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Chaotic air pressure fluctuations during departure
of air bubbles from two neighbouring nozzles

ROMUALD MOSDORF∗

TOMASZ WYSZKOWSKI

Bialystok University of Technology, Faculty of Mechanical Engineering,
Wiejska 45C, 15-351 Białystok

Abstract In the experiment, bubbles were generated from two brass
nozzles with inner diameters of 1.1 mm. They were submerged in the glass
tank filled with distilled water. There have been measured the air pres-
sure fluctuations and the signal from the laser-phototransistor sensor. For
analysis of the pressure signal the correlation (the normalized cross – corre-
lation exponent) and non-linear analyses have been used. It has been shown
that hydrodynamic interactions between bubbles can lead to bubble depar-
ture synchronization. In this case the bubble departures become periodic.
The results of calculation of correlation dimension and the largest Lya-
punov exponent confirm that hydrodynamic bubble interactions observed
for 4 mm spacing between nozzels cause the periodic bubble departures
from two neighbouring nozzles.
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Nomenclature

C – correlation coefficient
Ca – autocorrelation function
C2 – correlation integral
d – distance in phase space
D – bubble departure diameter
D2 – correlation dimension
f – frequency of bubble departures, Hz
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H – Heaviside’s step function
L – largest Lyapunov exponent
m – number of examined points
N – number of samples
p – probability
q – air volume flow rate, dm3/min
S – spacing between nozzles, mm
t – time, s
x – sample value

Greek symbols
τ – time delay (number of samples)
σ – standard deviation

Subscripts
a – autocorrelation function
i – sample number
L – left
n – sample number
R – right
p – pressure

1 Introduction

There are numerous physical parameters such as: physical properties of two
phases, gas flow rate, gas pressure, height of the liquid and gravity condi-
tions which influence the bubble formation. When bubbles are generated
from many nozzles or orifices the complex interactions between them ap-
pear. Bubble interactions including its coalescence change the mean size
of bubbles and liquid flow around them, and finally the efficiency of the
gas-liquid mass transfer processes [1]. Therefore, bubble interactions are
still analysed [2,3].

There are numerous papers describing the chaotic behaviours in the
bubbling process. In the paper [4] it has been shown that interaction be-
tween bubbles in the vertical column causes the chaotic changes of volume
fraction of the fluid. The chaotic bubble behaviours are connected with
flow instabilities caused by bubble interactions [5] or coalescence between
bubbles [6]. The period-doubling sequence of time between bubbles which is
leading to chaos has been described in [7]. The tripled period has also been
observed [8]. It has been shown that for different nozzle diameters the chaos
appears in different ways [9]. It was found that the meniscus oscillations in
the orifice strongly affect the subsequent bubble cycle [10,11]. The chaotic
behaviours of bubble departures have also been discussed in papers [12–14].
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In the papers [15,16] the paths of bubbles emitted from the brass nozzle
have been analysed. It has been shown that bubble paths have multifractal
character and its properties are changed when bubble departure frequency
is greater than 30 Hz.

When the bubbles are generated from two neighbouring nozzles or ori-
fices then hydrodynamic interactions and coalescence between bubbles cause
increasing of the chaotic bubble behaviours. In the paper [2] there has
been analyzed the interaction between bubbles generated from two adja-
cent micro-tubes. The analysis shows that the coalescence time depends on
the liquid properties, the distance between tubes and the gas flow rate. In
the work [3], the coalescence rate of bubbles generated from two separated
orifices has been studied and modelled. The coalescence has been analyzed
from mechanistic and statistical approach.

In the present paper bubbles were generated from two brass nozzles with
inner diameters of 1.1 mm. They were submerged in the glass tank filled
with distilled water. There has been analyzed the bubble departures and in-
teractions occurring for different distances between the nozzles and different
air volume flow rates. There has been measured the air pressure and signal
from the laser-phototransistor sensor. For analysis of the pressure signal the
correlation and non-linear methods (correlation coefficient, attractor recon-
struction, largest Lyapunov exponent and correlation dimension) have been
used.

2 Experimental setup and data recording methods

In the experiment bubbles were generated from two brass nozzles – each
of them had inner diameter of 1.1 mm and was located in the tank (400×
400×700 mm) filled with distilled water. The mean bubble departure diam-
eter was about 5.8 mm for frequency of bubble departures equal to 36 Hz.
The distance between nozzles was changed from 2 mm up to 10 mm. The
distance between nozzles was measured as the spacing between centres of
the nozzles.

