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Abstract The finite element method (FEM) is one of the most fre-
quently used numerical methods for finding the approximate discrete point
solution of partial differential equations (PDE). In this method, linear or
nonlinear systems of equations, comprised after numerical discretization,
are solved to obtain the numerical solution of PDE. The conjugate gra-
dient algorithms are efficient iterative solvers for the large sparse linear
systems. In this paper the performance of different conjugate gradient algo-
rithms: conjugate gradient algorithm (CG), biconjugate gradient algorithm
(BICG), biconjugate gradient stabilized algorithm (BICGSTAB), conjugate
gradient squared algorithm (CGS) and biconjugate gradient stabilized al-
gorithm with l GMRES restarts (BICGSTAB(l)) is compared when solving
the steady-state axisymmetric heat conduction problem. Different values of
l parameter are studied. The engineering problem for which this comparison
is made is the two-dimensional, axisymmetric heat conduction in a finned
circular tube.
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Nomenclature

h – heat transfer coefficient, W/(m2K)
k – thermal conductivity in radial, circumferential and axial direc-

tions, W/(m K)
l – number of GMRES restarts
n – number of nodes for a single finite element
nr, nz – radial and axial components of the unit normal vector
Pi – ith degree polynomial (used in CGS and BICGSTAB algorithm)
Qi – ith degree polynomial (used in BICGSTAB algorithm)
q – heat flux density, W/m2

qv – rate of volumetric heat source, W/m3

R – thermal resistance, (m2K)/W
r, z – radial and axial coordinates, m
T – temperature, K
tol – stoping criterion

Matrices and vectors

[A] – coefficient matrix of linear system
[B] – temperature gradient matrix, K/m
{b} – right hand side vector of linear system
[D] – thermal conductivity matrix, W/(m K)
{d} – conjugate directions vector
{f} – vector of nodal loads
[J] – Jacobian matrix
[K] – stiffness matrix
[L] – lower triangular matrix
[n] – unit outward normal
[P] – preconditioner matrix
[q] – recurrence vector
{r} – residual vector
{T} – vector of nodal temperatures
[u] – auxiliary vector
{x} – vector of unknowns of linear system
{z} – vector of unknowns for preconditioned linear system

Greek symbols

α – line search parameter
β – Gram-Schmidt conjugation parameter
Γ – boundary, m
δ – thickness of thermal resistance layer, m
ε – relative residual
η, ξ – local element coordinate
θ – circumferential coordinate, rad
κ – condition number of [A] matrix
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λ – scalar used in CGS and BiCGSTAB algorithms
ρ – density, kg/m3

φ – shape function
ϕ – circumferential coordinate,m
ψ – polynominal
Ω – area, m2

[Φe] – matrix of element shape functions

Subscripts

b – boundary
cg – combustion gas
f – fin
i – iteration number
j – node number
r – thermal resistance layer
s – superheated steam
t – tube
0 – gravity center
∞ – free steam

Superscripts

e – element (the distribution of variable inside element domain)
∗ – dual system of linear quations

1 Introduction

Nowadays, as computational power increases rapidly, the numerical meth-
ods are widely used for solving the large scale engineering problems. The
numerical techniques like the finite element method (FEM) [1–6] and the
finite volume method (FVM) [7,8] allow obtaining the approximate solu-
tion of partial differential equations (PDE) at discrete points. For the FEM
method, the computational domain is divided into small elements. Next,
the energy balance equation is formulated for each element. In the subse-
quent steps, the elements are assembled to estimate the behaviour of the
whole structure. Finally, the nodal unknowns are obtained after solving
the system of ordinary differential equations (ODE) which results from the
assembly procedure. The number of nodes determines the size of the global
system of equations. If the numerical grid is dense, then large systems of
ODE (time dependent problem) or linear algebraic equations (steady-state
problem) are obtained. Hence, sophisticated numerical techniques are nec-
essary to solve the large scale problems with hundreds or even millions of
algebraic or differential equations. The iterative methods are an intuitive
choice to deal with this task. These numerical techniques perform well in
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the large sparse linear systems and often converge faster than the direct
methods like, e.g., the Gaussian elimination or the LU factorization [24].

Moreover, the numerical errors are controlled when specifying the rela-
tive tolerance, at which the solution of the numerical procedure must con-
verge. Now, the most widely used iterative techniques to solve large linear
systems are the conjugate gradient (CG) algorithm [9–13] and the bicon-
jugate gradient (BICG) algorithm with its variants: the biconjugate gra-
dient stabilized (BICGSTAB), conjugate gradient squared (CGS) and the
biconjugate gradient stabilized l-version (BICGSTAB(l)) algorithms. Those
variants have been developed to extend the ability of the conjugate gradient
(CG) algorithm to solve the linear systems with nonsymmetric coefficient
matrices.

One of the major drawbacks of the iterative methods is the lack of ro-
bustness. Therefore the preconditioning techniques have been developed to
improve convergence and efficiency of the iterative solvers. The precondi-
tioned conjugate gradient (PCG) algorithm is applied in many commercial
FEM packages. Some of them (e.g., ANSYS [32]) allow modifying a single
iteration algorithm to improve the global performance of the PCG.

