
of 39 ppm and the measured surface tension was reduced from 72.2 ± 0.8
in ordinary water to 65.7 ± 0.9 when adding the 1-butanol. These kind
of experimental studies are very interesting because when increasing the
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temperature the surface tension diminishes and in this way we can know
what it is expected to happen at higher temperatures.

Table 2. Experimental flow conditions for test B.

jl= 0.498 [m/s] jl= 0.994 [m/s] jl= 1.994 [m/s]
Run jg[m/s] 〈α〉z/d=upper Run jg[m/s] 〈α〉z/d=upper Run jg[m/s] 〈α〉z/d=upper

B01G00 0.000 0.00 B02G00 0.000 0.00 B03G00 0.00 0.00
B01G01 0.035 5.37 B02G01 0.075 6.77 B03G01 0.134 5.27
B01G02 0.080 10.47 B02G02 0.166 12.09 B03G02 0.347 8.20
B01G03 0.129 15.70 B02G03 0.271 16.35 B03G03 0.635 17.07
B01G04 0.188 20.18 B02G04 0.377 19.31 B03G04 1.270 21.77
B01G05 0.266 21.57 B02G05 0.492 21.10 B03G05 2.390 24.43
B01G06 0.503 30.36 B02G06 0.621 23.81 B03G06 – –

a) b)

Figure 9. Test results for different gas superficial velocities at z/D = 56: a) for runs D01
and B01; b) for runs D02 and B02.

Figure 9 deserves several comments. The first one is that when we add
small amounts of 1-butanol the size of the bubbles diminishes and we have
more bubbles of small size that tend to migrate toward the wall, increasing
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the height of the wall peak. This effect is clearly observed in runs D01G01,
D01G02, D01G03 and D01G04, when comparing these runs with the runs
B01G01, B01G02, B01G03, and B01G04, performed with pure water, we
notice that the height of the wall peak increases when we add 1-butanol.
The same effect is also observed in runs D02G01, D02G02, D02G03 and
D02G04.

But there is also another effect that is clearly displayed in Figs. 9a and
9b, and is that the transition conditions from wall peak to core peak flow
changes when we reduce the surface tension maintaining the same liquid
and gas superficial velocities. For instance in run B01G05 we have core
peak flow, while in run D01G05 we have wall peak flow, as is observed
in Fig. 9a for the same boundary conditions of the gas and liquid phases.
When adding a small amount of 1-butanol we have a small peak near the
wall for case D01G05 and the void fraction distribution in the central region
of the tube becomes flatter. This effect shows clearly that diminishing the
surface tension changes the boundaries of the flow map. This same effect it
is also observed in runs B02G05 and D02G06. B02G05 is core peak while
D02G05 is wall peak, and the void fraction distribution for run D02G05
becomes flatter at the central region and displays a peak near the wall.

5 Computational results and comparison with
experiments

The Lagrangian and the 3D random walk models were programmed in
a code denoted SAMBUTORY (sampling bubble‘s trajectories) that was
coupled to a 2D Eulerian solver in (r,z) coordinates and to a 3D solver.

The dispersed phase is computed by tracking the bubbles along its tra-
jectories on account of the forces acting on them as explained in Section 2.
The bubbles are generated with a uniform distribution at the bottom of
the pipe, and the diameter of the bubbles is sampled uniformly in the in-
terval [2.1 mm, 2.9 mm] according to the experimental data for the Sauter
mean diameter. Then each individual bubble is tracked until it reaches the
z coordinate of 3 m. At this position the radial coordinate of each indi-
vidual bubble, its volume, and its interfacial area are stored in a counter
to compute the radial distribution for the void fraction and the interfacial
area concentration. When each individual bubble is moving in 3D along
its trajectory its position changes and as a consequence the fluid velocity
field that it is being seen by this bubble and is computed by the Eulerian



Experiments performed with bubbly flow in vertical pipes. . . 33

solver also changes. The total number of bubbles tracked to compute the
void fraction distribution is 8000.

The turbulence field that is felt by the bubbles has two components, one
is the turbulence generated by the liquid and the other one is the turbu-
lence induced by the bubbles. Since the fluctuating component of the liquid
velocity field that is seen by the bubbles depends on the total turbulent
energy k(r, z) at each position (r,z), in the 2D solver and to compute the
turbulence induced by the bubbles we need the void fraction distribution,
that is not known a priori. Then we must perform several iterations to
obtain a good void fraction distribution that allows an evaluation of the
turbulence induced by the bubbles at each radial position. These iterations
are performed in a self-consistent manner as follows: we start with the liq-
uid turbulence alone in the continuous random walk model, then solving
the RANS equations for the continuous phase and the Lagrangian model
for the bubbles we obtain the first iterated value for the void fraction distri-
bution that is more peaked than the experimental one because it does not
take into account the random walk diffusion induced by the bubbles them-
selves. This distribution is used as an input to integrate the Lagrangian
equations again and in this way we obtain a second iterated value of the
void fraction distribution, after three or four iterations the void fraction
distribution converges and gives values that are close to the experimental
ones as displayed in Fig. 10 for the cases with jf = 2 m/s. In this case
the turbulence induced by the bubbles was computed with Eq. (23) using
a constant value for CIb = CIb0 = 5.5×10−5, and the calculated points
are represented by triangles, while the experimental points are denoted by
solid circles. Finally the empty circles denote the void fraction distribution
computed using Eq. (38) for the turbulence induced by the bubbles with
CIb1 = 2.0×10−5 and CIb2 = 5.5×10−4.