The gas pressure fluctuations have been measured using uncompensated
silicon pressure sensor MPX12DP. For synchronization of pressure signal
with bubble location the laser-phototransistor system has been used. In
this system the semiconductor red laser with wave length of 650 nm, 3 mW,
special aperture and phototransistor BPYP22 have been used. The diame-
ter of laser beam was ∼0.2 mm. The water temperature was 20 oC. The air
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Figure 1. Experimental setup. 1 – glass tank, 2 – air tank, 3 – laser, 4 – phototransistor,
5 – air valve, 6 – pressure sensor, 7 – computer aided data acquisition system,
8 – high speed digital camera, 9 – light source, 10 – screen, 11 – air pump, 12
– flow meter.

volume flow rate was measured using the flow meter (KYTOLA OY, A-2k)
and was changed from 0.05 dm3/min to 0.3 dm3/min.

The pressure and signal from phototransistor were simultaneously re-
corded using data acquisition system DT9800 series USB Function Modules
for Data Acquisition Systems with sampling frequency of 2000 Hz. The
samples were recorded during the 60 s for each air volume flow rates. Each
of nozzles had the own air supply system, consisting of 2 dm3 capacity air
tank, flow meter and the air pump. In the experiment the air volume flow
rates in both nozzles was the same. The scheme of experimental stand
is shown in Fig. 1. Bubble departures have been recorded using the high
speed Casio EX FX1 camera. In Fig. 2 it is shown the example of data
recorded in the experiment. The signals recorded by pressure sensor and
laser-phototransistor are shown. The bubble location over the nozzle is
schematically shown over the chart. When the bubble was passing through
the laser beam (passing about 3 mm above the nozzle outlet) the photo-
transistor sensor generated the signal of the low voltage level. During this
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time the bubble growth and air pressure in the air supply system decreases.
Following the bubble departure, the air pressure increases.

Figure 2. Example of pressure and phototransistor signals.

The number of minima of pressure signal and number of periods with low
voltage level signal from phototransistor sensor have been used to determine
bubble departure frequencies. In Fig. 3 there is shown the example of
frequencies of bubble departures as the function of the air volume flow
rate and spacing between nozzles. Interactions between bubbles departing
from two neighbouring nozzles cause the significant decreasing the bubble
departures frequency (Fig. 3 for the distance between nozzles is equal to
4 mm). When this distance increases to 10 mm (Fig. 3 for S = 10 mm),
then interactions between bubbles do not change the mean frequency of
bubble departures.

3 Bubble behaviours

The examples of bubble behaviours recorded during the experiment are
shown in Fig. 4.

In case of the single nozzle, for the air volume flow rate less than
0.2 dm3/min (Fig. 4a) the air pressure fluctuations do not cause the signif-
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Figure 3. Bubble departure frequency of from the single nozzle and two nozzles with
different spacing between them.

icant changes of bubble departure frequencies. The chaotic pressure fluc-
tuations are accompanied by small chaotic changes of frequency of bubble
departures less than 4%. When the air volume flow rate increases above
0.2 dm3/min (Fig. 4c), the interactions between departing bubbles cause
the appearance of chaotic changes of bubble departure frequency.

In case of two neighbouring nozzles the vertical, horizontal and declin-
ing hydrodynamic interactions and coalescence are observed depending on
the spacing between nozzles and air volume flow rate. These interactions
can enhance chaotic bubble behaviours (Fig. 4f) or introduce the order in
bubble flow over the nozzle outlets (Figs. 4d, e). In the second case the
synchronization of bubble departures is observed.