Preconditioning is a transformation of the original linear system to the
equivalent one. This new linear system can be solved more efficiently and
with higher accuracy, using the iterative solver.

Test computations which compare all the aforementioned iterative algo-
rithms (their preconditioned and unpreconditioned versions) are performed
for the axisymmetric heat transfer problem: heat conduction in a finned
circular tube with a thermal resistant layer between the fin and the tube
(see Fig. 1). Importance of thermal contact resistance is widely discussed
in the literature [14–18, 25–29]. The major problem with this type of ther-
mal resistance is improper heat transfer across the finned tube between the
media flowing the inside and the outside of the tube. Therefore the tem-
perature field inside the heat transfer domain is disturbed strongly, because
the finned tubes do not operate properly.

In the reference cylindrical coordinate frame, the axisymmetric heat
transfer problems are often solved when it is possible to simplify the geom-
etry and the boundary conditions in such manner that they do not depend
on the circumferential coordinate. The axisymmetric model of heat trans-
fer can be applied to the simplified convection-conduction systems. Basing
on the analytical correlations [14], it is often possible to estimate the heat
transfer coefficients of the liquids flowing inside and outside of the tube,
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as well as the free-stream temperatures of media flowing inside and outside
of the finned tube. Next, these heat transfer coefficients and free-stream
temperatures are applied as the boundary conditions to the axisymmetric
heat transfer problems, and finally the temperature distribution inside the
heat transfer domain can be determined.

The obtained temperature field from the axisymmetric analysis can be
used – as the starting values for the solid domain, when solving the large
conjugate heat transfer problems [19,20]. It can significantly reduce the
computational time, that can be an important gain if the large computa-
tional fluid dynamics (CFD) or FEM models are being solved many times,
e.g., to find the optimal process parameters or the optimal geometrical pa-
rameters of the analysed system.

For the heat transfer domain presented in Fig. 1, the convective heat
transfer occurs on the outer and the inner surface of the finned tube. The
hot combustion gas flows around the finned tube and the superheated steam
flows inside the tube. The steam temperature is significantly lower than the
temperature of the combustion gas. Heat transfer occurs across the wall of
the tube and its finned surface. The heat transfer coefficients of the gas
and superheated steam sides are denoted as hcg and hs respectively. The
symbols Tcg and Ts relate to the free stream temperature of the combustion
gas and the superheated steam respectively.

Figure 1. The finned circular tube with the thermal resistant layer.
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The thermal properties of the fin and tube materials are thermal conduc-
tivity of the fin material, kf , and of the tube material, kt, respectively. The
thermal resistant layer exists between the fin and the tube. Thickness of
the resistance layer is denoted as δ. Thermal conductivity of the thermal
resistant layer is denoted as kr.

The heat transfer domain is axisymmetric, thus the energy equation
can be solved, using the axisymmetric isoparimetric quadrilateral finite el-
ements. For the system presented here, the energy equation is formulated
using the Galerkin FEM. Then, it is being solved for the nodal tempera-
tures using the different iterative algorithms based on the conjugate gradient
method. The similar heat transfer problem was studied in [30], however the
performance of only four conjugate gradient algorithms were presented: the
BiCG algorithm, the CGS algorithm, the BiCGSTAB algorithm and the
BICGSTAB(2) algorithm. In the presented paper the influence of GMRES
(l = 2–5) restarts on the computational efficiency of BiCGSTAB (l) algo-
rithm is analysed. Additionally the performance of CG and PCG algorithms
is studied.

2 Galerkin finite element method for axisymmetric
heat transfer problems

For isotropic material, the steady-state heat transfer equation for solids, in
a cylindrical coordinate frame, can be written as follows [2,3,6,21]:
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where r, ϕ and z are the radial, circumferential and axial coordinates. The
thermal conductivity is denoted as k and the volumetric rate of heat source
is qv. Assuming the temperature independency on the circumferential co-
ordinate the axisymmetric loadings and the boundary conditions, Eq. (1)
can be simplified to

k

(
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∂2T

∂z2

)
+ qv = 0 . (2)

If n denotes the number of nodes in the element and j is the local node
number in the element, then temperature distribution inside the element
can be approximated using the nodal temperatures and the element shape
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functions φe
j = φe

j(r, z) in the following way:
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(3)
In Eq. (3), the element shape functions matrix is denoted as [Φe] and the
nodal temperature vector is {Te}. Applying the weighted residuals method,
the Galerkin formulation [2,5,6,21] to Eq. (2), one can obtain∫
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The volume integral of the term in parentheses can be expressed as∫
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If the integral is independent on the circumferential coordinate, then∫
Ωe
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Applying a divergence theorem to Eq. (6), it yields
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where the boundary integration is performed in the r-z plane and the n is
the unit outward normal vector to the element boundary Γe. The boundary
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integral can be written as follows:∫
Γe

kr
∂T e

∂n
φe

idΓ =
∫
Γe

kr

(
−∂T

e

∂r
nr − ∂T e

∂z
nz

)
φe

idΓ , (8)

where nr and nz are the radial and the axial components of the unit normal
vector. Consider the bilinear quadrilateral element (see Fig. 2), for which
the following boundary conditions and initial conditions are applied:

• the Neumann type boundary condition

−kr
(
∂T e

∂r
nr +

∂T e

∂z
nz

)
= rqb , r, z ⊂ Γ1 , (9)

where qb = qb(r, z) denotes heat flux specified on the element bound-
ary (Fig. 2, edge 1-2)

• the mixed type (convective) boundary condition

−kr
(
∂T e

∂r
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∂T e

∂z
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)
= −rh(T e − T∞) , r, z ⊂ Γ2 , (10)

where the free stream temperature T∞ = T∞(r, z) and the heat trans-
fer coefficient h = h(r, z) must be given (Fig. 2, edge 2-3);

• the insulation surface boundary condition (Fig. 2, edge 3-4)

−kr
(
∂T e
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∂T e

∂z
nz

)
= 0 , r, z ⊂ Γ3 , (11)

• the Dirichlet boundary condition (Fig. 2, edge 4-1)

T e = Tb = Tb(r, z) , r, z ⊂ Γ4 , (12)

where the boundary temperature Tb must be given. The Dirichlet
boundary condition sets the fixed value of the nodal temperature and
must be satisfied by Eq. (4).

Substituting Eqs. (9)–(11) into Eq. (8), the following is obtained:
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Figure 2. Bilinear quadrilateral element.

Including Eqs. (13) and (7) into Eq. (6), it is obtained∫
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The remaining volume integrals in Eq. (4) can be expressed as∫
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Substituting Eq. (3) into Eqs. (13)–(14), it is obtained∫
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Then after substituting Eqs. (15)–(16) into Eq. (4), the following is ob-
tained:
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Introducing matrix notation, the element stiffness matrix is a sum of a con-
ductive [Ke

cond] and a convective [Ke
conv] matrices and can be expressed as

[Ke] = [Ke
cond] + [Ke

cov] , (18)

or

[Ke] =
∫
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r[Be]T [De][Be]dΩe +
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where the superscript T denotes the transpose. The element load vector
includes the heat flux and convective boundary condition, as well as the
heat source term in a following way:

{f e} = {f e
q̇v
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In Eq. (22), rc denotes the gravity center of the element and the matrices
of temperature derivatives [Be] and material properties [De] are defined as
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. (21)
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Substituting Eqs. (22) and (23) into Eq. (19), the following can be obtained:

[Ke]{Te} = {f e} . (22)

The components of the shape function matrix [Φe] for the bilinear axisym-
metric quadrilateral element can be expressed in the natural (local) element
coordinates ξ, η as for the plane bilinear quadrilateral elements [1,2]

φe
1 = 1

4(1 − ξ)1 − η , φe
2 = 1

4 (1 + ξ)1 − η ,

φe
3 = 1

4(1 + ξ)1 + η , φe
4 = 1

4 (1 − ξ)1 + η .
(23)

Using these element shape functions, the element coordinates in a global
cylindrical coordinate system are interpolated as follows:
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where {re}, {ze} are the vectors of nodal coordinates in a global cylindrical
coordinate frame. The derivatives of nodal coordinates with respect to local
coordinates are calculated using the chain rule

∂φe
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Equations (29) and (30) can be rewritten in matrix form
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where [J] is the Jacobian matrix of coordinate mapping. Therefore, the par-
tial derivatives of the shape function with respect to the global coordinates,
necessary to calculate the matrix [Be] (see Eq. 21), are⎧⎨

⎩
∂φe

i
∂r

∂φe
i

∂z

⎫⎬
⎭ = [J]−1 =
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∂φe
i

∂ξ

∂φe
i

∂η

⎫⎬
⎭ . (29)

The coordinate mapping implies, that the differential area element is given
by

dΩ = drdz = |J|dξdη , (30)

where |J| is a determinant of the Jacobian matrix. Therefore, Eqs. (22)
and (23) can be written as

[Ke] = 2πrc
∫
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{f e} = 2π
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At the heat flux boundary conditions Eqs. (9) and (10) are incorporated in
Eq. (35) as

{f e} = {f e
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q } + {f e
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and the convective part of the matrix [Ke] is

[Ke
conv] =

2πhl23
12

⎡
⎢⎢⎣

0 0 0 0
0 3r2 r3 0
0 r2 3r3 0
0 0 0 0

⎤
⎥⎥⎦ . (34)
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The area integral in Eqs. (34) is calculated using the Gauss quadrature rule
for two dimensions [2,5] in order to obtain [Ke]. If the matrix [Ke] and the
vector of the element loads {f e} are evaluated for each element, then the
assembly procedure [1,2,5,8] is performed in order to obtain the global form
of Eq. (26)

[K]{T} = {f} , (35)

which is solved using the conjugate gradient based algorithms.

3 Iterative solvers

The FEM discretization of the parabolic PDE given by Eq. (1) results in
forming the linear systems, which size is determined by the number of nodes
in the discretized heat transfer domain. In the practical engineering prob-
lems, the number of nodes can even exceed 107 for the large three dimen-
sional structures or CFD problems. However, from the authors’ experience,
the number of nodes rarely exceeds 106 for the axisymmetric problems,
which are often solved to simplify the three-dimensional problem or to find
the estimated initial values for solving the large three-dimensional prob-
lems. One of the most common choices for solving the moderate size and
the large linear systems is the conjugate gradient method. This method
works well for the sparse symmetric and positive definite matrices which
comprise from the FEM discretization of the parabolic PDE.