The predictions of the void fraction distribution are very good in all
the points, also the maximum position of the void fraction distribution and
its value is well predicted by the Eulerian-Lagrangian model developed in
this paper. The calculations were performed with a 3D solver coupled to
the SAMBUTORY code, the results are displayed in Fig. 11, for the same
case F03G01. In this figure the crosses (x), denote the (r,z) axissymmetric
calculations, while the empty circles denote the 3D calculations with the
Eulerian solver. The results improve as displayed in Fig. (11) when we
use the 3D Eulerian solver instead of the 2D with (r,z) coordinates and
azimuthal symmetry.
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Figure 10. Void fraction profile for run F03G01, jf = 2 m/s, jg = 0.209 m/s. The
solid circles denote the experimental results, while the open circles are the
calculated ones with CIb = CIb1 + CIb2 ∇α, and the triangles the calculated
with CIb = CIb0.

Figure 11. Void fraction profile for run F03G01, jf = 2 m/s, jg = 0.209 m/s. The solid
circles denote the experimental results, the open circles are the calculated ones
with the 3D Eulerian code and the crosses (x) denote the calculated with the
2D Eulerian solver. Both calculation were performed with CIb = CIb0.
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In Fig. 12 we display the predicted values for the IAC (solid circles) and
the experimental values (empty circles and continuous line), computed us-
ing Eq. (23) for the turbulence induced by the bubbles. Finally we display
in Fig. 13 the results for the interfacial velocity distribution for run F03G01,
calculated with the 2D and 3D solvers. Prediction has been made for an-
other cases with jf = 1 m/s and 3 m/s also with very good results.

Figure 12. Experimental (solid circles) and computed (open circles) interfacial area con-
centration for run F03G01.

Figure 13. Interfacial area velocity profile for run F03G01. The solid circles denote the
experimental results. The open circles are the calculated results with the 3D
Eulerian solver and the crosses (x) the calculated values with the 2D (r,z)
solver.
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6 Conclusions

In this paper we have shown the results of a set of experiments performed
with different superficial velocities of gas and liquid phases, covering the
transition region from bubbly flow to cap/slug flow. In these experiments
the void fraction and the interfacial area concentration were measured at
fifteen radial positions and three axial locations. It was shown in these ex-
periments that if for a given superficial velocity of the liquid as for instance
jl = 2 m/s, we increase the superficial velocity of the gas phase, then it
happens that for gas superficial velocities with void fractions above 20%, a
flow regime transition is produced from the wall peak to the core peak as
it is shown in Fig. 8. This transition is caused by the appearance of cap
and slug bubbles of big size that tends to move toward the pipe center.
The causative mechanism of this transition is that the lift force changes it
sign for bubbles bigger that around 5.8 mm, that correspond to the Eötwos
number around 10.

Then this paper shows the results for a set of experiments performed
by adding small amounts of 1-butanol to reduce the surface tension of the
water. We have seen that the bubble’s size diminish for bubbly flow con-
ditions and we have more small size bubbles that tend to move toward the
wall due to the lift force, producing in this way a wall peak higher that the
peak produced in the experiments with the same boundary conditions for
the liquid and gas phases but without adding 1-butanol.

A phenomenon that has been observed in the experiments by adding
1-butanol is that there is a change in the flow map. When the surface ten-
sion is reduced, the transition from the wall peak to the core peak takes
place with higher superficial velocities of the gas, for instance as displayed
in Fig. 9, the case B02G05 features the core peak that means that the flow
regime transition have been already produced, while the case D02G05 with
the same boundary conditions but adding a small amount of 1-butanol is
exhibiting the wall peak.

In this paper we have developed a model that consists in a Lagrangian
model to track the bubble trajectories coupled to a Eulerian model for the
continuous phase and a 3D random walk model to take into account the
velocity fluctuations that are seen by the bubbles due to the liquid turbu-
lence. The turbulence induced by the bubbles plays an important role in
the continuous random walk model because when this mechanism for turbu-
lence production is not included, then the peak for the void fraction profile is
higher than the experimental one; in this way we can say that the turbulence
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induced by the bubbles increases the bubble turbulence diffusion. Since the
void fraction distribution is not known a priori then a self-consistent calcu-
lation is performed in order to obtain the void fraction distribution. This
is achieved by executing a set of iterations to obtain the true void fraction
profile. The first void fraction distribution is obtained by considering only
the liquid turbulence. The output of this calculation is a first iterated void
fraction distribution that is used as input for the second calculation and so
on. The convergence is achieved in three or four iterations.

Another important issue is to notice is that the turbulence induced by
the bubbles given by Eq. (23), returns better predictions when we assume
that the constant CIb that appears in Eq. (23) is assumed to depend on the
gradient of the void fraction profile as in Eq. (38). Good predictions of the
void fraction distributions are obtained for the cases with liquid superficial
velocities of 2 and 3 m/s, and also for the interfacial velocity distributions
and interfacial area concentrations. Also the Lagrangian and 3D random
walk models have been coupled to a 3D Eulerian solver, and it is observed
that the results improve when using this last alternative although the com-
putational effort is bigger when this last option is chosen.

Presented here model does not include the coalescence of the bubbles or
the break up of the bubbles by interactions with turbulent eddies. Therefore
the next step is to include that into Eulerian-Lagrangian, that is the model
break-up and coalescence mechanisms in order to go to the cap/slug regime,
in this way we could make predictions of the void fraction distribution for
several group of bubbles. The model is being improved by including these
interaction mechanisms in a full Lagrangian-Eulerian model were group of
bubbles are simultaneously tracked, and when the distance between two
bubbles is smaller than a certain distance on which the interaction takes
place.
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