For the spacing between nozzles equal to or greater than 8 mm (S/D =
1.4) and volume flow rate q < 0.1 dm3/min the bubble chains over each
of nozzles are similar to the bubble chain occurring over the single nozzle.
Bubbles form over each of nozzles the separated bubble chains with sepa-
rated bubbles. When the air volume flow rate increases (q > 0.1 dm3/min,
for the spacing between nozzles equal to or greater than 8 mm) then the
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Figure 4. The typical bubble behaviours for bubble chain formation from the single nozzle
and two neighbouring nozzles for different air volume flow rates and S = 4 mm:
a) single nozzle, q = 0.15 dm3/min; b) single nozzle, q = 0.2 dm3/min; c) single
nozzle, q = 0.3 dm3/min; d) two neighbouring nozzles; q = 0.15 dm3/min;
e) two neighbouring nozzles, q = 0.2 dm3/min, f) two neighbouring nozzles,
q = 0.3 dm3/min.

bubbles start to group or coalesce vertically in the vicinity of the nozzle
outlets. It causes that the bubble chains become unstable and trajectories
of bubbles departing from different nozzles start to cross. When the spacing
between nozzles is less than 8 mm then bubbles departing from neighbour-
ing nozzles interact: they bounce, coalesce horizontally and declining which
causes the destabilization of bubble chains. For spacing between nozzles
equal to 4 mm (S/D = 0.67) and q = 0.15 dm3/min the hydrodynamic
interaction between bubbles cause that the bubbles in chains do not group
The mechanism of bubble interactions is shown in Fig. 5 where subsequent
frames of high speed video are presented.
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Figure 5. The mechanism of bubble interactions with negative correlation coefficient for
q = 0.15 dm3/min and S = 4 mm. Time between the frames is equal to 0.015 s.

The time between frames is equal to 0.015 s. The numbers shown in
frames identify the subsequent departing bubbles. At first, the bubble ‘1’
attracts the bubble ‘2’. Then, the bubble ‘2’ is hit by the growing bubble
‘3’, which causes that the bubble ‘2’ starts to move to the right side of the
nozzles. Finally, the bubbles in chains are being separated, and then the
bubble chains repeal.

4 Correlation analysis

The correlation coefficient between air pressure fluctuations in nozzles has
been calculated according to the following formula [17]:

CL,R =
cov (pi,L, pi,R)

σpi,L
σpi,R

, (1)

where pi,L , pi,R are the time series recorded in the left and right nozzles;
σpi,L

, σpi,R
are the standard deviations of time series pi,L and pi,R, i is

a sample number, cov is a covariance function. When |CL,R| is close to 1,
time series pi,L, pi,R are correlated, but when |CL,R| is close to zero, then
the time series pi,L, pi,R are not correlated. When the large values in both
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series appear at the same time, then CL,R > 0; but when large values in
first series meet low values in other series, then CL,R < 0.

In Fig. 6 the 3D map of correlation coefficient as a function of the spacing
between nozzles and air volume flow rate is presented.

Figure 6. Correlation coefficient of pressure fluctuations for different distances between
nozzles and different air volume flow rates.

When the correlation coefficient is positive then the large number of bub-
bles depart from neighbouring nozzles at the same time. This behaviour
is connected with horizontal coalescence of bubbles. When the correlation
coefficient is negative then the bubbles depart from nozzles in a way which
is shown in Fig. 5. This behaviour is connected with declining interaction
between the bubbles. When the correlation coefficient is close to zero the
bubble departures from two neighbouring nozzles are independent.

5 Non-linear analysis and discussion

To identify the character of irregular changes of air pressure the non-linear
analysis has been performed. The trajectories of the chaotic system in the
phase space do not form any single geometrical objects, such as circle or
torus, but they form the objects called strange attractors with the struc-
ture resembling a fractal [18]. Non-linear analysis starts from attractor
reconstruction. In certain embedding dimension reconstruction is carried
out using the stroboscope coordination. In this method subsequent co-
ordinates of attractor points are calculated basing on the samples between
which the distance is equal to time delay. The time delay is a multiplication
of time between the subsequent samples. The image of the attractor in the
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n-dimensional space depends upon the time delay. There are many methods
which allow to set a proper value of time delay. One of them is based on
the analysis of autocorrelation function, Ca. In this case it is assumed that
the proper value of time delay, τ obeys the following equation [18]:

Ca (τ) ≈ 1
2
Ca (0) . (2)

Autocorrelation function enables us to identify the correlation between sub-
sequent samples. The function is defined as follows [18]:

Ca (τ) =
1
N

N∑
i=0

xixi+τ , (3)

where: N – number of samples, xi – value of i sample. The function (3) is
constant or oscillates when τ increases in case when data is generated by the
periodical system [18]. In case of chaotic data the value of autocorrelation
function rapidly decreases when τ increases.