3.1 Conjugate gradient algorithm

The conjugate gradient (CG) algorithm [9,10] is the efficient method for
solving the large sparse linear systems with the positive definite and sym-
metric matrix [A]. The basic idea of the conjugate gradient algorithms is
to find the minimum of the quadratic form given by the formula

f(x) =
1
2
{x}T [A]{x} − {b}T {x} + c , (36)

where [A] is the coefficient matrix of linear system,{x} is the vector of
unknowns and {b} is the right side vector, and c is the arbitrary chosen
constant. The gradient f ′(x) can be defined as

f ′(x) =
[
∂

∂x1
f(x),

∂

∂x2
f(x) , . . . ,

∂

∂xn
f(x)

]T

. (37)
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If the matrix [A] is symmetric then Eq. (37) simplifies to

f ′(x) = [A]{x} − {b} . (38)

If f ′(x)=0 and the matrix [A] is positive definite and symmetric, then
the minimum of f(x) is found. Hence, the system of linear equations
[A]{x}−{b}={0} can be solved by finding the vector of unknowns {x}
that minimizes f(x). The conjugate gradient algorithm starts with the ar-
bitrary chosen vector {x}={x0}. Then in the successive iteration, the vector
of unknowns{x} approaches the minimum of the quadratic form f(x). The
residual vector {ri} found from the formula {ri}={b}−{A}{xi} indicates
the direction of the steepest descent. Here, the subscript i denotes the
iteration number. The ith+1 step can be expressed as [9,13]

{xi+1} = {xi} + αi{di} . (39)

Multiplying Eq. (39) by [A] and adding {b} to both sides of Eq. (39) one
obtains the residual vector for the ith+1 step

{ri+1} = {ri} − αi[A]{di} , (40)

where αi is the line search parameter given by

αi =
({rT

i }{ri}
)
/
({dT

i }[A]{di}
)
. (41)

In Eqs. (39)–(41) symbol {di} denotes the vector of conjugate search di-
rection. The parameter αi is chosen in order to minimize the function f(x)
along vector {di}. This procedure is called the line search. For the CG al-
gorithm, the search directions are orthogonal to each other. Moving along
these directions is the fastest method to find the minimum of f(x). If the
residual vector {ri} is known, then the A – orthogonal search directions
can be generated by the Gram-Schmidt conjugation procedure [19], which
states, that two vectors {di} and {dj} are A – orthogonal (conjugate), if

{di}T [A]{dj} = 0 . (42)

Proceeding towards the orthogonal search direction, vector {x} always ap-
proaches to the minimum of f(x). The A-conjugation allows introduction
of the residual vector {ri} to the Gram-Schmidt procedure. The Gram-
Schmidt conjugation parameter β at step i, necessary to find the A-orthog-
onal search directions, is given by

βi =
(
{ri+1}T {ri+1}

)
/
(
{ri}T {ri}

)
. (43)
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Then, the orthogonal search directions are obtained from the following re-
lationship

{di+1} = {ri+1} + βi{di} . (44)

The procedure given by Eqs. (39)–(44) is repeated in successive steps until
satisfying the stopping criterion given in

ε = (‖{b} − |A| {xi}‖ / ‖{b}‖) < tol . (45)

The symbol ε denotes the relative residual (the scaled root mean square
residual), which is the ratio of the Euclidean norm of the residual vector
{ri+1} = {b} − {A}{xi+1} and the Euclidean norm of the right hand side
vector {b}. The value of ε must be lower than the specified tolerance tol
in order to stop the algorithmic operation. For the computational cases
presented in this paper, the tolerance parameter tol is assumed to be equal
to 10−5.

3.2 Preconditioned conjugate gradient method

One of the largest drawbacks of iterative solvers is lack of robustness. In
order to improve the efficiency of the conjugate gradient algorithm, the pre-
conditioning conjugate gradient (PCG) technique has been developed. This
allows the transformation of the original linear system into the equivalent
one, with the same solution, which can be solved easier with the iterative
solver [10,13]. For the symmetric matrices comprising from the FEM dis-
cretization, one of the most common option is the Cholesky factorization
of sparse matrices. The preconditioner matrix [P] is given in the following
form

[P] = [L][L]T , (46)

where [L] is the lower triangular matrix obtained from the decomposition
of the coefficient matrix [A] (see Subsection 3.1). Using the preconditioner
matrix, the conjugate gradient algorithm can be modified in the following
way [9,13]:
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Pseudocode for preconditioned conjugate gradient algorithm (PCG)
Assume arbitrary {x0}, e.g., {x0} = {0}, set tol = 10−5

Compute {r0} = {b} − [A]{x0}, {z0} = [P]−1{r0}
Assume {d0} = {z0}

Compute ε = ||{r0}||/||{b}||
For i = 0, 1, . . . until ε > tola

αi = ({zi}T {ri})/({di}T [P]{di})
{xi+1} = {xi} + αi {di}
{ri+1} = {ri} − αi [A]{di}

Compute ε = || {ri+1}||/||{b}||
{zi+1} = [P]−1 {ri+1}
βi = ({zi+1}T {ri+1})/({zi}T {ri})
{di+1} = {zi+1}+ βi {di}

End

The residual from the preconditioned system

[P]−1 [A]{x} = [P]−1 {b} (47)

is written as
{zi} = [P]−1 {ri} . (48)

It is possible to note in the pseudocode of the PCG method, that this
residual is used to calculate scalars α and β in the CG algorithm. The linear
system given in (48) is solved at each iterative step, thus the preconditioner
must be chosen in the way, that solving the linear system

[P] {zi} = {ri} , (49)

has a low computational cost. The incomplete LU factorization for sparse
matrices ILU(0) with no fill-in [9,13], one of the most often applied precon-
ditioners, is used for the computations presented in this paper. All the other
algorithms presented in this paper can be preconditioned in the similar way.

3.3 Biconjugate conjugate gradient method

The conjugate gradient method is not suitable for nonsymmetric linear sys-
tems, because the residual vectors cannot be made orthogonal in short recur-
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rences. The CG algorithm is prone to round-off errors, another drawback,
that may cause the search direction vectors d to lose their A-orthogonality
and the algorithm can encounter difficulties in converging. It may happen,
when the condition number of the symmetric matrix is high. Sometimes,
slower alternative algorithms can be used to ensure that the converged solu-
tion can be obtained. One of the most widely used algorithm to handle the
nonsymmetric systems is the biconjugate gradient (BICG) algorithm [13],
which replaces the orthogonal sequence of residuals by two mutually orthog-
onal sequences, at the cost of losing a minimization of f(x). Implicitly, the
algorithm solves not only the original system [A]{x} − {b} but also the
dual linear system [A]T {x∗} − {b∗}. This dual system is often ignored in
the later parts of the algorithm. Two sets of residuals are updated in the
iterative procedure in the following way:

{ri+1} = {ri} − αi[A]{di} , (50)

{r∗i+1} = {r∗i } − αi[A]T {d∗
i } . (51)

The residuals of the dual system are denoted as {r∗}. The two sets of search
directions are updated as given below

{di+1} = {ri} + βi[A]{di} , (52)

{d∗
i+1} = {r∗i } + βi[A]T {d∗

i } . (53)

The parameters α and β at ith step are obtained from

αi =
(
{r∗i }T {ri}

)
/
(
{d∗

i }T [A] {di}
)
, (54)

βi =
({

r∗i+1

}T {ri+1}
)
/
(
{r∗i }T {ri}

)
. (55)

3.4 Conjugated gradient squared (CGS)

The conjugate gradient squared (CGS) method [9,15] is the modification of
the BICG developed to improve its performance. In the BICG method a
residual vector {ri} can be regarded as a product of {r0} and an ith degree
polynomial in [A], that is

{ri} = Qi ([A]) {r0} . (56)

This same polynomial satisfies

{r∗i } = Qi

(
[A]T

)
{r∗0} . (57)
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The idea of this algorithm is to avoid computation of {r∗} and {d∗} given
by Eqs. (51) and (53), which are used in calculation of scalars α and β in the
BICG algorithm, by calculating these scalars on the basis of the recurrences
(56) and (57).

The scalar λ, which is the nominator in Eqs. (54) and (55), can be
expressed on the basis of Eqs. (56) and (57) as follows:

λi = ({r∗i } , {ri}) =
(
Qi

(
[A]T

)
{r∗0} , Qi ([A]) {r0}

)
=
({r∗0} , Q2

i ([A]) {r0}
)
.

(58)
Therefore only the {r∗} at the initial step is necessary for calculating α and
β. Moreover, if Qi ([A]) reduces the {r∗} to a smaller number, then it is
expected that the squared Q2

i ([A]) may improve this effect. The detailed
explanation how to incorporate the recurrence given by Eq. (58) in the
BiCG algorithm is given in [13]. The recurrence vector {q} is defined as

{qi} = {ui} + αi [A] {di} , (59)

where {u} is an auxiliary vector given by

{ui} = {ri} + βi−1 {qi−1} . (60)

These vectors {q} and {u} are incorporated in the CGS algorithm as be-
low [13]:

Pseudocode for conjugate gradient squared algorithm (CGS)
Assume arbitrary {x0}, e.g., {x0} = {0}, set tol = 10−5

Compute {r0} = {b} − [A]{x0}, {r∗0} = {r}, {u0} = {r0}
Assume {d0} = {u0}
Compute ε = ||{r0}||/||{b}||
For i = 0, 1, . . . until ε > tol

αi = ({r∗0}T {ri})/({r∗0}T [A]{di})
{qi} = {ui} − αi[A]{di}
{xi+1} = {xi} + αi ({ui} + {qi})
{ri+1} = {ri} − αi [A]{di}({ui} + {qi})

Compute ε = ||{ri+1}||/||{b}||
βi = ({r∗0}

T {ri+1})/({r∗0}
T {ri})

{ui+1} = {ri+1} + βi{qi}
{di+1} = {ui+1}+ βi (qi+ βi {di})

End
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In this algorithm the matrix by vector products with [A]T is no longer
used. Furthermore, the calculations of vectors {r∗} and {d∗} are no longer
necessary. Therefore, the performance of the CGS is expected to be better
than of the BICG algorithm. The drawback of the CGS algorithm is that
the polynomials Q are squared, therefore an irregular convergence pattern
occurs and the round off errors can be more damaging than for the BICG
algorithm.