In Fig. 7 there have been shown the examples of 3D attractor recon-
struction from pressure fluctuations for different air volume flow rates and
different distances between nozzles. For S = 10 mm and low frequency of
bubble departures the pressure fluctuations create the attractor which is
characteristic for periodic system (Fig. 7a). The attractor consists of the
number of trajectory loops. The shape of the trajectory loop is similar
to quadrilateral. When the frequency of bubble departures increases, the
amplitude of pressure fluctuations decreases. Therefore, the fluctuations
which appear just after bubble departure start to play the important role
in shaping the attractor. Changes of the location of ‘corners’ of attractor
in subsequent trajectory loops become larger in comparison with the size of
the attractor. The attractor becomes characteristic for deterministic chaos
system (Fig. 7d). For S = 4 mm and q = 0.05 dm3/min two characteristic
time periods between departing bubbles appear. Such behaviour is respon-
sible for the appearance of two loops of attractor trajectory (Fig. 7a, b).
The appearance of two loops of attractor trajectory is caused by interac-
tions between bubbles departing from two neighbouring nozzles. Bubbles
interactions occurring for S = 4 mm cause that structure of attractors for
q > 0.1 dm3/min is simpler than in case when S = 10 mm. (Fig. 7c, d).

The correlation dimension D2 is one of the characteristics of attractors,
it allows us to identify the structure of attractors. It is defined by the
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Figure 7. 3D attractor reconstructions for two air volume flow rates and different dis-
tances between nozzles: a) q = 0.05 dm3/min, b) q = 0.1 dm3/min, c) q =
0.15 dm3/min, d) q = 0.2 dm3/min.
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following expression [18]:

D2 = lim
d→0

1
ln d

ln C2(d) , (4)

where

C2(d) =

⎡
⎣ 1

N

∑
i

⎛
⎝ 1

N

∑
j

Θ (d − |xi − xj|)
⎞
⎠
⎤
⎦ , (5)

and Θ is the Heaviside’s step function that determines the number of attrac-
tor’s point pairs of the distance shorter than d. The correlation dimension
allows us to estimate the number of independent variables describing the
system. This number is estimated as the lowest integer number greater than
correlation dimension.

The another important characteristics of attractors is the largest Lya-
punov exponent. In this case two points on the attractor immersed in M
dimensional space have been selected. The distance between these points
d(xj) is at least the one orbiting period. After the lapse of some evolu-
tion time the distance of the selected points has been calculated again and
denoted as d(xj+1). The largest Lyapunov exponent has been calculated
according to formula [19]:

L =
1
t

m∑
j=1

log2

d(xj+1)
d(xj)

, (6)

where m is the number of examined points and t is the time of evolution.
Figure 8 shows results of calculation of correlation dimension and largest

Lyapunov exponent of pressure fluctuations for different spacing between
nozzles and different air volume flow rates. The obtained results confirm
that hydrodynamic bubble interactions observed for S = 4 mm cause that
bubble departures from two neighbouring nozzles become less chaotic in
comparison with bubble departures from single nozzle.

6 Conclusions

In the present paper the chaotic air pressure fluctuations during air bubble
departures from two neighbouring nozzles have been investigated.

The calculation of correlation coefficient between air pressure fluctua-
tions in neighbouring nozzles allows us to distinguish two kinds of inter-
actions characterized by positive or negative correlation coefficient. The
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Figure 8. The correlation dimension and largest Lyapunov exponent of air pressure fluc-
tuations for different distance between nozzles and different air volume flow
rates: a) correlation dimension, b) largest Lyapunov exponent.

negative correlation is observed when declining bubble interactions appear.
It has been shown that such interaction prevents bubbles from coalescence
and makes the bubble departures less chaotic in comparison with bubble
departures from the single nozzle. This interaction is responsible for the
formation of the structure of bubble departures in alternative turns. The re-
sults of calculation of correlation dimension and the largest Lyapunov expo-
nent confirm that hydrodynamic bubble interactions observed for S = 4 mm
cause the periodic bubble departures from two neighbouring nozzles.

When the pattern of bubble flow over the nozzle outlet is stable, then
the vertical liquid velocity does not change significantly. In this case sub-
sequent departing bubbles accelerate the liquid flow. The vertical liquid
velocity decreases the liquid pressure over the nozzle, and therefore the
waiting time decreases. This process causes the decreasing the frequency of
bubble departures.
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