3.5 Biconjugated gradient stabilized method

The biconjugate gradient stabilized (BICGSTAB) method [22,23] has been
developed to solve nonsymmetric linear systems while avoiding the often ir-
regular convergence patterns of the CGS algorithm. In a single iteration al-
gorithm the sequence Q2

i ([A]) {r0} is replaced by ψ([A])Qi([A]){r0}, where
ψ ([A]) is the ith degree polynomial describing the steepest descent update.
Thus, the scalar λ is given by

λi =
(
{r∗0} , ψi ([A])Qi ([A]) {r0}

)
. (61)

The BICGSTAB is the combination of the BICG and the generalized
minimal residuals method (GMRES) [9,13] where each BICG step is fol-
lowed by a GMRES(1) (i.e., one GMRES restarted at each step) step in
order to repair the irregular convergence behaviour of the CGS, as an im-
provement the bicgstab has been developed for. Nevertheless, if the matrix
[A] has large complex eigenpairs [9], such a repair may be ineffective due
to the use of first degree minimum residual polynomials. In such cases,
the BICGSTAB is likely to stagnate as confirmed by numerical experi-
ments. The higher-degree minimum residual polynomials could handle this
situation better [23]. Therefore the BICGSTAB(2) and the more general
BICGSTAB(l) have been developed. In the BICGSTAB(l), a GMRES(l)
step follows every one BICG step. The BICGSTAB(l) is equivalent to the
BICGSTAB(l) with l = 2. The BICGSTAB(l) algorithm improves the con-
vergence behaviour of the BICGSTAB algorithm, but the computation cost
of one iteration is significantly larger and depends on the number of the
GMRES restarts.
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4 Numerical example

In this section the results of numerical computations of the temperature
field inside a finned circular tube with a thermal resistant layer between the
fin and the tube are presented. The single thread computations were per-
formed on the personal computer with the following parameters: processor
Intel Core i7, 2.8 GHz, memory 8 GB. The numerical codes were written
in MATLAB (release R2011b) [31]. The goal of these computations was
not to achieve the solution in the shortest possible time, that can be done
using parallel computing and coding the FEM procedures in FORTRAN or
C instead of MATLAB, but to determine which conjugate gradient algo-
rithms (see Section 3) are suitable for solving efficiently the different types
of axisymmetric heat transfer problems.

In order to analyse the effectiveness of the conjugate gradient algorithms,
introduced in Section 3, the numerical code which allows determination of
the steady-state and transient temperature distribution inside the finned
circular tube (see Fig. 3) has been developed.

Figure 3. Geometrical model of the finned circular tube.

The code which incorporates the isoparametric quadrilateral elements (see
Fig. 2), allows mesh refinement, therefore it is possible to increase the mesh
density and consequently to investigate the algorithm performance for dif-
ferent size of linear systems.
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The conjugate gradient algorithms are put into the MATLAB routines [9]
for solving the linear systems comprising from the FEM discretization. The
tube and fin are made of carbon steel AISI 1010, which properties evalu-
ated at temperature T = 748.15 K are given in Tab. 1. For the presented
computational example this temperature value is assumed to be equal to
the expected mean value of temperature in heat transfer domain. Thermal
resistance, R = δ/kr, and thermal conductivity of the thermal resistance
layer, kr, and the tube and fin material, kt = kf , as well as the heat transfer
coefficients for combustion gas-side and steam-side are listed in Tab. 1. Free
steam temperatures of the combustion gas and the superheated steam are
also given in Tab. 1. The thermal resistance layer is assumed to consist of
the mixed combustion gas and the corrosion residues with thermal conduc-
tivity significantly lower than thermal conductivity of the tube material.
In all the presented computational examples the volumetric rate of the heat
source qv = 0 (see Eq. (2)).

Table 1. Material properties and thermal boundary conditions.

Parameter Value Unit

kf = kt 44 W/(m K)

kr 0.5 W/(m K)

R 1×10−3 (m2 K)/W

δ = r3 – r2 5×10−4 M

hcg, hs 60, 2000 W/(m2K)

Tcg, Ts 873.15, 673.15 K

If the material properties and the boundary condition are given, then the
linear system given by Eq. (35) is formed using the Galerkin FEM formu-
lation, as described in Section 2. Next, this linear system is being solved
using different iterative algorithms described in Section 3.

The numerical results for a coarse mesh are illustrated in Fig. 4. The
values of nodal temperatures do not change up to 3 significant digits, when
the mesh is refined. The grid shown in Fig. 4 is refined in order to compare
the effectiveness of the iterative algorithms, as described in Section 3, for
solving the linear systems of different sizes.

Four computational cases (see Tab. 2) are studied. For these computa-
tions, the starting value vector {T0} = {x0} is equal to 273.15 K for all the
iterative algorithms based on the conjugate gradient method.
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Figure 4. The steady-state solution for material properties and boundary conditions
given in Tab. 1.

Table 2. The number of nodes, the number of finite elements and the condition number
of stiffness matrix for performed computational cases.

Case no. Number of nodes Number of finite elements Condition number κ ([K])

1 10012 9650 1.84 ×106

2 52650 51840 1.06 ×107

3 100422 99260 1.87 ×107

4 261931 260000 5.31 ×107

In Tab. 2, there are the number of finite element and the number of nodes,
which determine the size of global stiffness matrix [K]. Furthermore the
condition number of the global stiffness matrices κ([K]) defined as [24]

κ(K) =
∥∥K−1

∥∥ ‖K‖ (62)

is given for the presented computational cases. If this number is large, e.g.,
κ([K]) > 109, then the problem is ill-conditioned, and the iterative solvers
may encounter difficulties in converging.

The total computational time and the number of iterations performed,
until the desired convergence criterion (45) is satisfied, are shown in Tab. 3
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(algorithms without preconditioning) and in Tab. 4 (algorithms with pre-
conditioning). For the low number of nodes (case no. 1) the robustness of
the analysed iterative algorithms is comparable; the algorithms work fast
and satisfy the desired convergence criterion in a short period of time.

Table 3. Computational times and number of iterations performed for the BICG, CGS,
BICGSTAB, BICGSTAB(l) algorithms, without preconditioning.

Case BICG CGS BICG BICG BICG BICG BICG CG
STAB STAB(2) STAB(3) STAB(4) STAB(5)

1
CPU
time, s

1.3 1.3 1.2 1.6 1.9 1.9 1.9 1.0
2 21.8 17.1 16.1 30.1 31.6 33.1 32.8 11.62
3 68.8 62.4 41.2 90.4 74.9 75.2 94.1 29.1
4 545.3 283.3 237.9 602.1 652.3 640.3 614.1 164.2

1

Iterations

1027 1299 1377 505 365 260 197 1048
2 3385 3281 3385 1622 979 698 520 3641
3 5532 6301 4310 2478 1217 844 765 4587
4 14392 9776 8480 5203 3435 2318 1645 9025

Table 4. Computational time and number of iterations performed for the BICG, CGS,
BiCGSTAB, BICGSTAB(l) algorithms, with ILU preconditioner.

Case BICG CGS BICG BICG BICG BICG BICG CG
STAB STAB(2) STAB(3) STAB(4) STAB(5)

1
CPU
time, s

0.5 0.5 0.8 0.63 0.59 0.63 0.67 0.38
2 8.8 6.5 10.8 7.9 8.6 8.8 9.1 4.0
3 33.8 20.1 33.0 26.6 25.9 27.5 27.3 11.13
4 107.1 93.6 149.4 117.3 127.6 140.4 138.2 56.5

1

Iterations

222 226 237 108.25 68 53 41 256
2 656 571 578 244 167 124 98 604
3 1294 858 839 400 254 192 144 869
4 1322 1278 1330 568 396 279 233 1377

As expected, the most efficient one is the CG algorithm, which is about
30% faster for small size of linear systems (case no. 1, Tab. 2) and about
50% faster for the large linear systems (case no. 4, Tab. 2) than the BICG
algorithm.
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However, if the large systems of equations are solved (cases no. 2–4),
the CG, BICG and CGS algorithms achieve the valid solution in the short-
est time. It was expected so, because the CG is adapted to solving large
symmetric linear systems resulting from the FEM discretization of the heat
transfer equation. Moreover, the CG computational cost for the single it-
eration algorithm is the lowest from all the presented algorithms. Another
recommended option for solving large linear systems (case no. 4, Tab. 2) is
the preconditioned CGS algorithm (see Tab. 4), which converged 1.65 times
slower than the CG algorithm.

The computational time and the number of iterations listed in Tab. 4
confirms that the preconditioned algorithms converge significantly faster
than their unpreconditioned versions. The most pronounced benefits of us-
ing the ILU(0) preconditions can be observed when the large linear systems
are being solved (Tab. 4, case 4). For this computational case the ratio
of the computational time for the preconditioned and the unpreconditioned
versions of the analysed algorithm varies from 1.6 to 5.5. The highest values
are obtained for the BICGSTAB and the BICGSTAB(2) algorithms. The
lowest ratio is obtained for the BICG algorithm for all the presented com-
putational cases.

As mentioned previously, the vector of the starting values for all the
tested algorithms is assumed as {x0} = {273.15} K. There is no sig-
nificant improvement in the performance of the BICGSTAB(l) algorithm
for these initial values of vector {x}, when the number of the GMRES
restarts l is greater than 2. This can be observed for both the precondi-
tioned and unpreconditioned versions of the BICGSTAB(3)–(5) algorithms.
The BICGSTAB(2) is the most robust from all the BICGSTAB(2)–(5) algo-
rithms in majority of the analysed computational cases. With increase of the
l number, the count of the performed iteration is lower. However, because of
the inner GMRES iterations, the computational cost of a single iteration of
the BICGSTAB(l) grows with the increasing l number. Therefore, the total
computational time does not drop significantly with decreasing number of
iterations, and it can even be greater than for the BICGSTAB (see Tab. 4).

The convergence path for computational case no. 1 (Tab. 2) is shown
in Fig. 5 for the algorithms without preconditioning and in Fig. 6 for the
algorithms with preconditioning. As mentioned in Section 3.4, a strongly
irregular convergence pattern exists when the linear systems are solved us-
ing the CGS algorithm. It happens because the polynomials Q([A]) are
squared in subsequent iterations (see Section 3.4).
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When the solution is obtained using the unpreconditioned algorithms,
then the values of relative residuals, ε, are the highest for the CGS algo-
rithm. Furthermore, the CGS algorithm requires higher number of itera-
tions, than the other modifications of the BICG algorithm – the BICGSTAB
and the BICGSTAB(2)–(5) in order to converge. The smoothest relative
residual drop in succeeding iterations is observed for the BICG and the CG
algorithms, but the number of performed iterations is slightly greater than
for other algorithms.

Figure 5. Convergence path for different conjugate gradient algorithms without precon-
ditioning, case no. 1 (see Tab. 3).

If the ILU(0) preconditioner is applied (Fig. 6), then the relative residual
path is smoother than when the algorithms works without preconditioning.
Moreover, the number of performed iterations to achieve the desired conver-
gence level is considerably lower for all applied algorithms. The convergence
path for the largest linear system obtained for computational case no. 4 is
presented in Figs. 7 and 8.

Comparing Figs. 5–6 and Figs. 7–8 one can note, that when the size
of the linear system increases, number of iterations performed to achieve
the desired convergence level also increases. It can even happen, that the
convergence level is not achieved. In Fig. 7 one can observe that the CGS
algorithm failed to converge to the desired value of tol = 10−5 and stopped
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Figure 6. Convergence path for different conjugate gradient algorithms with precondi-
tioning, case no. 1 (see Tab. 4).

Figure 7. Convergence path for different conjugate gradient algorithms with precondi-
tioning, case no. 4 (see Tab. 4).
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Figure 8. Convergence path for different gradient algorithms without preconditioning,
case no. 4 (see Tab. 3).

at ε = 0.00035. For the other algorithms, the convergence level can be
achieved.

For the computational case no. 4 (Tab. 3) the smoothest convergence
path is one for the unpreconditioned CG and BICG algorithms (see Fig. 7).
Surprisingly, when the preconditioning for the BICG is being applied, then
the residual path is getting sharper and the number of performed iterations
is greater when comparing to the BICGSTAB, the BICGSTAB(2)–(5) and
the CGS (see Fig. 8). Probably, the other type of the preconditioner, dif-
ferent than the ILU(0) may improve the convergence pattern for the BICG
algorithm.

One can observe, comparing Figs. 7 and 8, that the number of itera-
tions performed for the preconditioned algorithms is up to 10 times lower
than for the unpreconditioned versions. Despite the greater computational
cost of a single iteration, due to solving Eq. (49) at each iterative step, the
preconditioning reduces significantly the computational time of the algo-
rithm (compare Tabs. 3 and 4). Therefore, for the large linear systems it is
strongly recommended to use the preconditioned gradient algorithms. The
preconditioning can also increase the accuracy of the algorithm [9]. The pre-
conditioned CGS algorithm satisfies the convergence criterion (see Fig. 8)
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but the unpreconditioned CGS (see Fig. 7) does not (relative residuals are
larger than tol).

5 Summary

This paper demonstrates the application of the finite element method for
solving steady-state heat conduction in the finned circular tube. In order to
solve the moderate-size or the large-size linear systems, the efficient solvers
must be applied. Therefore, the performance of these iterative algorithms
were tested: the conjugate gradient, the biconjugate gradient, the conjugate
gradient squared, the biconjugate gradient stabilized and the biconjugate
gradient stabilized with l generalized minimal residual method restarts bi-
conjugate gradient stabilized and the biconjugate gradient stabilized (l).

For the steady-state heat conduction and temperature independent ther-
mal conductivity, the CG algorithm is the most robust one among the an-
alyzed algorithms. It converged the fastest for all analysed computational
cases. In general, for the coefficient matrix [A], which is symmetric and
positive definite this algorithm performs the fastest. The other Conjugate
Gradient algorithms perform slower: the CGS algorithm is the fastest from
CGS, BiCG, BiCGSTAB and BiCGSTAB(l). However when the coefficient
matrix [A] is large and the preconditioning is not applied, the CGS algo-
rithm encounters difficulties in converging to the desired tolerance value.
For the presented computational example the increase in the value of l pa-
rameter of BICGSTAB(l) algorithm decreases the number of iterations, but
does not speed up the computations. This occurs because the computational
cost of one GMRES restart is large and for the presented axisymmetric heat
transfer problem the l = 2 value should be used.

The ILU(0) factorization preconditioner of the coefficient matrix [A] has
been applied to the iterative solvers in order to improve their performance.
For steady-state heat conduction, when the large linear systems are to be
solved and the vector of the starting values {x0} is far from the solution, the
preconditioned CG and CGS algorithms are the most robust ones. How-
ever, without applying the preconditioning technique, the CGS algorithm
encounters difficulties in converging when large sparse linear systems are
solved.
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